机插粳稻群体特征及定量栽培技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对机插粳稻发展中主要存在的技术问题,开展了不同栽培方式比较试验、培育壮秧关键技术试验、基本苗定量试验、穗肥氮素比例试验、氮素基肥与分蘖肥比例试验等专题试验,并结合大面积机插粳稻调查和高产示范方调查等,分析了机插粳稻群体特性和高产限制因子,同时对机插粳稻高产定量栽培技术进行了系统研究。研究的主要结果如下:
     以常规粳稻5356为试验材料,设机直播、机抛、小苗机插、人工手栽四种种植方式比较试验,研究了不同种植方式对水稻产量、生育特性以及氮素吸收的影响,并通过生产成本调查研究,比较了几种种植方式间的经济差异。结果表明,机插方式产量显著高于其它几种种植方式,且有效穗数较高,群体结构合理,群体透光率较高,对氮素的吸收利用能力较强,此外机插较人工手栽明显节约了生产成本。结果表明,机插具有明显的省工节本、高产稳产优势,适应性广的特点。
     2008年选择江苏武进区邹区、漕桥和前黄各1个百亩连片超高产示范片,品种分别为武香粳9号和武运粳7号。2009年在如东进行了宁粳3号百亩连片超高产示范。另外试验选取四个点作实地调查,考测地点分别为高邮市(沿运地区)、淮安市宝应湖农场(沿淮地区)、兴化市(里下河地区)和大丰市方强农场(沿海地区),供试品种为苏中地区机插稻主栽品种淮稻7号、武育粳3号、镇稻9424和扬粳9538。调查分析目前江苏机插稻常规产量条件下机插稻产量限制因子。结果表明:颖花量大小是产量高低的主要影响因素,目前大面积机插稻穗数不足是影响机插稻产量提高的主要限制因子,稳定机插稻产量的基础是建立足穗的水稻群体。培育均衡性群体,促大穗、保证足够的颖花量是机插水稻进一步产量挖潜的主要方向。
     为明确影响机插育秧秧苗素质的因素,本文以镇稻6217为材料,研究分析了机插稻育秧中的播种量、秧田水分管理及施用旱秧壮秧剂对秧苗素质的影响。结果表明:播种量较低时,秧苗个体性状优势明显,但盘根性差,不利于起秧机插;播量过高时,秧苗素质弱,不利于机插后的返青活棵。水分运筹中,旱育较水育更有利于健壮秧的形成,同时有助于延长秧龄、增加秧龄弹性。施用旱秧壮秧剂在短期内可起到培肥的效果,但用量不宜超过1%。
     在前人关于水稻基本苗计算研究基础上,选择常规粳稻宁粳3号和杂交粳稻常优1号为材料,设置机插不同单穴苗数试验,对机插水稻基本苗计算的定量参数进行了获取研究,并将所得参数输入机插水稻设计栽培系统设计试验对其进行验证。结果表明,机插常规粳稻和杂交粳稻的分蘖缺位有所不同,机插常规粳稻分蘖缺位bn=1.5叶,机插杂交粳稻分蘖缺位bn=0.5叶;单穴移栽苗数对a值影响显著,其中常规粳稻3苗处理、杂交粳稻2苗处理产量表现较好,因此确定常规粳稻矫正系数a=1.5,杂交粳稻a=1.0;两种类型水稻的分蘖发生率r表现一致,均为0.8左右。将参数值输入机插水稻栽培设计系统比较高产方产量构成与群体质量指标对其进行验证,其平均值与设计值的偏差均在5%以内,验证了机插水稻基本苗计算参数的可靠性。
     以2008-2009年江苏武进区漕桥(品种为武香粳9号)和前黄(品种为武运粳7号)等2个百亩连片机插粳稻高产示范方为对象进行调查研究。探讨了机插粳稻养分吸收分配特征,并对高产精确定量施肥参数进行确定。结果表明,高产机插粳稻产量的80%左右来自抽穗后的光合产物;叶片的转运率较高,而茎鞘抽穗后呈表观输入;机插粳稻对氮的吸收量随着产量升高而增加,增加量主要来自抽穗后对氮的吸收量的显著提高:随着产量提高,抽穗至成熟期氮积累量和积累比例均上升,磷钾吸收量上升,而比例却有下降的趋势;机插粳稻叶片的氮素转运率较高,而茎鞘抽穗后呈表观输入,氮素的转运贡献率主要来自叶片;成熟期氮收获指数在0.510-0.610之间,磷收获指数在0.75左右,钾收获指数接近0.20;高产机插粳稻百公斤籽粒需氮量为2.0-2.1 kg/hm2,氮磷钾比例为2:0.9:1.4。
     2008年在江苏丹阳进行了机插粳稻氮素总量不变条件下,基蘖肥与穗肥比例、氮素基肥与蘖肥比例等2个试验,研究氮素运筹对机插粳稻氮素吸收与利用的影响。结果表明,在适宜施氮量下,适当提高穗肥比例,可以增加穗粒数和总颖花量而提高产量;提高穗肥比例有助于提高中后期的氮素积累,提高各个时期的氮素利用率;在适宜施氮和穗肥比例一定下,降低基肥和分蘖肥的比例可以提高有效穗和总颖花量而提高产量。提高分蘖肥的比例有助于提高中期的氮素积累,提高各个时期的氮素利用率。
This study has focused on the major technical problems existing in the development of machine-transplanted. Different cultivation methods, key technology in cultivation strong seedling, the quantification of basic seeding, the ratio of panicle nitrogen fertilizer, the nitrogen ratio of base fertilizer and tillering fertilizer were carried out. According to the results of the investigation in a large area and high-yield mechanical transplanting rice demonstration, we analysis the population characteristics and yield limiting factor of mechanical transplanting rice at the same time, cultivation technology was studied carefully. The main results are showed as follows:
     One japonica variety,5356. was used as experimental materials. The effects of different cultivation methods (direct seedling, broadcasting rice seedlings, mechanical transplanting with plug seedlings, manual transplanting) on grain yield, growth characteristics and nutrient uptake of rice were investigated. Meanwhile, we research the production costs to compare the economic benefits between the four methods. The results show that the yields of machine-transplanted method was significantly higher than several other cultivation methods, with more effective spikes, higher population transmittance, a reasonable population structure, and higher nitrogen absorption ability. Moreover, compared with manual transplanting mechanical transplanting reduced the cost of production. In a word, the mechanical transplanting has a significant labor saving, more advantages to obtained high and stable yield and wide adaptability features.
