放射性肺损伤的临床及实验室研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:血浆细胞因子联合DVH参数预测NSCLC放射性肺损伤
     目的评价非小细胞肺癌(NSCLC)胸部放疗前及照射40~50Gy时血浆中TGF-β、IL-6、VEGF及ACE含量变化与放射性肺炎(RP)的发生及生存预后的关系。
     材料与方法2004年2月至2007年4月共131例非小细胞肺癌患者按治疗常规给予放疗或(和)化疗;男131例,女20例,中位年龄60岁(26~81岁)。放疗前、照射40~50Gy时采血冻存,采用酶联免疫吸附法检测血液中TGF-β、IL-6、VEGF及ACE含量。放射性肺炎根据CTCAE 3.0标准评价,评价终点为=2级放射性肺炎。
     结果中位随访时间24.7个月,有23例病人发生了2级以上RP,发生率17.6%。放疗前、放疗40-50Gy时血浆中VEGF、IL-6含量以及其在放疗期间的变化与RP无明显相关性。发生RP组患者的疗中TGF-β含量明显高于未发生肺炎者(4.52ng/ml与3.29ng/ml,P=0.027),而血浆ACE含量明显低于未发生肺炎者(384.72ng/ml与479.72ng/ml,P=0.043),放疗中TGF-β升高者RP发生率明显高于降低者(39.4%与14.3%,P=0.017)。发生RP组的健肺MLD、健肺V10、健肺V15、健肺V20分别高于未发生肺炎组(1576cGy与1028 cGy、43%与33%、34%与21%、27%与15%,P<0.05)。多因素分析显示TGF-β升高是发生RP的独立风险因素。当放疗至40-50Gy时TGF-β升高者且血浆ACE含量在347ng/ml以下,是RP发生的最高风险组,发生RP达77.8%。全组124例Ⅲ-Ⅳ期进行生存分析,中位随访时间24.1个月,3年生存率为31%,3年无进展生存率为33%,中位生存时间为17.7个月,中位无进展时间为14.3个月。单因素分析显示放疗前KPS低于80分、体重下降超过5%、放疗剂量在60Gy以下、放疗中TGF-β升高影响总生存和无进展生存。COX多因素分析:体重下降、放疗剂量和血浆TGF-β含量在放疗中的变化是独立的预后指标;KPS评分在80分以下、体重下降超过5%和放疗中TGF-β升高都是影响无进展生存的独立因素。
     结论(1)在NSCLC进行3DCRT时,健肺MLD、健肺V10、健肺V15和健肺V20是影响放射性肺炎发生的重要DVH参数;放疗中血浆细胞因子ACE含量低于347 ng/ml、放疗中血浆细胞因子TGF-β含量升高是放射性肺炎发生的独立预测指标。
     (2)放疗前KPS低于80分、体重下降超过5%、放疗剂量在60Gy以下、放疗中血浆细胞因子TGF-β含量升高是NSCLC预后的重要影响因素;放疗中血浆细胞因子TGF-β含量升高是影响NSCLC总生存、无进展生存的独立的预后指标。
     第二部分:NSCLC术后3DCRT疗效及肺损伤相关因素研究
     目的分析非小细胞肺癌(NSCLC)术后接受三维适形放射治疗(3DCRT)的疗效及放射性肺炎(RP)的风险因素分析。
     材料与方法2002年11月~2006年3月90例非小细胞肺癌术后接受3DCRT,中位年龄58岁。全组90例中有70例(77.8%)接受肺叶切除,接受全肺切除的20例(22.2%)。R0切除占67.8%(61/90),R1和R2切除共29例(32.2%)。84例根据病理情况接受了术后辅助放疗,术后辅助放疗中位60Gy(40-70Gy)。术后38例患者接受中位3周期的辅助化疗。放射性肺炎根据CTCAE 3.0标准评价,评价终点为=2级放射性肺炎。比较健肺、患肺和全肺接受照射的相对体积和绝对体积,并进行ROC曲线分析。
     结果84例术后辅助放疗的进行生存和失败模式分析。存活病人中位随访37.7个月,中位生存时间48个月,1、2、3、4年生存率分别为90.3%、72.6%、58.6%和43.9%。接受R0切除的48例N2病例的3年、4年生存率分别为65.2%和46.6%。有治疗失败模式可分析资料的81例中43例(53.1%)出现复发转移,其中胸内复发和锁骨上转移低于远地转移的。单因素分析显示性别、年龄、体重下降、肿瘤大小、病理类型和分期并不影响预后。接受R1、R2切除的预后较差,R0切除与R1+R2切除的3年生存率分别为64.3%和35.7%(P=0.047)。全组90例进行放射性肺炎风险分析,9例患者出现有症状的RP,全组RP发生率为10%,接受全肺切除的患者中无RP发生,其中2级7例,3级2例,经抗炎、激素和对症处理后好转。性别、年龄、肿瘤发生部位、病理类型、T或N分期、术前和放疗前肺功能不是放射性肺炎的危险因素。术后辅助化疗有增加放射性肺炎发生的趋势,但没有统计学差异,放疗总剂量、照射范围、在两组病例中没有差异,双肺MLD、双肺V5-V25、健肺MLD、健肺V5-V40、患肺MLD、患肺V5-V35在发生放射性肺炎组均高于没有发生肺炎组,双肺V30、V35和患肺V40在两组间的差异有统计学意义,P值分别为0.030、0.007、0.047;患侧肺组织在接受15Gy~40Gy照射体积和双肺接受30Gy~35Gy照射体积上也要明显高于未发生放射性肺炎组。根据V30大小及放射性肺炎发生率进行ROC(receiver operating characteristic curve)分析发现曲线下面积为0.757,P=0.020,以患侧肺接受30Gy照射的体积340 cm~3作为分界点(cut-off),RP发生率分别为29.2%和2.5%,P=0.003。以此值预测放射性肺炎的发生,其敏感性为88%,特异性为70%。
     结论(1)对NSCLC术后放疗采用3DCRT的新技术有较好的疗效,放疗相关毒性发生率较低,术后放疗是安全的。
     (2)对于术后接受放疗的NSCLC,应尽量减少患肺的高剂量区的照射体积和双肺V30和V35,将患肺接受30Gy照射的体积控制在340 cm~3以下。
     (3)对于全肺切除的患者,单肺V20限制在10%以下,接受术后放疗是安全可行的。
     第三部分:吡非尼酮防治放射性肺损伤的实验研究
     目的观察吡非尼酮对放射引起的肺损伤的预防和治疗的机理。
     材料与方法将体重25g左右的10-12周近交系BalB/C雄性小鼠,随机分为空白对照组(Control,C组)、单纯照射组(Radiation,R组)、单纯吡非尼酮组(Pirfenidone P组)和吡非尼酮加照射组(Pirfenidone+Radiation P+R组),共四组。采用6MV-X射线,单次照射小鼠全胸部1200cGy。吡非尼酮200mg/kg,灌胃给药。每只小鼠每天给药0.5ml。于照射前3天给药,吡非尼酮和生理盐水共连续给药12周。于照射后第1-6月每月取材,进行设定指标的观察:血浆TGF-β含量测定、肺泡灌洗液巨噬细胞计数、Masson三色染色后进行肺纤维化评分、碱水解法测定肺组织羟脯氨酸含量。
     结果在6个月观察期内,四组小鼠活动、放疗区域脱毛现象、体重等无明显差别。与单纯照射组相比,吡非尼酮+照射组的小鼠肺泡灌洗液巨噬细胞聚集在照射后第4月时减少76%第5月时减少62%。血浆TGF-β含量第3-5月有降低的趋势。肺羟脯氨酸含量在第4和5月分别减少21%和24%。照射后小鼠肺纤维化病变多位于气道、血管周及肺泡间隔内,呈多灶性或弥漫性改变,吡非尼酮可以使第4、5、6个月肺泡间隔内的弥漫性病变明显改善。
