促红细胞生成素对离体大鼠心脏缺血再灌注损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     缺血和再灌注可严重破坏心肌细胞超微结构,阻碍心肌组织能量代谢,导致心肌细胞凋亡和坏死,降低缺血再灌注损伤后心肌收缩和舒张功能。预处理(缺血或药物)是目前研究最为广泛,用于减轻心肌缺血再灌注损伤的主要手段。本研究通过建立大鼠离体心脏Langendorff模型,以重组人促红细胞生成素预灌注作为处理手段,观察rhEPO预处理对心肌缺血再灌注损伤的保护作用;同时,通过测定磷酸化PKCε、p38MAPK和ERK1/2的表达,探讨rhEPO心肌保护的可能分子机制。
     第一部分促红细胞生成素预处理对大鼠缺血再灌注损伤后心功能的保护作用
     目的:
     研究rhEPO预处理对心肌缺血再灌注损伤后心肌收缩和舒张功能以及细胞活性的影响。
     方法:
     本实验采用全心缺血30分钟,再灌注120分钟模拟心肌缺血再灌注模型(I/R模型)。分别测定I/R组、rhEPO(10IU/ml)+I/R组、chelerythrine+rhEPO+I/R组、SB203580+rhEPO+I/R组、PD98059+rhEPO+I/R组、glibenclamide+rhEPO+I/R组和L-NAME+rhEPO+I/R组(共7组)缺血前、再灌注30分钟、再灌注60分钟及再灌注120分钟时的LVDP、RPP、+dP/dt_(max)、-dP/dt_(max)和CF以评测心肌收缩和舒张功能;应用MTT比色法测定各组心肌缺血再灌注损伤后心肌细胞活度。
     结果:
     1.RhEPO预处理大鼠心脏再灌注30分钟的LVDP、RPP和+dP/dt_(max),60、120分钟的LVDP、RPP、+dP/dt_(max)和CF值以及OD550均较I/R组显著升高。
     2.Chelerythrine和rhEPO联合预处理后,大鼠心脏再灌注30分钟的LVDP、RPP和-dP/dt_(max),60、120分钟时的LVDP、RPP、±dP/dt_(max)以及心肌细胞活性均较rhEPO处理组显著下降。SB203580或PD98059与rhEPO联合预处理后,再灌注30分钟的LVDP、RPP和±dP/dt_(max),60、120分钟的LVDP、RPP、±dP/dt_(max)和CF以及OD550均较rhEPO处理组显著下降。
     3.Glibenclamide和rhEPO联合应用后,大鼠心脏再灌注30分钟的LVDP、RPP和±dP/dt_(max),60、120分钟的LVDP、RPP、±dP/dt_(max)和CF以及OD550均较rhEPO处理组显著下降。
     4.L-NAME和rhEPO联合应用后,大鼠心肌其再灌注30分钟、60分钟及120分钟的LVDP、RPP、±dP/dt_(max)、CF以及OD550各项指标均较rhEPO处理组显著下降。
     结论:
     RhEPO预处理能显著提高大鼠心肌缺血再灌注损伤的左心收缩和舒张功能,增加冠脉流量并提高心肌细胞存活率,其机制与PKCε、p38MAPK或ERK1/2的磷酸化激活有关,抑制PKC、p38MAPK或ERK1/2途径活化均可完全阻断rhEPO上述心肌保护作用。RhEPO预处理的心肌保护作用还与K_(ATP)通道的活化和开放有关,抑制K_(ATP)通道的开放可完全阻断rhEPO的心肌保护作用。此外,NO的合成和释放也是介导rhEPO预处理心肌保护的必要因素,阻断NOS、抑制NO的合成和释放可完全阻断rhEPO的心肌保护作用。
     第二部分促红细胞生成素预处理对大鼠缺血再灌注损伤的急性心肌保护的机制研究
     目的:
     探讨rhEPO预处理心肌保护的相关分子机制。
     方法:
     采用Western-blot技术分别测定对照组、rhEPO(10IU/ml)预处理、Chelerythrine+rhEPO预处理、SB203580+rhEPO预处理、PD98059+rhEPO预处理、Glibenclamidee+rhEPO预处理和L-NAME+rhEPO预处理(共7组)后心肌组织磷酸化PKCε、p38MAPK和ERK1/2的表达。
     结果:
     1.RhEPO(10IU/ml)预灌注10分钟后,心肌细胞颗粒成份(主要为线粒体、细胞核和胞膜成份)内PKCε含量较对照组显著升高,而细胞浆内PKCε含量却显著减少。同时,磷酸化p38MAPK和磷酸化ERK1/2也均较对照组显著升高。