     The factor which limit the rice yield of mechanical transplanting in Jiangsu province were investigation and analysis on 6.7ha demonstration fields at Zhouqu, Caoqiao, and Qianhuang. Wujin County, Jiangsu province in 2008, use Wuxiangjing 9 and Wuyunjing 7 as varieties, a 6.7ha demonstration fields at Rudong county, Jiangsu province in 2009, with Ningjing 3. Field survey was done at Gaoyou (along the transport area), Baoying hu Farm at Huai'an (along the Huai River region). Xinghua City (Lixiahe area). Dafeng City Farm (coastal areas).The rice varieties were Huaidao 7, Wuyujing 3, Zhendao 9424 and Yangjing 9538. The results showed that:the number of spikelet are the main factor to affect yield, panicle number is the main limiting factor during yield increasing of machine transplanting rice, the main goal of machine transplanting rice cultivation is make sure there are sufficient panicles. Cultivating proportionality population, promoting large panicle and ensure sufficient panicles is the main direction of further tapping the potential yield.
     In order to clarify the effects of mechanical transplanting on seedling quality of rice, Zhendao 6217 was used to study the effects of different sowing density, water administrate and HanYangZhuangYangJi on seedling quality. The results showed that as the sowing density was lower, seedling quality was superior, but the circuvoluting roots was too worse to curl up for mechanical transplanting. When the sowing density was higher, seedling quality got weak that made it difficult for seedling green recovery and revival. The suitable sowing density was around 739-924g/m2. Dryland-raised seedling was more benefit to grow vigorous seedling, and had more advantages to prolong the seedling age. The application of moderate amount that less than 1% of HanYangZhuangYangJi could take effect as same as fertilizing.
     On the basis of previous research, Ningjing 3(conventional japonica rice)and Changyou 1(hybrid japonica rice)were used to studied the quantitative parameters for calculate the number of basic seedling. Test the design parameters of the input mechanical transplanting rice cultivation system.The results showed that for mechanical transplanted conventional japonica rice, bn=1.5, for the hybrid japonica rice, bn=0.5, the number of transplanted seedlings per point significantly affect factor (a), of which 3 rice seedlings of conventional japonica performed better yield than 2 seedlings of hybrid japonica.The adjusting factor (a) for high-yield conventional japonica rice population should be taken as 1.5 for conventional japonica.while 1.0 for hybrid japonica. From seedling regreening to equal panicle to tiller stage, r was 80% or so.
     Insert the input parameter value will drive the design system is relatively high-yielding rice cultivation yield component parties and groups to validate the quality indicators, the deviation between average and design values were less than 5%. verified the mechanical transplanted rice planting density reliability of calculated parameters.
     From 2008 to 2009, a 6.7ha demonstration fields at Caoqiao(Wuxiangjing 9) and Qianhuang (Wuyunjing 7),Wujin County. Jiangsu province, were used to investigate the N uptake and utilization characteristics of mechanical transplanting rice, and determined high yield precise quantitative parameters. The results showed that approximately 80% of the high proportion of matter in grain yield was come from the photosynthesis after heading. Under high yield, leaves transfer rates increase, while the stem and sheath was apparent input after heading. Uptake of nitrogen of mechanical transplanting rice increased with the yield, mainly from the significantly increased uptake in the amount of nitrogen after heading. As production increased, from heading to maturity and the accumulation of N accumulation ratio were increased, P and K uptake increased, but there is a downward trend of P/K ratio. Mechanical transplanting rice leaves inserted higher rate of nitrogen translocation, while the stem and sheath was apparent input after heading, the main contribution of nitrogen transfer from the blade; mature nitrogen harvest index between 0.510 and 0.610, P harvest index was about 0.75, K harvest index was closed to 0.20; The nitrogen-requirement for 100 kg grain of mechanical transplanting rice was 2.0~2.1 kg/100kg, NPK ratio of 2:0.9:1.4.
     Two experiments at Danyang, Jiangsu province, in 2008, for a given amount of fertilizer, the proportion of base-tillering fertilizer to panicle fertilizer and the proportion of base fertilizer to tillering fertilizer were done to investigate effect of N fertilizer management on N element absorption and utilization. The results showed that for a given amount of fertilizer, appropriate improve the ratio of panicle fertilization could get the optimum spikelets and the number of grains per panicle, and it could improve the yield of rice. Increasing N rate at panicle differentiation could increase the nitrogen accumulation at late stage and improve nitrogen utilization all the growth stage; For a given amount and ratio of fertilizer, reduce the ratio of basal and tillering can increase the effective panicles and the number of grains per panicle, and it could improve the yield of rice.
引文
[1]Li GH, Xue LH, Gu W, et al. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a 'special eco-site' and Nanjing, China [J]. Field Crops Research, 2009,112:214-221
    [2]周建群.水稻栽培方式研究进展[J].湖南农业科学,2009,2:51-54
    [3]王国忠,彭斌,陆峥嵘,等.直播水稻物质生产特点及其高产调控技术研究[J].上海农业学报,2002,18(2):32—37
    [4]刁操全.作物栽培学各论[M].中国农业出版社,2003
    [5]杜鹃,刘国华.水稻栽培方式的研究进展[J].作物研究,2007,21(5):593-597
    [6]周超.我国水稻种植机械化现状及发展趋势[J].耕作机械会讯,1997,(4):4-7
    [7]朱自均.论水稻抛秧配套技术存在的问题与发展[J].作物杂志,2000,(3):7-8
    [8]袁钊和.水稻种植机械化技术的现状与发展.农机科技推广[J],2001,(3):9-10
    [9]范伯仁.江苏省引进高性能插秧机试验综述.中国农机化[J],2001,(4):32-34
    [10]于林惠.对水稻生育特点及管理对策的初步探讨.中国农机化,2002,1:25-27
    [11]薛艳凤,于林惠.2001年水稻机插秧试验示范中有关技术问题初探[J].江苏农机化,2001,(6):16-18.