     结论药物吡非尼酮可以减轻近交系BalB/C雄性小鼠放射性肺损伤,是通过抑制肺泡中巨噬细胞聚集、减少肺组织胶原含量从而改善照射后肺纤维化。吡非尼酮对BalB/C小鼠具有放射防护作用。
PartⅠ:Combination of Serum Cytokine with lung DVH for Prediction Radiation Pneumonitis
     Purpose:To study the relationship between level of plasma transform growth factor bata(TGF-beta),interleukin(IL-6),angiotensin-converting enzyme(ACE),vascular endothelial growth factor(VEGF),dose volume histogram(DVH) and radiation pneumonitis(RP).
     Materials and Methods:The records of all patients with lung cancer treated with radiotherapy(RT) with curative intent from February 2004 to April 2007.A total of 131 patients were identified.Blood samples were collected and measured with enzyme-linked immunosorbent assay(ELISA).TGF-beta,IL-6, VEGF and ACE measurements obtained before RT(Pre-RT) and when RT dose reached 40-50Gy(during-RT).The endpoint of the study was the development of=grade 2 RP(National Cancer Institute common toxicity criteria 3.0).
     Results:The Median follow-up time for the alive patients is 24.7 months.The incidence of=grade 2 RP was 17.6%.Between the RP and non-RP group, there was no difference in Pre- or during- RT level of VEGF,IL-6.In those patient whose TGF-βlevel during- RT was higher than the pre- RT baseline, RP occurred more frequently than in patients whose TGF-βlevel during- RT was less than the baseline value(39.4%vs 14.3%,P=0.017).We observed TGF-βlevel was higher and ACE level was lower in RP group than in the non-RP group,during-RT respectively(4.52ng/ml vs 3.29ng/ml,P=0.027 and 384.72ng/ml vs 479.72ng/ml,P=0.043).In RP group,patients are received higher contra-lateral lung MLD,contra-lateral lung V10,contra-lateral lung V15, contra-lateral lung V20(1576cGy vs1028 cGy、43%vs 33%、34%vs 21%、27%vs 15%,P<0.05).On multivariate analysis,a persistent elevation of plasma TGF-βabove the baseline concentration during- RT was an independent risk factor for the occurrence of RP(P=0.005).Total 124 patients of the stageⅢ~Ⅳentered the survival analysis;median follow time was 24.1 months.The 1-y,2-y,3-y overall survival was 70.0%,40.0%,30.8%.1-y,2-y, 3-y progress free survival time was 52.8%,38.7%,32.7%.The median survival time was 17.7 months and the median progress free time was 14.3 months.On univariate analysis,KPS less than 80,weight loss more than 5%,radiation dose less than 60Gy,elevated plasma TGF-βlevel during- RT were risk factors for overall survival time and progress free survival time.On COX multivariate analysis,weight loss,radiation dose and the elevated TGF-βlevel were independent risk factors for overall survival.KPS less than 80,weight loss more than 5%and the elevated TGF-βlevel were independent risk factors for progress free survival.
     Conclusions:
     (1) The DVH parameter contra-lateral lung MLD,contra-lateral lung V10, contra-lateral lung V15,contra-lateral lung V20 are important risk factors in NSCLC patients who received 3DCRT.The ACE level lower than 347 ng/ml, an elevated plasma TGF-βlevel during- RT are independent risk factor for RP.
     (2) Pre- RT KPS less than 80,weight loss more than 5%,radiation dose less than 60Gy,elevated plasma TGF-βlevel during- RT are important risk factors for overall survival of the NSCLC patients.An elevated plasma TGF-βlevel during- RT are independent risk factor for overall survival and progress free survival.
