络合吸收NO传质—反应动力学及Fe~Ⅲ生物还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为控制酸雨及一系列严重的空气污染问题,矿物燃料燃烧产生的烟气中NO_x的脱除,即烟气脱氮技术的研究引起了国内外的广泛关注。至今,在国际上仅选择性催化还原(SCR)及非选择性催化还原技术(SNCR)得到了一定规模的工业化应用。但这两种技术依然存在投资、运行费高,催化剂易失效,操作温度范围窄,易排放N_2O和NH_3等缺馅。
     针对现有的烟气脱氮技术的缺点和局限性,本研究小组提出络合吸收结合生物再生方法来脱除烟气中的氮氧化物。本文作为该研究课题中一部分,考察了半胱氨酸亚铁溶液吸收NO的吸收容量,吸收速度,并与传统络合吸收剂EDTA亚铁溶液的吸收情况做了比较;初步探讨了半胱氨酸亚铁溶液吸收NO动力学区域,并对反应过程、反应速度常数进行了分析研究。同时,对微生物还原被氧化的Fe~Ⅲ吸收液进行了基础探索性研究;为这个课题积累了必要的理论基础。
     在筛板鼓泡吸收瓶对半胱氨酸亚铁Fe~Ⅱ(CyS)_2溶液络合吸收NO的吸收容量进行了研究。实验结果表明,Fe~Ⅱ/CySH=1:4的配比的溶液能经济有效地保证较高的吸收容量。吸收溶液中的SO_3~(2-)能有效地抑制吸收剂的氧化,当SO_3~2/Fe~Ⅱ(CyS)_2为1:1时吸收剂的吸收容量约为不含SO_3~2的溶液的1.5倍。模拟烟气中氧气对吸收效果有很大影响。当氧气含量达到5.5%时,NO的吸收容量约下降80%。SO_3~(2-)能有效抑制氧气的氧化作用,混合气中氧气含量越高,SO_3~(2-)对NO吸收容量的影响越明显。当烟气中含有5.5%氧气时,含1:1 SO_3~(2-)/Fe~Ⅱ(CySH)_2的吸收剂的吸收容量大约可以增加200%。实验中还发现相同浓度的亚铁络合吸收剂,Fe~Ⅱ(CyS)_2溶液的NO吸收容量略高于NO常用吸收剂Fe~Ⅱ(EDTA)。随着吸收反应的进行,Fe~Ⅱ(CyS)_2的抗氧化性能优于传统NO吸收剂Fe~Ⅱ(EDTA)。
     通过双搅拌釜内的吸收实验,探讨了Fe(II)(CyS)_2吸收NO传质反应动力学。并考查了O_2、SO_3~(2-)对吸收速度的影响。与EDTA亚铁溶液吸收NO气体实验相比,在无氧条件下,EDTA亚铁溶液的吸收速度高于半胱氨酸亚铁溶液。当混和气中含有一定比例的氧气时,氧气对EDTA亚铁溶液吸收NO气体的速度的影响明显大于对半胱氨酸亚铁溶液吸收NO气体的反应。确定本实验条件下反应动力学区域:半胱氨酸亚铁溶液吸收NO气体为快速拟1级反应。在pH=8.0,50℃实验条件下,得到平均二级反应常数为1.18×10~8L/mol·s。三种理论模型:膜模型,Danckwerts表面更新模型,Higbie渗透模型应用与拟一级反应,增强因子的计算结果却是相同的,即E=γ。实验增强因子与模型计算值的比较发现,两者吻合较好,最大相对误差不超过13%。
     针对吸收过程中Fe~Ⅱ(EDTA)被还原成Fe~Ⅲ(EDTA)后,吸收NO能力丧失的问题,利用驯化得到的微生物对Fe~Ⅲ(EDTA)还原进行了研究。结果表明,铵盐适合作本生物反应体系的氮源,而硝酸盐因为会抑制Fe~Ⅲ(EDTA)的微生物还原而不适合用作氮源;葡萄糖、乳酸相对于有一定杀菌作用的乙醇更适合于作为该体系的碳源;在30~50℃温度范围内,Fe~Ⅲ(EDTA)还原率相差不大。当溶液中Fe~Ⅲ(EDTA)浓度不超过8mmol·L~(-1)时,葡萄糖浓度为8mmol·L~(-1),菌体接种量120mg(菌体干重)·L~(-1)就能满足微生物反应需要,此时,Fe~Ⅲ(EDTA)还原率可以达到50%以上,过量碳源或菌体接种量对还原率没有明显的促进作用。
The combustion of fossil fuels generates SO2 and NOX pollutants which cause air pollution and acid rain. Conventional flue gas desulfurization (FGD) scrubbers involve limestone processes, which are efficient for controlling SO2 emission, but are incapable of removing almost water-insoluble nitric oxide.