     2.PKC抑制剂chelerythrine可完全阻断PKCε活化和转位,心肌细胞颗粒成份内PKcε含量较rhEPO处理组显著减少并回落至基础水平。而p38MAPK抑制剂SB203580和ERK1/2抑制剂PD98059对PKCε的活化和转位无显著影响。
     P38MAPK抑制剂SB203580可完全抑制磷酸化p38MAPK表达;chelerythrine可部分抑制磷酸化p38MAPK表达;而PD98059对p38MAPK磷酸化表达无显著影响。
     ERK1/2抑制剂PD98059可完全抑制磷酸化ERK1/2的表达;chelerythrine可部分抑制磷酸化ERK1/2的表达;而SB203580对ERK1/2的磷酸化表达无显著影响。
     3.广谱K_(ATP)通道抑制剂glibenclamide与rhEPO联合灌注对PKCε的活化和转位无显著影响,却能部分阻断磷酸化p38MAPK和ERK1/2的表达。
     4.广谱一氧化氮合酶抑制剂L-NAME与rhEPO联合灌注均能部分减少PKCε、p38MAPK和ERK1/2的磷酸化激活。
     结论:
     RhEPO(10U/ml)预灌注可快速磷酸化激活PKCε,并促使其由细胞浆向细胞颗粒成份内转移,并快速磷酸化激活p38MAPK和ERK1/2。PKCs是p38MAPK和ERK1/2的上游激酶,阻断PKCε可部分减少磷酸化p38MAPK和ERK1/2的表达。
     抑制K_(ATP)通道的活化和开放并不影响PKCε的活化和转位,却能部分阻断p38MAPK和ERK1/2的磷酸化表达。可见,PKCε可能是K_(ATP)通道的上游激酶;而p38MAPK和ERK1/2是K_(ATP)通道的下游激酶,p38MAPK和ERK1/2的磷酸化活化存在K_(ATP)通道依赖和非依赖途径。
     NOS合酶抑制剂可部分抑制PKCε的活化和转位,同时也能部分减少磷酸化p38MAPK和ERK1/2的表达。可见,PKCε、p38MAPK和ERK1/2的激活可能存在NO依赖和非依赖途径。
Background:
     Myocardial ischemia reperfusion injury significantly depressed myocardial contractile and diastolic function for myocardiocyte necrosis and apoptosis,which were resulted from breakdown of ultrastructural organization and disorder of energy metabolism.Ischemia preconditioning or pharmacological preconditioning was used extensively in order to palliating the myocardial injury suffering from ischemia and reperfusion injury in both clinical and experimental settings.The purpose of this study was to determined the cardioprotective effect of rhEPO preconditioning on the isolated rat heart,and to identify the possible molecular mechanisms underlying the cardioprotection of rhEPO preconditioning by detecting the phosphorylated PKCε、p38MAPK and ERK1/2.
     PartⅠThe Cardioproteetive Effect of Human Recombinant Erythropoietin on the Cardiac Function of Isolated Rat Heart Suffering from Ischemia Reperfusion Injury
     Objective:
     To investigate the effect of rhEPO preconditioning on the post-ischemic contractile and diastolic function and the cell viability after myocardial ischemia reperfusion injury.