     PartⅡ:Prognosis and RP Risk Factors for NSCLC who received Post-Operative 3-Dimensional Conformal Radiothrapy
     Purpose:The purpose of this study is to evaluate the prognosis and relationship between lung dosimetric parameters and the risk of symptomatic radiation pneumonitis(RP) in patients with non-small cell lung cancer(NSCLC) who received postoperative radiotherapy.
     Materials and Methods:From November 2002 November to March 2006 March,ninety patients with NSCLC who received postoperative 3-dimentinal conformal radiotherapy were included in this study.Seventy(78%) of them underwent lobectomy,and 20(22%) underwent pneumonectomy.Eighty-four received adjuvant radiotherapy according to the pathological status.X-ray with energy of 6MV was used for all patients.The median radiation dose was 60Gy with fraction size of 2Gy.Thirty-eight patients(42.2%) received median 3 cycles adjuvant chemotherapy.The percentage of the whole lung volume (Vp-dose) and the ipsilateral absolute lung volume(Vipsi-dose) which received more than a specific dose of irradiation were generated for every patient.The endpoint was grade 2 and above radiation pneumonitis based on CTC AE 3.0. The relation between the dosimetric factors and RP was also analyzed with receiver operating characteristic(ROC) curves.
     Results:Eighty-four patients who received adjuvant post-operative radiotherapy were analyzed for overall survival and treatment failure mode. Median follow-up was 37.7 months for survivors.The overall median survival time was 48 months.The overall 1-,2-,3- 4-year survival rate was 90.3%, 72.6%,58.6%and 43.9%respectively.The 3-,4-year overall survival rate of the forty-eight patients who received completely resection was 65.2%and 46.6%respectively.Eight-one patients had the data of the failure mode,53.1% (43/81) who had treated failure,the recurrence the in-thoracic and superclavicular was far less than the distant metastasis.On univariate analysis for all patients,sex,age,weight loss,tumor size,pathology and stage were not prognostic.R1/R2 resection was associated with significantly worse survival. The 3-year overall survival rate of the R0 and R1+R2 dissection was 64.3% and 35.7%respectively(P=0.047).Ninety patients were analyzed for radiation pneumonitis.Nine patients(10%) developed RP(grade 2 in 7 cases,and grade 3 in 2 cases),and all of them were in the lobectomy group.No RP was observed in patients who received pneumonectomy.The sex,age,tumor location,pathological type,T or N stage,Pulmonary function test were not the risk factors for RP.Adjuvant chemotherapy had a trend to increase the RP rate. The total dose and the field size had no different in the two groups.The all lung MLD,all lung V5-V25,contra-lateral MLD,contra-lateral V5-V40,ipsi-lateral MLD,ipsi-lateral V5-V35 were much higher with RP group than in those without RP.The area under curve in receiver operating characteristic curves based on the relationship between incidence of RP and the value of Vipsi-dose was 0.757(P=0.020).Using Vipsi-30 of 340cm~3 as a cut-off to predict RP,the sensitivity and the specificity were 88%and 70%,respectivly.The incidence of RP was 2.5%in patients with Vipsi-30<340cm3 compared with 29.2%in patients with a Vipsi-30>340cm3(P=0.003).