    [12]农机农艺谁当家,农机天地网,原文下载。
    [13]农业部农业机械化管理司.2009年全国农业机械化统计年报
    [14]宋建农等.21世纪我国水稻种植机械化发展方向.中国农业大学学报2000,30-33
    [15]蔡建中.水稻机械化高产栽培的工艺与农艺技术研究,江苏农学院学报,1982,3(1):1-12
    [16]张洪程,戴其根,苏祖芳,等.机插小苗稻生育规律及高产途径的研究,稻麦研究新进展,1991,247。
    [17]宫版昭.机插水稻栽培的原理和应用,农业出版社,1983,233-237
    [18]凌励.水稻中小苗机插高产栽培技术,农业科技通讯,1986,(8)2-4
    [19]凌励.水稻机插高产栽培优化调控技术的研究,水稻高产高效栽培技术与理论,东南大学出版社,1991.361-365
    [20]凌启鸿,苏相.芳,张洪程,等.稻作新理论—水稻叶龄模式,科学出版社,1994。
    [21]张洪程,戴其根,吴志光,等.抛栽水稻生长发育及产量形成的初步研究,江苏农学院学报,1989,10(增刊):2-8
    [22]张洪程,戴其根,费中富,等.抛栽稻目标发育协调优势的高产栽培技术,江苏农学院学报,1989,10(增刊):9-14
    [23]吕树权,韩阳杰.试析盘锦市发展水稻插秧机械化.农业机械,2005(4):66-67
    [24]于林惠,景启坚,薛艳凤.水稻机插秧实用技术,江苏科学出版社,2004。
    [25]于林惠.我国水稻机械化育插秧技术推广渐入快车道-2008中国农业机械化年鉴.79-82
    [26]于林惠,丁艳锋,薛艳凤,凌启鸿,袁钊和,水稻机插秧田间育秧秧苗素质影响因素研究,农业工程学报2006年3期
    [27]沈建辉,邵文娟,张祖建等.机插中苗双膜育秧落谷密度对秧苗素质及产量的影响.作物学报.2004,30(9):906-911
    [28]于林惠,沈建辉,薛艳凤.丁艳锋,凌启鸿,水稻机插秧技术的实践与思考,中国农业机械化发展论坛入选论文
    [29]2008中国农业机械化年鉴.中国农业科学技术出版社
    [30]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学1997,3:52-59
    [31]Geetha S and Vartak MN. Grain characteristic of rice hybrids [J]. Crop Research,1994,7 (2):303-305
    [32]李义珍.黄育民,庄占龙,黄亚昌.余瑞远.杂交稻高产结构研究[J].福建省农科院学报,1995,10(1):1-6
    [33]徐正进,薛亚杰,东正昭.水稻超高产品种物质生产与产量分析[J].辽宁农业科学,1992,(3):1-4
    [34]杨惠杰.李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270
    [35]杨惠杰,李义珍,黄育民.超高产水稻的产量构成和库源结构[J].福建农业学报,1999,14(1):1-5
    [36]刘军,于铁桥.大穗型水稻超高产产量形成特点及物质生产分析[J].湖南农业大学学报,1998,24(1):1-7
    [37]徐大勇,杜永.方兆伟.等.江淮稻区不同穗型粳稻品种主要农艺和品质性状的比较分析[J].作物学报.2006,32(3):379-384
    [38]袁奇.机插水稻生长发育规律及其高产栽培调控机理[D].南京农业大学,2006
    [39]凌启鸿,张洪程,苏祖芳等.作物群体质量.上海科学技术出版社.2000.
    [40]江立庚,王维金,徐竹生.籼型水稻品种物质生产与产量演变规律的研究[J].华中农业大学学报,1995,14(6):549-554
    [41]苏祖芳,吴九林,李国生,等.水稻秧苗素质对分蘖成穗率及产量构成因素的影响[J].耕作与栽培,1995.3:10-14
    [42]蒋彭炎.水稻分蘖的发生、控制与茎蘖成穗率的提高[J].中国稻米,1999,(4):7-9
    [43]陈温福,徐正进,张龙步,等.水稻高产的生理学研究[J].沈阳农业大学学报,1991,22(增刊):16-22
    [44]张洪松,岩田忠寿,佐滕勉.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16
    [45]Ying J F, Peng S B, He Q R, et al. Comparison of high-yield rice in tropical and subtropical environments. I.Determinants of grain and dray matter yields [J]. Field Crops Research,1988,57: 71-84
    [46]邹应斌.籼型超级杂交水稻高产栽培研究进展[J].耕作与栽培,2006.5:1-5
    [47]苏祖芳,王辉斌,杜永林.等.水稻生育中期群体质量与产量形成关系的研究.中国农业科学1998,31(5):19-25.
    [48]李义珍,黄育民,庄占龙,等.杂交稻高产群体干物质积累运转Ⅱ.碳水化合物的积累运转[J].福建省农科院学报,1996,11(2):1-6
    [49]李木英,潘晓华,石庆华,等.两系杂交稻结实期茎鞘物质转运特性及其对籽粒灌浆影响的初步研究[J].江西农业大学学报,1998,20(3):296-302
    [50]Yutaka Konishi. In:Technology for increasing yield in rice transplanted by machine. Tokyo:Rural Culture Association,1972.123-124,100-107 (in Japanese)
    [51]9 Kiyochika Hoshikawa. In:Physiology of small rice seeding and the technology of seedling nursery Kiyochika Hoshigawa. Tokyo: Rural Culture Association.1972.109-111,88-91.168-170 (in Japanese)
    [52]蔡建中.水稻工厂秧苗质的探讨.江苏农学院学报,1984,5(1):11-15
    [53]小西登.田植ィナ作增收技術.东京:農山漁村文化协会,1972.100-107
    [54]星川清親.稚苗の生理と育苗技術.东京:農山漁村文化协会,1972.88-91
    [55]崔承善,孟庆芝,刘民等.水稻盘育苗落谷密度与机插质量试验.现代化农业[J],1997(1):2-4
    [56]矫江.日本北海道水稻旱育苗概况.黑龙江农业科学[J].1998,(2):50-51
    [57]景启坚,薛艳凤.不同播种量对机插秧苗素质的影响.江苏农机化,2003,2:13-14
    [58]沈建辉,曹卫星.朱庆森等.不同育秧方式对机插秧苗素质的影响.南京农业大学学报.2003,26(3):7-9
    [59]邵文娟,沈建辉,张祖建等.水稻机插双膜育秧床土培肥对秧苗素质和秧龄弹性影响的研究.扬州大学学报,2004,(2):
    [60]于林惠.不同类型壮秧剂及用量对机插秧苗素质的影响.江苏农机化,2003,3:13-14
    [61]沈建辉,邵文娟,张祖建,景启坚,杨建昌,陈文林,朱庆森.机插稻育秧落谷密度、床土培肥和秧龄对苗质及产量的影响.作物学报,2005.
    [62]鲍文奎,严家瑞.肥料对作物生长发育的影响[J].农业学报,1954,2-3合刊:137-148
    [63]柳金来,宋继娟,李福林,等.氮肥施用量对水田土壤肥力和水稻植株养分含量及产量的影响[J].农业与技术.2000,20(4):8-12
    [64]彭少兵,黄见良,杨建昌,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002.35(9):1095-1103
    [65]魏海燕.水稻氮素利用的基因型差异与生理机理研究[D].扬州大学,2008
    [66]丁艳锋,黄丕生,凌启鸿.水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系.南京农业大学学报,1995,18(4):14-18.
    [67]蒋彭炎,洪晓富,冯来定等.水培条件下氮浓度对水稻氮素吸收和分蘖发生的影响研究.1997,3:191-199
    [68]丁颖.中国水稻栽培学.北京:农业出版社.1961:610-613.
    [69]松岛省三著.水稻栽培新技术.吉林人民出版社,1978,344.
    [70]姚有礼,王余龙,蔡建中.水稻大穗形成机理的研究.(1)品种间每穗颖花分化数的差异及其与穗部性状的关系.江苏农学院学报,1994.15(2):33-38.