    The newly proposed and adopted method in our work for NOX removal from flue gas, i.e. metal chelate absorption combined with microbial reduction, is deemed as a promising method. As part of this work, in this paper, the NO absorption capacity by Ferrous Cysteine (Fe" (CyS)2)solution was studied in an absorber with a sieve plate. The effects of the rate of Fe" /CySH, the concentration of SO32", and the concentration of O2 in the simulated flue gas were examined. The mass transfer and kinetics of the absorption of NO in aqueous ferrous cysteine solutions have been analyzed in a double-stirred reactor. A comparison was made between NO absorption by Fe" (CyS)2 and Fe" (EDTA). And dissimilatory reduction of Fe111 (EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was probingly investigated. The aim of this work was to provide a new method and some fundamental data for NOX removal from flue gas. The main experimental results were as follows:
    The NO absorption capacity by Ferrous Cysteine (Fe" (CyS)2)solution was studied in an absorber with a sieve plate. The effects of the rate of Fe" /CySH, the concentration of SO32", and the concentration of O2 in the simulated flue gas were examined. The results showed that reasonable absorption amount could economically be achieved when Fe" CySH was kept at 1:4. With the increase of [SO32"] in the solution, the absorption capacity would be improved. When SO32-/ Fe" (CyS)2 was 1:1,the absorption amount increased by 50%. 5.5% O2 in the simulated flue gas reduced the absorption amount of NO by80% and SO32- in the solution could efficiently inhibited the oxidation of absorbents. It was proved that the absorption capacity of NO by Fe" (CyS)2 was a little bigger than Fe" (EDTA).
    The mass transfer and kinetics of the absorption of NO into aqueous ferrous cysteine solutions have been studied in a double-stirred reactor. And the effects of the concentration of SO32-, and the concentration of O2 in the simulated flue gas were examined. Compared with Fe" (EDTA), the NO absorption rate by Fe" (CyS)2 is lower in the oxygen-free condition while much higher with certain- percent oxygen in the simulated flue gas. The reactions between Fe" (CyS)2 and were determined as pseudo-first-order reaction. The forward second-order rate constant for the complexation of NO to Fe" (CyS)2 was 1.18 X 108 L/mol s at pH 8.0 and 50癈. Three kinds of theoretical models were applied in this reaction and got the same enhancement factors, i.e. E= Y . A comparison was made between the experimental enhancement factor and the data calculated from the models, the maximum error was less than 13%, which is permitted in the research of gas-liquid reaction.
    In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an
    
    
    
    obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which is not capable of binding NO. By adding iron metal or electrochemical method, FeIII (EDTA) can be reduced to FeIII (EDTA). However, there are various drawbacks associated with these techniques. The present work involves an investigation of dissimilatory reduction of Fe (EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption. Ammonium salt was used to be as the nitric source instead of nitrate, which inhibited the reduction of Fe due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of Fe" more than ethanol as the carbon sources. The microorganisms cultured at 50C was not very sensitive to the other experimental temperature, the reduction percentage of Fe varied little with the temperature range of 30~50C. Concentrated Na2CO3 was adde
引文
1 易红宏,宁平,陈亚雄 氮氧化物废气的治理技术,环境科学动态1998,4:17-20
    2 毕列锋,李旭东 微生物法净化含NO_x废气,环境工程1998,16(3):37-39
    3 李晓东,杨卓如 国外氮氧化物气体治理的研究进展,环境工程1996,14(2):34-39
    4 江哲生,中国洁净煤发电技术的展望,第十四届国际匹兹堡会议及煤炭利用研讨论文(单行本),太原,1997:2-4
    5 韩才元,徐明厚等.煤粉燃烧.北京科学出版社,2001