     Conclusions:It was safe for patients with NSCLC to receive postoperative 3DCRT if irradiation dose to lung tissue was well defined.The absolute volume of ipsilateral lung received more than 30 Gy after lobectomy was significantly correlated with the risk of RP.The volume should be less than 340cm~3. Patients with pneumonectomy received modern 3DCRT are safe when the whole lung V20 less than 10%.
     PartⅢ:Effects of pirfenidone on prevention of radiation-induced lung toxicity-Results of animal experiment
     Purpose:Pirfenidone(5-methyl-1-phenyl-2-(1H)-pyridone),is a novel experimental drug used as anti-fibrotic agent.This study was undertaken to investigate the effect of pirfenidone on prevention of radiation-induced lung toxicity.
     Materials and Methods:Male BALB/C mice were randomized into 4 groups: Control(group C);Radiation alone(group R);Pirfenidone alone(group P); Radiation+Pirfenidone(group R+P).Either sham irradiation(groups C and P)or single fraction of 12Gy to whole thorax(groups R and R+P) were given to the animals.The animals were fed with control diet or same diet plus 0.5% Pirfenidone from 3 days prior to irradiation to 12 weeks after irradiation.The animals(6-8 mice per group) were sacrificed 1,2,3,4,5,6 months after irradiation.Bronchoalveolar lavage fluid(BALF) from the right lungs was collected for detection of cell counting,and the left lungs were collected for hydroxyproline measurement or fixed for Masson trichrome staining.The plasm transforming growth factorβ(TGF-β) was measured with ELISA method. T test and Chi square were used for statistical analysis.
     Results:Macrophages in BALF were dramatically increased in the R and R+P groups at 4,5,and 6 months after irradiaiton,but the number of macrophages were lower in group R than in group R+P(18.51×10~4/ml vs 4.50×10~4/ml P= 0.005;60.61×10~4/ml vs 23.05×10~4/ml P=0.046;46.24×10~4/ml vs 35.00×10~4/ml P=0.305).Plasma TGF-βlevel in group R+P was lower comparing to that in group R at 3,4 and 5 months after irradiation,but not statistically significant (3.48 pg/ml vs 5.03 pg/ml P=0.223;3.82pg/ml vs 5.31 pg/ml P=0.666; 3.31pg/ml vs 4.27pg/ml P=0.310).Total lung hydroxyproline content,an index of fibrosis,was gradually increased with time in both group R and group R+P. But the level in R+P group were 21%,24%lower comparing to group R at 4 and 5 months(86.1μg/lung vs 67.7μg/lung P=0.007;104.1μg/lung vs 79.2μg/lung P=0.001).Based on Masson trichrome staining,we found that pirfenidone can ameliorate the severity of lung fibrosis at 4,5 and 6 months after irradiation,the mean fibrosis score was higher in group R than in group R+P(47.50 vs 20.30 P=0.003;47.91 vs 29.15 P=0.039;42.50 vs 19.46 P= 0.000).
     Conclusions:Pirfenidone has a protective effect on radiation-induced lung toxicity in mice.
引文
1. Fu, X.L., H. Huang, G. Bentel, Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta Int J Radiat Oncol Biol Phys, 2001. 50 (4): 899-908.
    