    [71]姚有礼,王余龙,蔡建中.水稻大穗形成机理的研究.(2)品种间每穗颖花退化数的差异及其与分化数和抽穗期物质生产的关系.江苏农学院学报,1994,15(4):24-29.
    [72]姚有礼,王余龙,蔡建中.水稻大穗形成机理的研究.(3)品种间每穗颖花现存数与颖花分化和抽穗期物质生产的关系.江苏农学院学报,1995,16(2):11-16.
    [73]松岛三省,庞诚译.稻作的理论与技术.北京:农业出版社,1979,119-120.
    [74]Gibson S.I. Plant sugar-response pathway part of a complex regulatory web. Plant Physiology, 2000,124:1532-1539.
    [75]Kazuhiro K., Takeshi H. The direct of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis-branches in rice. Field Crops Research,1994,63(2):193-199.
    [76]Senanayake N., Naylor R.E.L., DeDatta S.K. Effect of nitrogen fertilization on rice spikelet differentiation and survival. Field Crops Research,1996,127:303-309.
    [77]李刚华,王惠芝.王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响.南京农业大学学报,2010,33(1):1-6.
    [78]王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    [79]David W. Lawlor. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems [J]. Journal of experimental botany,2002,53(370):773-787
    [80]Toshiyuki Tokay. Rice yield potential is closely related to crop growth rate during late reproductive period [J]. Plant Prod.sic.2005,8(3):259-274.
    [81]黄超武,丘建良,陈玉霞,等.水稻品种在生长发育过程中干物质积累与运转的研究[J].作物学报.1963,1(2):103-112.
    [82]Miralles J D, Katz S D, Colloca A. Floret development in near isogonics wheat lines differing in plant weight [J]. Field Crops Res.1998,59:21-30.
    [83]杨安中,牟筱玲,李孟良,等.氮肥运筹方式对旱作水稻衰老及产量的影响.南京农业大学学报.2004,27(4):126-129.
    [84]万靓军.张洪程,霍中洋.等.不同氮肥运筹比例对两优培九产量及品质的影响.扬州大学学报(农业与生命科学版).2005,3(1):69-72.
    [85]赵全志.丁艳锋,黄丕生.凌启鸿.水稻植株含氮量与穗粒重的关系.南京农业大学学报,1999.22(4):13-18.
    [86]周瑞庆.陈开铁,李合松.等.应用15N示踪技术研究水稻对氮素的吸收利用.湖南农学院学报.1991.17(4):665-669
    [87]谢止荣,朱秀芳,吴建明,等.氮肥运筹方式对乳苗抛栽稻群体质量及产量的影响.扬州大学学报(自然科学版).2001.5(2):42-46.
    [88]薛正,杨卫星.精准农业水稻最佳氮肥施用量研究[J].中国生态农业学报,2003,(4):53-55
    [89]Zhu Z L.Fateand managementoffertilizernitrogenin agro-ecosystems.ln:Zhu Z, Wen Q.and FreneyJ R ed. Nitrogeninsoilofchina.Kluwer AcademicPublishers.Dordrecht.The Netherlands.1997: 239-279.
    [90]潘团胜.测土配方施肥技术在水稻上的应用效果试验.广西农学报,2006,21(5):17-18
    [91]刘立军,徐伟,吴长付等.实地氮肥管理下的水稻生长发育和养分吸收特性.中国水稻科学,2007,21(2):167-173
    [92]单玉华,王余龙,山本由德等.不同类型水稻在氮素吸收及利用上的差异.扬州大学学报(自然科学版)2001,4(3):42-46
    [93]韩龙植,曹桂兰.中国稻种资源收集、保存和更新现转.植物遗传资源学报,2005.6(3):359-364
    [94]方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165
    [95]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264
    [96]江立庚,戴廷波,韦善清等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471
    [97]乔晶.机插杂交粳稻生长发育特征与高产栽培技术[D].南京农业大学,2009
    [98]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469.
    [99]丁颖.丁颖稻作论文集[M].农业出版社,1983:5,174-182
    [100]蒋彭炎,姚长溪,任正龙.水稻稀播少本插高产技术的研究[J].作物学报,1981,7(4):241-248.
    [101]吴洪恺,纪凤,文正怀,袁彩勇,韩成虎.稻栽插不同株行距配比方式初探[J].耕作与栽培,2000,(1):17-22
    [102]陆顺生,曾林,万卫东,王正国.优质籼稻不同品种、密度对其产量及构成因素的影响[J].中国农学通报,2003,19(2):50-520
    [103]王英满,张海泉,庞其敬.武运粳7号相近基本苗的不同栽插行距对生长效应的影响[J].上海农业科技,1995(5):14-15
    [104]蒋振华,徐国沾,施金裕,季忠.不同群体质量对稻米品质的影响[J].上海农业科技,2004(4):24-26
    [105]蒋彭炎,马跃方,洪晓富,等.水稻分蘖芽的环境敏感期的研究[J].作物学报.1994.5:290-296.
    [106]李刚华,张国发.陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮素的影响[J].作物学报,2009.35(6):1106-1114
    [107]杜永林.江苏现代稻作技术体系研究现状与发展对策.中国稻米,2008(2):26-28.
    [108]江苏省作物栽培技术指导站.2009年全省水稻生产技术总结,1-13
    [109]Balasubramanian, V., Hill, J.E.,2002. Direct seeding of rice in Asia: emerging issues and strategic research needs for the 21st century. In:Pandey, S.. Mortimer, M., Wade, L., Tuong, T.P., Lopez, K.,
    [110]Hardy, B. (Eds.), Direct Seeding:Research Strategies and Opportunities. International Rice Research Institute. Manila, Philippines, pp.15-39.
    [111]Rashid M., Alam M., Khan A., Ladha J. Productivity and resource use of direct-(drum)-seeded and transplanted rice in puddled soils in rice-rice and rice-wheat ecosystems.
    [112]杜永林,王强盛,王绍华,丁艳锋.江苏稻作技术应用现状与发展趋势研究.北方水稻,2009,39(6):1-6.
    [113]何瑞银,罗汉,李玉同,汪小函.张璐.水稻不同种植方式的比较试验与评价..农业工程学报.2008,24(1):167-171.
    [114]彭俊华,李有春.水稻籼、粳两亚种产量构成特点的剖析[J].四川农业大学学报,1990.8(3):162-168.
    [115]蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索[J].四川农业大学学报,1996,14(2):162-166.
    [116]潘晓飚,何道根,屈为栋.杂交早稻不同组合主要农艺性状分析及高产育种途径探讨[J].浙江农业学报,1998,10(2):57-61
    [117]姚立生.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44.
    [118]Yang J., Zhang J. Grain-filling problem in 'super' rice [J]. J. Exp. Bot.2010,61:1-5. Sheehy J., Dionoraa M., Mitchell P. Spikelet numbers, sink size and potential yield in rice. Field Crops Res,2001,71:77-85.