     Methods:
     Hearts from normoxic rat(n=8/group) were isolated and perfused in the Langendorff mode.The hearts were perfused with rhEPO(10.0IU/ml) for 15 minutes prior to 30 minutes ischemia and 120 minutes reperfusion.The experimental protocol used was shown in Fig.1 PartⅠ.For mechanism studies,the hearts were pretreated with PKC inhibitor(chelerythrine),p38MAPK inhibitor(SB203580),ERK1/2 inhibitor (PD98059),potassium channel blockers(glibenclamide) or nitric oxide synthase inhibitors(L-NAME) for 15 minutes alone followed by 15 minutes in combination with rhEPO prior to ischemia..The left ventricular contractile and diastolic function(LVDP、RPP、+dP/dt_(max)、-dP/dt_(max)) and the coronary flow(CF) were recorded under steady state conditions prior to global no-flow ischemia and at 30、60、120min of reperfusion,and the cell viability was detected by MTT assay.
     Results:
     1.RhEPO significantly increased the LVDP、RPP、+dP/dt_(max)、-dP/dt_(max) but no effect on the CF at 30 minutes of reperfusion,while the LVDP、RPP、+dP/dt_(max)、-dP/dt_(max) and CF were all increased significantly at 60 and 120 minutes of reperfusion compared with I/R group.The cell viability was also increased significantly compared with I/R group.
     2.Inhibiting the activation and traslocation of PKCεwith chelerythrine abolished the cardioprotective effects of rhEPO.The LVDP、RPP、-dP/dt_(max) at 30 minutes of reperfusion,the LVDP、RPP、+dP/dt_(max) at 60 and 120 minutes of reperfusion,and the cell viability were all decreased significantly compare with rhEPO group.At the same time,in group pretreated with SB203580 or PD98059 following by rhEPO,the LVDP、RPP、±dP/dt_(max) at 30 minutes,the LVDP、RPP、±dP/dt_(max)、CF at 60 and 120 minutes, and the cell viability were also decreased significantly compared with rhEPO group.
     3.The LVDP、RPP、±dP/dt_(max) at 30 minutes of reperfusion,the LVDP、RPP、±dP/dt_(max)、CF at 60 and 120 minutes of reperfusion,and the cell viability were all decreased in group pretreated with K_(ATP) channel inhibitor glibenclamide following by rhEPO perfusion compared with rhEPO group.
     4.The inhibitor of NOS(L-NAME) can also abolish the cardioprotection of rhEPO preconditioning.The LVDP、RPP、+dP/dt_(max)、-dP/dt_(max) and CF at 30、60、120 minutes of reperfusion and the cell viability were all decreased in group pretreated with L-NAME following with rhEPO perfusion compared with rhEPO group.
     Conclusions:
     Our study demonstrated that rhEPO preconditioning increased the left ventricular post-ischemia contractile and diastolic function and coronary flow,as well as the cell viability after I/R injury.The mechanisms underlying the cardioprotection possibly associated with the phosphorylation of PKCε、p38MAPK and ERK1/2、for inhibiting the activity of PKCε、p38MAPK or ERK1/2 could abolish the cardioprotective effect of rhEPO absolutely.Besides,the opening of K_(ATP) channel and the synthesizing of NO might also involve in the cardioprotection of rhEPO preconditioning,for inhibiting the K_(ATP) channel or the NOS could abolish the cardioprotective effects of rhEPO absolutely as well.
     PartⅡThe Possible Molecular Mechanisms Underlying the Cardioprotection of Human Recombinant Erythropoietin on the Isolated Rat Heart Suffering from Ischemia Reperfusion Injury
     Objective:
     To identify the possible molecular mechanisms underlying the cardioprotection of rhEPO preconditioning by detecting the phosphorylated PKCε、p38MAPK and ERK1/2.
     Methods:
     Hearts from rats were isolated and aerobically perfused with K-H buffer for 30 minutes,then perfused with erythropoietin(10IU/ml) for 10 minutes.To investigating the molecular mechanism of cardioprotection of rhEPO,the hearts were pretreated with PKCεinhibitor(chelerythrine),p38MAPK inhibitor(SB203580),ERK1/2 inhibitor (PD98059),potassium channel blockers(glibenclamide) or nitric oxide synthase inhibitor(L-NAME) for 10 minutes alone followed by 10 minutes in combination with rhEPO.Then the free wall of left ventricle was excised and immediately stored in liquid nitrogen for western blot analysis.Frozen myocardial tissue samples were powdered in a precooled stainless steel mortar and pestle.The powdered tissue was then processed to obtain cell lysates or fractionated to obtain cytosolic and particulate fractions.Equal amounts of protein was analyzed by SDS-PAGE and Western blotting by using either isoform-specific antibodies for phospho-PKCεdetection both in cytosolic and particulate fraction or specific antibodies against phosphorylated and nonphsophorylated of p38 MAPK and ERK1/2 in cell lysates.The blots were developed by ECL.