    2. Hernando, M.L., L.B. Marks, G.C. Bentel, Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys, 2001. 51 (3): 650-9.
    
    3. Bradley, J., M.V. Graham, K. Winter, Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma Int J Radiat Oncol Biol Phys, 2005. 61 (2): 318-28.
    
    4. Arpin, D., D. Perol, J.Y. Blay, Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol, 2005. 23 (34):8748-56
    
    5. Hope, A.J., P.E. Lindsay, I. El Naqa, Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys, 2006. 65 (1): 112-24.
    
    6. Kong, F.M., J.A. Hayman, K.A. Griffith, Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys, 2006. 65 (4): 1075-86.
    
    7. Wang, S., Z. Liao, X. Wei, Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy(3D-CRT).Int J Radiat Oncol Biol Phys,2006.66(5):1399-407.
    8.朱向帜,王绿化,王颖杰,三维适形放疗局部晚期非小细胞肺癌的放射性肺炎风险因素研究.中华放射肿瘤学杂志,2007.16(6):421-6.
    9.姬巍,王绿化,赵路军,细胞因子联合DVH参数预测放射性肺炎的临床研究.中华放射肿瘤学杂志,2007.16(6):473-7.
    10.Sekine,I.,M.Sumi,Y.Ito,Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients.Radiother Oncol,2006.80(1):93-7.
    11.Fay,M.,A.Tan,R.Fisher,Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy.Int J Radiat Oncol Biol Phys,2005.61(5):1355-63.
    12.Tsoutsou,P.G.,M.I.Koukourakis,Radiation pneumonitis and fibrosis:mechanisms underlying its pathogenesis and implications for future research.Int J Radiat Oncol Biol Phys,2006.66(5):1281-93.
    13.NJ.,G.,Experimental radiation pneumonitis:Ⅳ.Leakage of circulatory proteins onto the alveolar surface..J Lab Clin Med 1980(95):19-31.
    14.Kocak,Z.,G.R.Borst,J.Zeng,Prospective assessment of dosimetric/physiologic-based models for predicting radiation pneumonitis.Int J Radiat Oncol Biol Phys,2007.67(1):178-86.
    15.Garipagaoglu M,M.M.,Hollis D,,The effect of patientspecific factors on radiation-induced regional lung injury..Int J Radiat Oncol,1999.45:331-38.
    16. De Jaeger, K., Y. Seppenwoolde, L.J. Boersma, Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys, 2003. 55 (5): 1331-40.
    
    17. Robnett, T.J., M. Machtay, E.F. Vines, Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys, 2000. 48 (1): 89-94.
    
    18. Monson, J.M., P. Stark, J.J. Reilly, Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma.Cancer, 1998. 82 (5): 842-50.
    
    19. Zhao, L., L. Wang, W. Ji, Association between plasma angiotensin-converting enzyme level and radiation pneumonitis.Cytokine, 2007. 37 (1): 71-5.
    
    20. Graham, M.V., J.A. Purdy, B. Emami, Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys, 1999. 45 (2): 323-9.
    
    21. Yorke, E.D., A. Jackson, K.E. Rosenzweig, Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys, 2002. 54 (2): 329-39.
    
    22. Johansson S, B.L., Franzen L,, Effects of ongoing smoking on the development of radiation-induced pneumonitis in breast cancer and oesophagus cancer patients.. radiother Oncol, 1998. 49: 41-47.
    
    23. Theuws JCM, K.S., Wagenaar AC,, Dose-effect relations for early local pulmonary injury after irradiation for malignant lymphoma and breast cancer. . Radiother Oncol, 1998. 48: 33-43.
    24. Yamada, M., S. Kudoh, K. Hirata, Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer, 1998. 34 (1): 71-5.
    