    [119]袁江,王丹英,徐春梅,等.水稻品种演变的研究进展[J].中国稻米.2009,5:15-18
    [120]杨建昌.杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):]336-1345.
    [121]杜永,王艳,工学红,等.黄淮地区不同粳稻品种株型、产量与品质的比较分析[J].作物学报,2007,33(7):1079-1085.
    [122]Murayama N. Oshima M. Tsukaharas S. Studies on the dynamic status of substance during ripening processes in the rice plant. Scisoil manure (Jpn).1961,32:261-265.
    [123]王志琴,水稻抽穗期茎鞘贮存的可用性糖与籽粒充实的关系,江苏农学院学报,1997,18(4):3-17
    [124]段俊,不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究,中国农业科学,1996,29(3):66-73.
    [125]Dennis B.Egli. Seed-fill duration and yield of grain crops.Advances in agronomy,2004.83: 243-279.
    [126]E. Pasuquin. T. Lafarge. B. Tubana. Transplanting young seedlings in irrigated rice fields:Early and high tiller production enhanced grain yield. Field crops research,2008,15:141-155.
    [127]Hiroshi Nakano, Satoshi Morita, Ikuo Hattori, et al. Effects of planting time and cultivar on dry matter yield and estimated total digestible nutrient content of forage rice in southwestern Japan. Field crops research,2008,105:116-123.
    [128]C. Ros. R.W.Bell, P.F. White. Seedling vigor and the early growth of transplanted rice (Oryza sativa). Plant and soil,2003,252:325-337.
    [129]姚雄,任万军,蓝平,等..杂交稻机插秧育秧播种密度与取秧面积耦合关系.农业工程学报,2009,25:98-102.
    [130]凌启鸿.中国特色水稻栽培理论和技术体系的形成与发展——纪念陈永康诞辰一百周年.江苏农业学报,2008:2
    [131]凌启鸿,张洪程,丁艳锋,等水稻高产技术的新发展-精确定量栽培.中国稻米,2005.63(1):3-7.
    [132]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究.中国农业科学2005,38(12):2457-2467.
    [133]Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy J, 1991(3):357-363.
    [134]Ying J F, Peng S B, Yang G Q, Zhou N, Romeo M. Visperas, Kenneth G.Cassman. Comparison of high-yield rice in tropocal and subtropical environments.II.Nitrogen accumulation and utilization efficiency. Field Crops Research.1998,57:85-93.
    [135]贺帆.实时实地氮肥管理对水稻产量、品质和氮效率影响的研究.华中农业大学.2006
    [1]刁操铨.作物栽培学各论(南方本).中国农业出版社,1998
    [2]凌启鸿.作物群体质量.上海科学技术出版社,2000
    [3]陆为农.江苏水稻生产种植机械化发展道路的探索.江苏农机化,2000.3:1-4
    [4]白友光.农业现代化和农业机械化.农业机械,1986,(6)2-3
    [5]凌启鸿.加强农业机械化工作、促进农业持续稳定发展.农业机械.1986,(4)2-3
    [6]凌启鸿,苏祖芳,张洪程,等.稻作新理论—水稻叶龄模式.科学出版社,1994
    [7]江庆生,周忠清,粱广齐.早、晚稻直播效果及栽培技术[J].湖北农业科学,2002,(3):14-15
    [8]戴其根,张洪程,霍中洋,等.抛秧稻生长发育特征及产量形成规律的探讨[J].江苏农业研究.2000,21(1):1-7
    [9]吴永祥.丁艳锋,杨建昌,等.水稻旱育秧增产机理研究[J].耕作与栽培,1999,(2):14-15
    [10]沈建辉,曹卫星,朱庆森,等.不同育秧方式对水稻机插秧苗素质的影响[J].南京农业大学学报,2003,26(3):7-9
    [11]吴明奎,王金顺,等.晚粳糯稻新品种黄糯2号特征特性及高产栽培技术[J].安徽农业科学,2007,35(30):9482
    [12]潘雪梅.杂交水稻天优2168的特征特性及高产栽培技术[J].农技服务,2007,24(11):1
    [13]郑乐娅,吴敬德,等.皖稻96的特征特性及栽培技术[J].安徽农业科学,2007.35(30):9496
    [14]林碧英.邵武直播稻栽培技术推广现状与前景展望[J].安徽农业科学.2007,35(6):16-30
    [15]袁永强,王勇斌.等.三系杂交水稻庐优875的特征特性及栽培技术[J].农技服务,2007,24(10):5
    [16]占小登,程式华,等.两系杂交晚稻新组合培两优8007[J].杂交水稻.2008,23(1):85-87
    [17]况浩池.曾正明,等.超级杂交稻新组合Ⅱ优602经济性状及产量研究[J].安徽农业科学.2007,35(13):3832—3833
    [18]谢保忠,王万福.等.杂交晚稻金优12高产优质制种技术[J].湖北农业科学,2008,47(2):149-151
    [19]汤爱芝,鲍征,等.杂交晚稻新组合青优1号的产量表现、特征特性、栽培及制种技术[J].安徽农业科学,2006,34(20):5227
    [20]宋建农.水稻钵苗行栽机械化技术,农机科技推广,2005(3):12-13
    [21]金军,薛艳凤,等.水稻不同种植方式群体质量差异比较.中国稻米,2006(6):31-33
    [22]景启坚,薛艳凤.水稻机插与其它种植方式在产量及分蘖特性上的差异比较.中国农机化,2003(4):13-15
    [23]胥金干,陈素芳,等.不同基本苗及肥料对机插水稻群体质量及产量、分蘖发生规律的影响.上海农业科技,2006(6)45-47
    [24]凌励.机插水稻生育特点与高产配套技术初探,江苏农垦科技,2001(4):25-29
    [25]沈建辉,邵文娟,张祖建,等.水稻机插中苗双膜育秧落谷密度对苗质和产量影响的研究.作物学报,2004,30(9):906-911.
    [26]邵亚飞,孙如英,等.机插水稻吸肥规律与大田运筹试验研究.上海农业科技,2006(3):33-34
    [27]刘世平,陈后庆,等.不同耕作方式与秸秆还田周年生产力的综合评价.2009(4)
    [1]Horie T, Shiraiwa T, Homma K, et al. Can yields of lowland rice resume the increases that they showed in the 1980s [J]. Plant Prod Sci,2005,8,259~274.
    [2]曾勇军,石庆华,潘晓华,等.长江中下游双季稻高产株型特征初步研究[J].作物学报.2009,35(3):546-551.
    [3]袁小乐,潘晓华,石庆华,等.超级早、晚稻品种的源库协调性[J].作物学报,2009,35(9):1744-1748.
    [4]潘圣刚,黄胜奇,张帆,等.超高产栽培杂交中籼稻的生长发育特性[J].作物学报,2011,37(3):537-544.