     Results:
     1.The analysis of cytosolic and particulate fractions revealed that in the rhEPO preconditioning(10IU/ml) hearts,PKCεwas activated and translocated from cytosolic fraction to particulate fraction after perfused with rhEPO for 10 minutes.And the expression of phosphorylation of p38MAPK and ERK1/2 in total cell lysate was increased significantly compared with control group as well.
     2.Administration of chelerythrine before rhEPO inhibited the activation and translocation of PKCε,and PKCεlocated in the particular fraction was decreased significantly compared with rhEPO group.While the SB203580 or PD98059 had no effect on the activation and translocation of PKCε.
     SB203580 pretreating before rhEPO abolished the phosphorylation and activation of p38MAPK.Pretreatment with chelerythrine before rhEPO could partially inhibit the phosphorylation and activation of p38MAPK.While PD98059 had no effect on the phosphorylation and activation of p38MAPK.
     PD98059 inhibited the phosphorylation and activation of ERK1/2,and chelerythrine could also partially inhibit the phosphorylation and activation of ERK1/2. While SB203580 had no effect on the phosphorylation and activation of ERK1/2.
     3.Pretreatment with glibenclamide followed by rhEPO resulted in partially inhibiting the phosphorylation and activation of p38MAPK and ERK1/2,but had no effect on the activation and translocation of PKCε.
     4.Pretreament with L-NAME following by rhEPO partially inhibited the phosphorylation and activation of p38MAPK and ERK1/2,and partially inhibited the activation and translocation of PKCεas well.
     Conclusion:
     The activation and translocation of PKCεwas induced soon after pretreated with rhEPO(10IU/ml).And treatment with rhEPO also phosphorylated p38MAPK and ERK1/2 rapidly.PKCεwas the upstream kinase both of p38MAPK and ERK1/2,and blocking the activation of PKCεpartially inhibited the phosphorylation of p38MAPK and ERK1/2.
     PKCεwas the upstream kinase of K_(ATP) channel,and inhibiting the activation and opening of K_(ATP) channel had no effect on the activation and translocation of PKCε.In the contrary,p38MAPK and ERK1/2 were the downstream kinases of K_(ATP) channel,and blocking the opening of K_(ATP) channel partially inhibited the phosphorylation of p38MAPK and ERK1/2.So we concluded that the activation and phosphorylation of p38MAPK and ERK1/2 were K_(ATP) channel-dependent and K_(ATP) channel-independent.
     Inhibition the production of NO partially abolished the activation and phosphorylation of PKCε,and partially inhibited the activation and phosphorylation of p38MAPK and ERK1/2.The activation of PKCε、p38MAPK and ERK1/2 were all NO-dependent and NO-independent.
引文
[1] Noguchi CT, Wang L, Rogers HM et al. Survival and proliferative roles of erythropoietin beyond the erythroid lineage. Expert Rev Mol Med, 2008, 1(10):e36.
    [2] Cai Z, Manalo DJ, Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury.Circulation, 2003,108(1): 79-85.
    
    [3] Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem.2004, 279(20): 20655-20662.
    [4] Nishihara M, Miura T, Miki T et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3 beta-mediated myocardial protection. J Mol Cell Cardiol. 2007,43(5): 564-570.
    
    [5] Lipsic E, van der Meer P, Henning RH, et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J Cardiovasc Pharmacol, 2004, 44(4): 473-479.
    
    [6] Bullard AJ, Govewalla P and Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol, 2005, 100(5):397-403.