    6 王军民,骆广生等.NOx对大气的污染与燃油的脱氮技术.环境保护,1997,1:12-14
    7 Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China:SO_2, NO_x, and CO, Atmospheric Environment 2000,34:363-367
    8 Jirat J, Stepanek F, Marek M, Kubicek M. Comparison of design and operation strategies for temperature control during selective catalytic reduction of NO_x, Chemical Engineering & Technology, 2001,24(1): 35-40
    9 Maisuls S E, Seshan K, Feast S, Lercher J A. Selective catalytic reduction of NO_x to nitrogen over Co-Pt/ZSM-5-Part A. Characterization and kinetic studies, Applied Catalysis B-Environmental, 2001,29(1): 69-81
    10 Kuehn, N. D., Retrofit control technology reducing NO_x Emissions, Power Engineering, 1994, 98:23-27
    11 Yang Chen-Lu, Luke Chen, Oxidation of nitric oxide in a two-stage chemical scrubber using dc corona discharge, Jounal of Hazardous Materials 2000, 80:135-146
    12 Chao HengTseng, Enhanced pulsed corona method for the removal of SO_2 and NO_x from combustion gas in a wet electrostatic precipitator, Doctorate dissertation, University of Cincinnati, 2000.10
    13 Filimonova, E. A., R.H. Amirov, Comparative modelling of NO_x and SO_2 removal from pollutant gases using pulsed-corona and silent discharges, J. Phys. D: Appl. Phys. 2000, 33:1716-1727
    14 Mochida Isao, Yozo Korai, Removal of SO_2 and NO_x over activated carbon fibers, Carbon, 2000, 38:227-239
    15 Xia Bo, J. Phillips, Impact of pretreatments on the selectivity of carbon for NO_x adsorption/reduction, Energy & Fuels, 1999,13:903-906
    16 Teresa, M., Influence of char physicochemical features on the flue gas nitric oxide reduction with chars, Environ. Sci. Technol., 1998, 32:4017-4022
    17 王军民,骆广生等.NO_x对大气的污染与燃油的脱氮技术.环境保护,1997,1:12-14
    18 Nagase, H. etc., Charactistics of Biological NO_x removal from flue gas in a Dunaliella tertiolecta culture system, Journal of Fermentation and Bioengineering, 1997, 83(3):461-465
    
    
    19 陈建孟等,生物技术在有机废气处理中的研究进展,环境科学进展,1998,6 (3),:30-35
    20 蒋文举,毕列锋,李旭东,生物废气脱硝研究,环境科学,1999,20(3):34-37
    21 郑平,胡宝来,生物脱硝技术的研究进展,环境污染和防治,1997,19(4):25-28
    22 Chu H., Chien T. W., Twu B.W., The absorption kinetics of NO in NaCIO_2/NaOH solutions, Journal of Hazardous Materials, 2001,B84:241-252
    23 Brogren C., Karlsson H.T. and Bjerle I., Absorption of NO in an alkaline solution of KMnO_4, Chem. Eng. Technol. 1997, 20:396-402
    24 Chien T. W., Chu H., Removal of SO_2 and NO_x from flue gas by wet scrubbing using an aqueous NaCIO_2 solution, Journal of Hazardous Materials, 2000, B80:43-57
    25 Sada, E., Kumazawa, H.,Kudo, I., et. al, Individual and simultaneous absorbtion of dilute NO and SO_2 in aqueous slurries of MgSO_3 with Fe(Ⅱ)-EDTA, Ind. Eng.Chem.Proc.Des. Dev. 1980, 19:377-382
    26 Tsai SS, Bedell SA, Kirby LH and ZabickD J., Field evaluation of nitric oxide abatement with ferrous chelates. Environ. Prog. 1989,8:126-129
    27 Sada, E. Kumazawa H., Simultaneous absorption of dilute NO and SO_2 into aqueous slurries of Mg(OH)_2 with added Fe(Ⅱ)EDTA chelate, Ind. Eng. Chem. Process Des. Dev. 1982,21:771-774
    28 Harriott, P. Scrubbers for NO removal: Laboratory tests and scale-up procedures, Report to Pittsburgh Energy Technology Center, U.S. Department of Energy, 1990
    29 Thorsten S., Alicja W., Grazyna S., et. al., Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of Iron(Ⅱ) in aqueous solution, Eur.J Inorg. Chem., 2001, 2317-2325
    30 Sada, E., Kumazawa, H., Hikosaka H., A kinetic study of absorption of dilute NO into aqueous slurries of Na~2SO_3 with Fe~Ⅱ-EDTA, Ind. Eng.Chem.Proc.Fundam., 1986,25:386-390
    31 Harriott, P., Smith K., Simultanous removal of NO and SO_2 in packed scrubbers or spray towers, Environ. Prog., 1993,12:110-113
    32 Chang, S. G., Littlejohn D., Effects of metal chelates on wet gas scrubbing chemistry, Environ. Sci.& Environ, 1983,17(11): 649-653