    [5]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [6]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳]号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114.
    [7]张洪程,吴桂成,李德剑,等.杂交粳稻13.5 t/hm2超高产群体动态特征及形成机制的探讨[J].作物学报,2010,36(9):1547-1558.
    [8]凌启鸿,张洪程,苏祖芳,等.稻作新理论.北京.科学出版社,1994.pp214-238.
    [9]梁世胡,李传国,伍应运,等.杂交水稻产量构成因素的通径分析.广东农业科学,1999(6):4-6.
    [10]蒋军名,蒋建国,奚茂兴.不同粳稻产量分析.江苏农业研究.2001,2:20-23.
    [11]王德正,王守海,袁毅,等.双季晚稻皖粳97优质高产栽培技术初探,安徽农业科学,2001.29(4):434-436.
    [12]袁伟玲,曹凑贵,程建平.水稻产量性状相关性及通径分析,垦殖与稻作,2005,4:6-8.
    [13]于林惠,丁艳锋,朱庆森,等.江苏中部机插稻产量构成因素与产量关系的分析[J].江苏农业学报,2011,27(1):19-24.
    [14]彭俊华,李有春.水稻籼、粳两亚种产量构成特点的剖析与比较[J].四川农业大学学报,1990,8(3):162-168.
    [15]蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索[J].四川农业大学学报,1996,14(2):162-166.
    [16]潘晓飚,何道根,屈为栋.杂交早稻不同组合主要农艺性状分析及高产育种途径探讨[J].浙江农业学报,1998,10(2):57-61.
    [17]姚立生.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44.
    [18]Yang J., Zhang J. Grain-filling problem in 'super' rice [J]. J. Exp. Bot.2010,61:1-5.
    [19]Sheehy J., Dionoraa M., Mitchell P. Spikelet numbers, sink size and potential yield in rice [J]. Field Crops Res,2001,71:77-85.
    [20]凌启鸿.水稻精确定量栽培理论与技术[M].北京:农业出版社,2007.76-91
    [1]袁钊和.水稻种植机械化的现状与发展[J].农机科技推广[J],2002,3:9-10.
    [2]范伯仁.江苏省引进高性能插秧机试验综述[J].农业机械.2001.10:22-23.
    [3]陆为农.江苏水稻生产种植机械化发展道路的探索[J].江苏农机化,2000,3:1-4.
    [4]凌励.机插水稻生育特点与高产配套技术初探[J].江苏农垦科技,2001(4):25-29
    [5]景启坚,薛艳凤.水稻机插秧与其它种植方式在产量及分蘖特性上的差异比较[J].中国农机化.2003,4:13-15.
    [6]于林惠,景启坚,薛艳凤.水稻机插秧实用技术[M].南京,江苏科学出版社.2004.
    [7]薛艳凤.于林惠.2001年水稻机插秧试验示范中有关技术问题初探[J].江苏农机化,2001(6):16-18.
    [8]于林惠.对水稻生育特点及管理对策的初步探讨[J].中国农机化,2002,1:25-27.
    [9]沈建辉,邵文娟,张祖建,等.水稻机插中苗双膜育秧落谷密度对苗质和产量影响的研究[J].作物学报,2004,30(9):906-911.
    [10]邵文娟,沈建辉,张祖建,等.水稻机插双膜育秧床土培肥对秧苗素质和秧龄弹性影响的研究[J].扬州大学学报,2004,(2):22-26
    [11]周凤银,卢晓莉,吕宏飞,等.不同播量、秧龄对机插水稻产量及其分蘖的影响[J].江苏农垦科技.139(5):40-43.
    [12]陈川,张山泉,庄春,等.水稻机插旱育秧与水育秧幼苗素质的比较研究[J].江苏农业科学.2003,6:27-29.
    [1]Takai T, Matsuura S, Nishio T, et al. Rice yield potential is closely related to crop growth rate during late reproductive period [J]. Field Crops Res,2006.96:328-335
    [2]凌启鸿,苏祖芳.张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报.1995,21(4):463-469
    [3]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993.26(6):1-11
    [4]凌启鸿,张洪程,丁艳锋.等.水稻高产技术的新发展——精确定量栽培[J].中国稻米.2005,(1):3-7
    [5]凌启鸿,张洪程,苏祖芳.稻作新理论—水稻叶龄模式[M].北京:科学出版社,1994
    [6]凌启鸿.中国特色水稻栽培理论和技术体系的形成与发展[J].江苏农业学报.2008,24(2):101-103
    [7]凌启鸿.作物群体质量[M].上海:上海科学技术出版社.2001,44-107
    [8]凌启鸿.水稻精确定量栽培理论与技术[M].中国农业出版社.2007,76-91
    [9]李刚华.工绍华,杨从党,等.超高产水稻适宜单株成穗数的定量计算[J].中国农业科学,2008,19(11):1027-1032
    [10]袁奇,于林惠,石世杰.等.机插秧每穴栽插苗数对水稻分蘖与成穗的影响[J].农业工程学报.2007.23(10):]21-125
    [11]乔晶,王强盛.王绍华.等.机插杂交粳稻基本苗数对分蘖发生与成穗的影响[J].南京农业大学学 报,2010,33(1):6-10
    [12]于林惠,李刚华,徐晶晶.等.基于高产示范方的机插水稻群体特征研究[J].农业工程学报(已接受)
    [13]Kobayshi S, Araki E, Osaki M, et al. Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.) [J]. Field Crops Res,1996,96 (11): 106-112
    [14]孙丙耀,顾福根,袁云香,等.水稻Ds插入双分蘖突变体形成机理的分析[J].作物学报,2007,33(1):97-101
    [15]Tivet F, Pinheiro B D S, de Raissac M, et al. Leaf blade dimensions of rice (Oryza sativa L. and Oryza glaberrima Steud.) relationships between tillers and the main stem [J]. Annals of Botany, 2001,88:207-511
    [16]莫惠栋.关于稻麦理论分蘖数计算公式的一些补充[J].作物学报,1992,,18(4):312-316
    [17]魏广彬,徐海港,丁艳锋,等.水稻设计栽培系统的研制与实现[J].南京农业大学学报,201134(1):14-19
    [18]Jones J W, Hoogenboom G, Porter C H, etal. The DSSAT cropping system model [J]. European Journal of Agronomy,2003,18:235-265
    [19]戚昌瀚,殷新佑,刘桃菊,等.水稻生长日历模拟模型的调控决策系统研究Ⅰ—水稻调控决策系统的系统结构设计[J].江西农业大学学报,1994.16(4):323-327
    [20]刘小军.邱小雷,孙传范,等.基于知识模型和PDA的精确农作系统设计及应用[J].农业工程学报,2010,26(1):210-215
    [21]刘小军,朱艳,曹卫星,等.基于WebGIS和知识模型的精确农作决策支持系统研究[J].南京农业大学学报,2007.30(4):11-15
    [22]Gebbers R., Adamchuk V. Precision agriculture and food security. Science,2010,327:828—831
    [23]Bongiovanni R. Precision Agriculture and Sustainability[J]. Precision Agriculture,2004,5, 359-387
    [24]Zhang Naiqian. Wang Maohua, Wang Ning. Precision agriculture —a worldwide overview[J]. Computers and Electronics in Agriculture,2002,36(2):113—132
    [25]曹静.精确农作管理模型与决策支持系统的研究[D].南京:南京农业大学农学院.2008
    [26]曹卫星.朱艳.作物管理知识模型[M].北京:中国农业出版社,2005:1-44
    [1]江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系[J].应用生态学报.2004,15(2):226-230. Jiang L-G(江立庚),Gan X-Q(甘秀芹)Wei S-Q(韦善清),
    [2]殷春渊,魏海燕,张庆,等.不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相互关系[J].作物学报,2010,36(4):655-664.