    
    [7] Hirata A, Minamino T, Asanuma H et al. Erythropoietin enhances neovascularization of ischemia myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J Am Coll Cardiol, 2006, 48(1): 176-184.
    [8] Moon C, Krawczyk M, Paik D, et al. Erythropoietin, modified to not stimulated red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther,2006, 316(3): 999-1005.
    [9] Wright GL, Hanlon P, Amin K et al. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J. 2004,18(9): 1031-1033.
    [10] Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation, 2004,109(17): 2050-2053.
    [11] Shi Y, Rafiee P, Su J, et al. Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol, 2004, 99(3):173-182.
    [12] Hanlon PR, Fu P, Wright GL, et al. Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling. J FASEB, 2005,19(10): 1323-1325.
    [13] Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA, 2003,100 (8): 4802-4806.
    [14] Fiordaliso F, Chimenti S, Staszewsky L et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA, 2005, 102(6): 2046-51.
    [15] Tramontano AF, Muniyappa R, Black AD et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway.Biochem Biophys Res Commun. 2003, 308(4): 990-4.
    [16] Fu P and Arcasoy MO. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis. Biochem Biophys Res Commun. 2007, 354(2):372-378.
    [17] Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest, 2003,112 (7): 999-1007.
    [18] Gottlieb RA and Engler RL. Apoptosis in myocardial ischemia-reperfusion. Ann N Y Acad Sci.1999, 874: 412-426.
    [19] Scarabelli TM, Knight R, Stephanou A et al. Clinical implications of apoptosis in ischemic myocardium. Curr Probl Cardiol. 2006,31(3): 181-264.
    [20] Liu X, Xie W, Liu P, et al. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion.Lif Sci, 2006, 78(19): 2255-2264.
    [21] Wu W, Lee WL, Wu YY, et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem, 2000,275(51): 40113-40119.
    [22] Burger D, Lei M, Geoghegan-Morphet N, et al. Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase. Cardiovasc Res. 2006, 72(1):51-59.
    [23] Sakanaka M, Wen TC, Matsuda S, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci, 1998, 95(8): 4635-4640.
    [24] Mackay K and Mochly-Rosen D. Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol. 2001, 33(7): 1301-1307.
    [25] Ravingerova T, Barancik M and Strniskova M. Mitogen-activated protein kinases:a new therapeutic target in cardiac pathology. Mol Cell Biochem. 2003, 247(1-2):127-138.
    [26] da Silva R, Lucchinetti E, Pasch T, et al. Ischemic but not pharmacological preconditioning elicits a gene expression profile similar to unprotected myocardium. Physiol Genomics. 2004,20(1): 117-130.
    [27] Rafiee P, Shi Y, Su J, et al. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol, 2005,100 (3):187-197.
    [28] Pain T, Yang XM, Critz SD et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000, 87(6):460-466.
    [29] Wu XC, Johns EJ and Richards NT. Relationship between erythropoietin and nitric oxide in the contraction of rat renal arcuate arteries and human umbilical vein endothelial cells. Clin Sci. 1999,97(4): 413-419.
    [30] Beleslin-Cokic BB, Cokic VP, Yu X, et al. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004,104(7): 2073-2080.
    [31] Moon CH, Kim MY, Kim MJ et al. KR-31378, a novel benzopyran analog,attenuates hypoxia-induced cell death via mitochondrial KATP channel and protein kinase C-epsilon in heart-derived H9c2 cells. Eur J Pharmacol. 2004,506(1): 27-35.
    [32] Jung YS, Jung YS, Kim MY et al. KR-31466, a benzopyranylindol analog,attenuates hypoxic injury through mitochondrial K(ATP) channel and protein kinase C activation in heart-derived H9c2 cells. J Pharmacol Sci. 2003, 92(1):13-18.
    [33] van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail, 2004, 6 (7):853-859.
    [34] Ammarguellat F, Llovera M, Kelly PA et al. Low doses of EPO activate MAP kinases but not JAK2-STAT5 in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2001, 284(4): 1031-1038.