    33 Littlejohn D., Chang, S. G., Stoichimetry of ferrous nitrosyl complexes, I&EC Research, 1987, 26:1232-1234
    34 Chang, S. G., Littlejohn D., Use of Ferrous chelates of SH-Containing amino acids and peptides for the removal of NO_x and SO_2 from flue gas, I&EC Research, 1988, 27(11):2156-2161
    35 Liu D., Chang S. G, Removal of nitric oxide from flue gas using water-soluble Iron(Ⅱ) dithiocarbamates, Environ. Sci. Technol., 1988, 22(10): 1196-1200
    36 Littlejohn D., Chang S. G., Reaction of ferrous chelate nitrosyl comlexes with sulfite and bisulfite ions, I&EC Research, 1990,29(1): 10-14
    37 Pham, E. K., Chang S. G., Removal of NO from flue gases by absorption to an Iron(Ⅱ) thiochelate complex and subsequent reduction to ammonia, Nature, 1994, 369,:139-141
    38 Shi, Y., Littlejohn, D., Chang, S.G. Kinetics of NO absorption in aqueous iron(Ⅱ) bis(2,3-dimercapto-1-propanesulfonate) solutions using a stirred reactor. Ind. Eng. Chem. Res., 1996,35(5):1668-1672
    39 Shi, Y., Wang, H., Chang, S. G. Kinetics of NO absorption in aqueous iron(Ⅱ) thiochelate solutions. Environ. Prog.. 1997,16(4):301-306
    
    
    40 Shi, Y., Wang, H., Chang, S. G. Kinetics of NO absorption in aqueous iron(Ⅱ) thiochelate solutions. Environ. Prog.. 1997,16(4):301-306
    41 Shi, Y., Littlejohn, D., Chang, S. G. Integrated tests for removal nitric oxide with iron thiochelate in wet flue gas desulfurization systems. Environ. Sci. & Technol., 1996,30(11): 3371-3376
    42 岳松,串亚权,江志远,半胱胺酸合铁(Ⅱ)溶液同时脱除烟气中SO_2和NO_x的研究 重庆环境科学1999,20(6):32-35
    43 钟秦,吕喆,陈迁桥,可再生半胱胺酸亚铁溶液同时脱除SO_2和NO_x南京理工大学学报2000,24(5):441-444
    44 李天全,李倚剑,二巯基丁二醇亚铁螯和物吸收NO的研究 四川联合大学学报(工程科学版)1998,2(1):52-56
    45 李天全,李倚剑,郑志明等,2-羟基3-氨基丙磺酸亚铁螯和物清除的NO_x研究 四川联合大学学报(工程科学版)1999,3(4):7-12
    46 Littlejohn, D., S. G. Chang, Kinetic study of ferrous nitrosyl complexes, Journal of Physical Chemistry, 1982, 86:537-540
    47 曲东,Sylvia S.纯培养条件下不同氧化铁的微生物还原能力.微生物学报,2001,41(6):745-749.
    48 Lovley, D. R. Microbial Fe(Ⅲ) reduction in subsurface environments. FEMS Microbiology Reviews 1997,20(3-4):305-31.
    49 Lovely D. R.,Giovannoni S. J., White D. C., Geobacter metallireducens gen. Nov.sp.nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals[J],Arch Microbial, 1993,59:336-344
    50 Cummings D. E., Spring F. C.,Rosezweig R. F. Ferribacterinm limneticum, gen.nov.sp.nov., an Fe(Ⅱ) reducing microorganism isolatdd from mining impacted freshwater lake sediments[J], Arch Microbial, 1999,100:99-106
    51 Roden E. E., Lovely D.R., Dissmilatory Fe(Ⅲ) reduction by the marine microorganism Desulfuromonas acetoxidas[J], Appl. Environ. Microbiol,1993,59:734-742
    52 Slobodkin A. I., Tourova T. P, Kuznetsov B. B., Thermoanaerobacter siderophilus sp. Nov., a novel dissimilatory Fe(Ⅲ) reducing, anaerobic, thermophilic bacterium[J], Int .J. Syst Bacterail, 1999,49:1471-1478
    53 施耀,利用工业废料在旋流板塔内烟气脱硫的基础研究,浙江大学博士学位论文,1991
    54 Shrma M. M. and Danckwerts P. V., Chem. Eng. Sci., 1979, 34:1423
    55 Tamir A., Chem. Eng. Sci., 1979, 34:1077
    56 李伟,液相催化氧化法脱硫化氢的传质—反应研究,浙江大学硕士学位论文,1991.
    57 Danchwerts P. V., McNeil K. M. The absorption of carbon dioxide into aqueous amine solutions and the effects of catalysis. Trans. Instn. Chem. Engrs, 1967, 45:32-49.
    58 钟战铁,混合胺溶液吸收CO_2气体的初步研究,浙江大学硕士学位论文,2002.
    59 谭天恩,金一中,骆有寿,传质—反应过程,浙江大学出版社,1990
    60 Danckwerts P. V. Gas-liquid Reactions. McGraw-Hill: New York, 1970
    
    
    61 张成芳,气液反应和反应器,化学工业出版社,1985
    62 朱丙辰,化学反应工程,化学工业出版社,1991
    63 Demmink J. F., van Gils I. C., Beenackers A. A., Absorption of nitric oxide into aqueous solutions of ferrous chelate accompined by inntantaneous reaction, Ind.Eng.Chem. Res, 1997, 36:4914-4927
    64 谭盈盈,姜辛等.微生物作用下铁(Ⅲ)对有机污染物的氧化,浙江大学学报:农业与生命科学版,2002,28(3):350-354
    65 王银善,曹志方等.异养微生物还原氧化铁的研究.微生物学通报,1997,24(3):156-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700