    [3]孙永健,孙园园,李旭毅.水氮互作对水稻氮磷钾吸收、转运及分配的影响[J].作物学报,2010,36(4):655-664.
    [4]刘立军,薛亚光,孙小淋,等.水分管理方式对水稻产量和氮肥利用率的影响[J].中国水稻科学,2009,23(3):282-288.
    [5]何园球,李成亮.王兴祥,等.土壤水分含量和施磷量对旱作水稻磷素吸收的影响[J].土壤学报,2005,42(4):628-633.
    [6]敖和军,王淑红,邹应斌,等.不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积[J].中国农业科学,2008,41(10):3123-3132.
    [7]陈新红,徐国伟,王志琴,等.结实期水分与氮素对水稻氮素利用与养分吸收的影响[J].干旱地区农业研究,2004,22(2):35-41.
    [8]徐明岗,李冬初,李菊梅,等.化肥有机肥配施对水稻养分吸收和产量的影响[J].中国农业科学,2008,41(10):3133-3139.
    [9]杜永,刘辉.杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究[J].作物学报,2007,33(2):208-215.
    [10]陈新红,刘凯,徐国伟.等.氮素与土壤水分对水稻养分吸收和稻米品质的影响[J].西北农林科技大学学报(自然科学版).2004,32(3):15-21.
    [11]朱德峰,陈惠哲.水稻机插秧发展与粮食安全[J].中国稻米,2009,6:4-7.
    [12]朱德峰,程式华,张玉屏.等.全球水稻生产现状与制约因素分析[J].中国农业科学.2010.43(3):474-479.
    [13]鲍士旦.土壤农化分析(M).北京:中国农业出版社,2000.pp 264-271
    [14]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学2005,38(12):2457-2467.
    [15]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114.
    [16]Chen Wenfu, Xu Zhenjin, Zhang Wenzhong, et al. Creation of new plant type and breeding rice for super high yield [J]. Acta Agronomica Sinica,2001,27(5):665 — 672. (in English)
    [17]张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    [18]邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    [19]Ying J, Peng S, He Q, et al. Comparison of high-yield rice in tropical and subtropical environments 1. Determinaitons of grain and dry matter yields [J]. Field Crops Res,1998,57:71-84.
    [20]杨惠杰,李义珍.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265—270.
    [21]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1—8.
    [22]杨惠杰,杨仁崔.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199—203.
    [23]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [24]凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3—7.
    [25]张洪程,吴桂成,吴文革,等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式[J].中国农业科学,2010,43(13):2645—2660.
    [26]Kashiwagi T., Hirotsu N., Ujiie K., Ishimaru K. Lodging resistance locus pr15 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.) Field Crops Res,2010,115:107-115.
    [27]宇万太,马强,周桦,等.不同施肥模式对下辽河平原水稻生态系统生产力及养分收支的影响[J].生态学杂志.2007,26(9):1350—1354.
    [28]凌启鸿.水稻精确定量栽培理论与技术[M].北京:农业出版社,2007:P 76—91.
    [29]李景蕻,李刚华,张应贵,等.精确定量栽培对高海拔寒冷生态区水稻株型及产量的影响.中国农业科学,2009,42(9):3067-3077.
    [30]凌启鸿.中国特色水稻栽培理论和技术体系的形成与发展.江苏农业学报,2008,24(2):101-103.
    [31]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002.35(9):1095-1103.
    [32]Jing Qi, Bouman Bas, Keulen Herman van, et al. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agricultural Systems.2009,98:177-188.
    [33]Yoshida H. Horie T. A model for simulating plant N accumulation, growth and yield of diverse rice genotypes grown under different soil and climatic conditions. Field Crops Research,2010, 117:122-130.
    [34]Peng S, Buresh R., Huang J, et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Sustainable Agriculture,2011,7:943-952.
    [1]张福锁.王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-924
    [2]Wang GH, Dobermann A, Witt C, Sun QZ, Fu RX. Performance of site-specific nutrient management for irrigated rice in southeast China. Agronomy Journal,2001,93:869-878
    [3]Peng S, Huang J, Zhong X, Yang J,Wang G, Zou Y, Zhang F, Zhu Q, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agriculture Science in China,2002,1(7):776-785
    [4]Xue L, Yang L. Recommendations for nitrogen fertiliser topdressing rates in rice using canopy reflectance spectra. Biosystems Engineering,2008,100(4):524-534
    [5]Peng S, Garcia FV, Laza RC, Sanico AL, Visperas RM, Cassman KG. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Research,1996,47:243-252
    [6]凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3-7.
    [7]傅庆林,俞劲炎,陈英旭.氮素营养对水稻干物质和氮分配的影响及氮肥需求量.浙江大学学报(农业与生命科学版),2000,26(4):399-403
    [8]苏祖芳,周培南,张亚洁,等.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(12):281-286
    [9]吴志强,林文雄.杂交水稻的高产栽培技术体系的研究,杂交早稻高产栽培的数学模型分析.福建农学院学报,1989,18(1):19-24
    [10]Wopereis-Pura M M. Watanabe H, Moreira J. Wopereis M C S. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. European Journal of Agronomy, 2002,17:191-198
    [11]钱晓睛,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮系营养特征.南京农业大学学报、2003,26(4):9-12
    [12]陈娟,王忠.陈刚,等.不同施氮处理对水稻颖果灌浆和呼吸活性的影响.中国水稻科学,2006,20(4):396-400
    [13]杨从党,朱德峰,应继锋,等.高产水稻对氮的吸收、分配和利用的研究.西南农业学报,2006,19(3):400-403
    [14]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,199326(6):1-11
    [15]张洪程,吴桂成,吴文革.等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式 [J].中国农业科学,2010,43(13):2645-2660.
    [16]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009.35(6):1106-1114.