    [35] Devemy E, Billat C and Haye B. Activation of Raf-1 and Mitogen-Activated Protein Kinases by Erythropoietin and Inositolphosphate-Glycan in Normal Erythroid Progenitor Cells: Involvement of Protein Kinase C. Cell Signal. 1997,9(1): 41-46.
    [36] Ping P, Zhang J, Huang S et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Physiol. 1999, (5 Pt 2):H1771-1785.
    [37] Ping P, Zhang J, Cao X et al. PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol. 1999,(5 Pt 2):H1468-1481.
    [38] Heidkamp MC, Bayer AL, Martin JL et al. Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C epsilon and delta in neonatal rat ventricular myocytes. Circ Res. 2001, 89(10):882-890.
    [39] Toma O, Weber NC, Wolter JI, et al. Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo. Anesthesiology. 2004,101(6):1372-1380.
    [40] Hu Y, Chen X, Pan TT, Neo KL, et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways.Pflugers Arch. 2008,455(4): 607-616.
    [41] Uecker M, Da Silva R, Grampp T, et al. Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning.Anesthesiology. 2003, 99(1): 138-147.
    [42] Gross GJ, Auchampach JA. Role of ATP dependent potassium channels in myocardial ischaemia. Cardiovasc Res. 1992,26(11): 1011-1016.
    
    [43] Toller WG, Gross ER, Kersten JR et al. Sarcolemmal and mitochondrial adenosine triphosphate- dependent potassium channels: mechanism of desflurane-induced cardioprotection. Anesthesiology. 2000, 92(6): 1731-1739.
    [44] Hara T, Tomiyasu S, Sungsam C, et al. Sevoflurane protects stunned myocardium through activation of mitochondrial ATP-sensitive potassium channels. Anesth Analg. 2001, 92(5):1139-1145.
    [45] Zaugg M, Lucchinetti E, Spahn DR, et al. Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection.Anesthesiology. 2002, 97(1):15-23.
    [46] Pain T, Yang XM, Critz SD et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000, 87(6):460-466.
    [47] Wang S, Cone J and Liu Y. Dual role of mitochondrial Katp channels in diazoxide-mediate protection in isolated rabbit hearts. Am J Physiol. 2001, 280(1): H246-255.
    [48] Baines CP, Goto M and Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997, 29(1):207-216.
    [49] Tsukamoto O, Asanuma H, Kim J, et al. A role of opening of mitochondrial ATP-sensitive potassium channels in the infarct size-limiting effect of ischemic preconditioning via activation of protein kinase C in the canine heart. Biochem Biophys Res Commun. 2005, 338(3): 1460-1466.
    [50] Balafanova Z, Bolli R, Zhang J, et al. Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon ), facilitating PKCepsilon translocation via enhanced PKCepsilon -RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem. 2002,277(17):15021-15027.
    [51]Takano H,Tang XL,Qiu Y,et al.Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism.Circ Res.1998,83(1):73-84.
    [52]Ljubkovic M,Shi Y,Cheng Q,et al.Cardiac mitochondrial ATP-sensitive potassium channel is activated by nitric oxide in vitro.FEBS Lett.2007,58(5):4255-4299.