    [17]徐茂,王鹤平,殷广德,周培南,张亚洁,苏祖芳.许乃霞.穗肥施用时期对水稻产量及群体质量的影响.江苏农业研究.2000,21(2):36-40.
    [18]阳美秀,王东秀,刘春燕,周佩璋.两系杂交稻不同氮肥运筹试验研究.广西农业科学,2004.35(1):58-61.
    [19]叶永印,张时龙,罗洪发.氮肥施用技术对水稻群体的影响.山地农业生物学报,2003,22(3):195-199.
    [20]丁艳锋,刘胜环,王绍华,王强盛,黄丕生.凌启鸿,氮素基、蘖肥用量对水稻氮素吸收与利用的影响.作物学报,2004,30(8):739-744
    [21]石普芳.直播早稻优化施氮简报.植物营养与肥料学报,1998,4(3):319-320
    [22]石丽红,纪雄辉,朱校奇等.提高超级杂交稻库容量的施氮数量和施氮时期[J].中国农业科学,2010,43(6):1274-1281
    [23]Dobermann A. Nitrogen use efficiency — State of the art. In IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany,28-30 June,2005. International Fertilizer Industry Association (IFA). Paris
    [1]朱德峰,陈惠哲,徐一成.我国水稻机械种植的发展前景与对策.农业技术与装备,2007(1):14-15.
    [2]朱德峰,程式华,张玉屏,等.全球水稻生产现状与制约因素分析.中国农业科学,2010,43(3):474-479
    [3]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报.1995.21(4):463-469.
    [4]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11
    [5]凌启鸿.水稻精确定量栽培理论与技术[M].北京:农业出版社,2007:P 76-91.
    [6]于林惠.对水稻生育特点及管理对策的初步探讨.中国农机化,2002,1:25-27.
    [7]薛艳凤,于林惠.2001年水稻机插秧试验示范中有关技术问题初探[J].江苏农机化,2001,(6):16-18.
    [8]彭俊华,李有春.水稻籼、粳两亚种产量构成特点的剖析[J].四川农业大学学报,1990,8(3):162-168.
    [9]蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索[J].四川农业大学学报,1996,14(2):162-166.
    [10]潘晓飚,何道根,屈为栋.杂交早稻不同组合主要农艺性状分析及高产育种途径探讨[J].浙江农业学报,1998,10(2):57-61
    [11]姚立生.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44.
    [12]Yang J., Zhang J. Grain-filling problem in'super'rice [J]. J. Exp. Bot.2010.61:1-5.
    [13]Sheehy J., Dionoraa M., Mitchell P. Spikelet numbers, sink size and potential yield in rice. Field Crops Res,2001,71:77-85.
    [14]袁江,王丹英,徐春梅,等.水稻品种演变的研究进展[J].中国稻米,2009,5:15-18
    [15]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [16]杜永,王艳,王学红,等.黄淮地区不同粳稻品种株型、产量与品质的比较分析[J].作物学报,2007,33(7):1079-1085.
    [17]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报.2009,35(6):1106-1114.
    [18]陈温福,徐正进,张文忠,等.水稻新株型创造与超高产育种[J].作物学报,2001,27(5):665-672.
    [19]张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    [20]西山岩男.日本高产水稻品种的生理特性.中国水稻研究所.灌溉稻研究进展和前景[C].杭州:中国水稻研究所,1988,105-114.
    [21]邹应斌、周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报.2003,5(1):31-35.
    [22]蒋彭炎,姚长溪,任正龙.水稻稀播少本插高产技术的研究[J].作物学报.1981,7(4):241-248.
    [23]凌启鸿,张洪程,苏祖芳,凌励.水稻叶龄模式.北京,科学出版社:69-215
    [24]E. Pasuquin, T. Lafarge. B. Tubana. Transplanting young seedlings in irrigated rice fields:Early and high tiller production enhanced grain yield[J]. Field crops research,2008(15):141-155
    [25]Hiroshi Nakano, Satoshi Morita, Ikuo Hattori, Kenji Sato. Effects of planting time and cultivar on dry matter yield and estimated total digestible nutrient content of forage rice in southwestern Japan[J]. Field crops research,2008 (105):116-123
    [26]C. Ros. R.W.Bell, P.F. White. Seedling vigour and the early growth of transplanted rice (Oryza sativa)[J]. Plant and soil.2003(252):325-337
    [27]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [28]凌启鸿,张洪程,黄丕生.等.水稻高产氮肥合理施用的运筹新探索[J].土壤学报,2002,39:26-40.
    [29]凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3-7.
    [30]傅庆林,俞劲炎,陈英旭.氮素营养对水稻干物质和氮分配的影响及氮肥需求量.浙江大学学报(农业与生命科学版),2000,26(4):399-403
    [31]苏祖芳,周培南.张亚洁,等.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学, 2001,15(12):281-286
    [32]吴志强,林文雄.杂交水稻的高产栽培技术体系的研究,杂交早稻高产栽培的数学模型分析.福建农学院学报,1989,18(1):19-24
    [33]Wopereis-Pura M M, Watanabe H, Moreira J, Wopereis M C S. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. European Journal of Agronomy,2002,17:191-198
    [34]钱晓睛,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮系营养特征.南京农业大学学报,2003,26(4):9-12
    [35]陈娟,王忠,陈刚,等.不同施氮处理对水稻颖果灌浆和呼吸活性的影响.中国水稻科学,2006,20(4):396-400
    [36]杨从党,朱德峰,应继锋,等.高产水稻对氮的吸收、分配和利用的研究.西南农业学报,2006,19(3):400-403
    [37]袁奇,于林惠,石世杰.等.机插秧每穴栽插苗数对水稻分蘖与成穗的影响.农业工程学报,2007,23(10):121-125.
    [38]乔晶,王强盛,王绍华,等.机插杂交粳稻基本苗数对分蘖发生与成穗的影响.南京农业大学学报,2010.33(1):6-10.
    [39]李刚华,王绍华,杨从党,等.超高产水稻适宜单株成穗数的定量计算.中国农业科学,2008,19(11):1027-1032.
    [40]蒋彭炎,马跃方,洪哓富,等.水稻分蘖芽的环境敏感期的研究[J].作物学报.1994,5:290-296.
    [41]景启坚,薛艳凤.水稻机插与其它种植方式在产量及分蘖特性上的差异比较.中国农机化,2003(4):13-15
    [42]胥金干,陈素芳,等.不同基本苗及肥料对机插水稻群体质量及产量、分蘖发生规律的影响.上海农业科技,2006(6)45-47
    [43]邵亚飞,孙如英,等.机插水稻吸肥规律与大田运筹试验研究.上海农业科技,2006(3):33-34
    [44]刘世平,陈后庆,等.不同耕作方式与秸秆还田周年生产力的综合评价.2009(4)
    [45]张洪程,吴桂成,吴文革,等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式[J].中国农业科学,2010,43(13):2645-2660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700