    [1] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O_2 tension. Proc Natl Acad Sci USA, 1995, 92(12): 5510-5514
    [2] Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA, 2003,100 (8): 4802-4806
    [3] Cai Z, Manalo DJ, Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury.Circulation, 2003,108(1): 79-85
    [4] Moon C, Krawczyk M, Ahn D, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA, 2003,100(8):11612-11617
    [5] Parsa C J, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest, 2003,112 (7): 999-1007
    [6] Lipsic E, van der Meer P, Henning RH, et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J Cardiovasc Pharmacol, 2004, 44(4): 473-479
    
    [7] Moon C, Krawczyk M, Paik D, et al. Erythropoietin, modified to not stimulated red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther,2006, 316(3): 999-1005
    
    [8] Fiordaliso F, Chimenti S, Staszewsky L, et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci USA, 2005,102 (6): 2046-2051
    [9] Tramontano AF, Muniyappa R, Black AD, et al. Erythropoietin protects cardac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway.Biochem Biophys Res Common, 2003, 308 (4): 990-994
    [10] Scarabelli T, Stephanou A, Rayment N, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation, 2001,104(3): 253-256
    [11] Eder H, Rosslenbroich B, Failing K. A dose-dependent effect of recombinant erythropoietin on the reticulocyte population of rats. Blut, 1989, 59(2): 184-187
    [12] Ribatti D, Presta M, Vacca A, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood, 1999, 93(8): 2627-2636
    [13] Liu X, Xie W, Liu P, et al. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion.Lif Sci, 2006, 78(19): 2255-2264
    [14] Wu W, Lee WL, Wu YY, et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem, 2000,275(51): 40113-40119
    [15] Solaroglu I, Solaroglu A, kaptanoglu E, et al. Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst, 2003,19(1):19-22
    [16] Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem.2004,279(20): 20655-20662
    [17] Wright GL, Hanlon P, Amin K et al. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J. 2004,18(9): 1031-1033
    [18] Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation, 2004,109(17): 2050-2053
    [19] Rafiee P, Shi Y, Su J, et al. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol, 2005,100 (3):187-197
    [20] Digicaylioglu M and Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature,2001,412(6847): 641-647
    [21] Inagaki K, Hahn HS, Dorn GW et al. Additive protection of the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor and epsilon-protein kinase C activator. Circulation. 2003,108(7): 869-875
    [22] Saurin AT, Pennington DJ, Raat NJ et al. Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc Res. 2002,55(3): 672-680
    [23] Downey JM, Cohen MV, Ytrehus K et al. Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Ann N Y Acad Sci.1994,723:82-98
    [24] Goto M, Liu Y, Yang XM, Ardell JL et al. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res, 77(3): 611-621
    [25] Saurin AT, Martin JL, Heads RJ et al. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes.FASEB J. 2000, (14): 2237-2246
    [26] Rouse J, Cohen P, Trigon S et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994, 78(6): 1027-103 7
    [27] Baines CP, Zhang J, Wang GW et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002, 90(4):390-397
    [28] Han J, Jiang Y, Li Z et al. Activation of the transcription factor MEF 2C by the MAP kinase p38 in inflammation. Nature, 1997, 382: 296-299
    [29] Eldar-Finkelman H, Seger R, Vandenheede JR et al. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J Biol Chem. 1995,270(3): 987-990
    [30] Ping P, Zhang J, Huang S et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Physiol. 1999, (5 Pt 2):H1771-1785
    [31] Pain T, Yang XM, Critz SD et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000, 87(6):460-466
    [32] Wang S, Cone J and Liu Y. Dual role of mitochondrial Katp channels in diazoxide-mediate protection in isolated rabbit hearts. Am J Physiol. 2001, 280(1): H246-255
    [33] Fulton D, Gratton JP, McCabe TJ et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999, 399(6736): 597-601
    [34] Bolli R, Dawn B, Tang XL et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998, 93(5): 325-338
    [35] Xu Z, Ji X and Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK.Am J Physiol Heart Circ Physiol. 2004,286(4): H1433-1440
    [36] Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001, 33(11):1897-1918
    [37] Ockaili R, Emani VR, Okubo S et al. Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Am J Physiol. 1999,277(6 Pt 2): H2425-2434
    [38] Nakano A, Liu GS, Heusch G et al. Exogenous nitric oxide can trigger apreconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol.2000,32(7): 1159-1167
    [39] Cohen MV, Yang XM and Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies.Cardiovasc Res. 2006, 70(2): 231-239
    [40] Razavi HM, Hamilton JA, Feng Q. Modulation of apoptosis by nitric oxide:implications in myocardial ischemia and heart failure. Pharmacol Ther. 2005,106(2): 147-162
    [41] Namiuchi S, Kagaya Y, Ohta J, et al. High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention. J Am Coll Cardiol, 2005,45 (9):1406-1412
    [42] Silverberg DS, wexler D, Sheps D, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J Am Coll Cardiol, 2001,37(7):1775-1780
    [43] Smith KJ, Bleyer AJ, Little WC, et al. The cardiovascular effects of erythropoietin.Cardivasc Res, 2003, 59(3): 638-548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700