    25. Gopal, R., S.L. Tucker, R. Komaki, The relationship between local dose and loss of function for irradiated lung. Int J Radiat Oncol Biol Phys,2003. 56 (1): 106-13.
    
    26. Videtic, G.M., Impaired diffusion capacity predicts for decreased treatment tolerance and survival in limited stage small cell lung cancer patients treated with concurrent chemoradiation. Lung Cancer, 2004. 43(2): 159-66.
    
    27. Takai, Y., M. Mituya, K. Nemoto, [Simple method of stereotactic radiotherapy without stereotactic body frame for extracranial tumors].Nippon Igaku Hoshasen Gakkai Zasshi, 2001. 61 (8): 403-7.
    
    28. Rancati, T., G.L. Ceresoli, G. Gagliardi, Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol, 2003. 67 (3): 275-83.
    
    29. Onishi H, K.K., Yamaguchi M,, Concurrent two-dimensional radiotherapy and weekly docetaxel in the treatment of stage III non-small cell lung cancer: A good local response but no good survival due to radiation pneumonitis. Lung Cancer, 2003. 40: 79-84.
    
    30. Fabrice Barle'sia, P.V., Christophe Doddolic, Ce'line Gimeneza,Jean-Pierre Kleisbauera, Gemcitabine-induced severe pulmonary toxicity. Fundamental & Clinical Pharmacology, 2004. 18: 85-91.
    
    31. van Putten, J.W., A. Price, A.H. van der Leest, A Phase I study of gemcitabine with concurrent radiotherapy in stage III, locally advanced non-small cell lung cancer. Clin Cancer Res, 2003. 9 (7): 2472-7.
    32. Byhardt RW, S.C., Sause WT, et al., Response, toxicity,failure patterns,and survival in five Radiation Therapy Oncology Group (RTOG) trials of sequential and/or concurrent chemotherapy and radiotherapy for locally advanced non-small-cell carcinoma of the lung. Int J Radiat Oncol Biol Phys, 1998. 42: 469-78.
    
    33. Robert F, C.H., Spencer SA, , Phase I/IIa study of concurrent paclitaxel and cisplatin with radiation therapy in locally advanced non-small cell lung cancer: Analysis of early and late pulmonary morbidity. Semin Radiat Oncol, 1999. 9: 136-47.
    
    34. Tsujino, K., S. Hirota, M. Endo, Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys,2003. 55 (1): 110-5.
    
    35. Yorke, E.D., A. Jackson, K.E. Rosenzweig, Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys, 2005. 63 (3): 672-82.
    
    36. Chang, D.T., K.R. Olivier, C.G. Morris, The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2006. 65 (1): 125-31.
    
    37. Claude, L., D. Perol, C. Ginestet, A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol,2004. 71 (2): 175-81.
    
    38. Bradley, J.D., R. Paulus, M.V. Graham, Phase II trial of postoperative adjuvant paclitaxel/carboplatin and thoracic radiotherapy in resected stage II and IIIA non-small-cell lung cancer: promising long-term results of the Radiation Therapy Oncology Group-RTOG 9705. J Clin Oncol 2005. 23 (15): 3480-7.
    
    39. Roach, M., 3rd, D.R. Gandara, U.S. Yuo, Radiation pneumonitis following combined modality therapy for lung cancer: analysis of prognostic factors. J Clin Oncol, 1995. 13 (10): 2606-12.
    
    40. Oetzel, D., P. Schraube, F. Hensley, Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys, 1995. 33 (2): 455-60.
    
    41. Kwa, S.L., J.V. Lebesque, J.C. Theuws, Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients.Int J Radiat Oncol Biol Phys, 1998. 42 (1): 1-9.
    
    42. Armstrong, J.G., M.J. Zelefsky, S.A. Leibel, Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol, 1995. 6 (7): 693-7.
    
    43. Hirano, T., Interleukin-6 and its relation to inflammation and disease. Clin Immunol Immunopathol, 1992. 62 (1 Pt 2): S60-5.
    
    44. Chen, Y., P. Rubin, J. Williams, Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2001. 49 (3):641-8.
    
    45. Chen, Y., J. Williams, I. Ding, Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol, 2002. 12 (1 SuppI 1):26-33.
    
    46. Chen, Y, O. Hyrien, J. Williams, Interleukin (IL)-IA and IL-6:applications to the predictive diagnostic testing of radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2005. 62 (1): 260-6.
    
    47. Hart, J.R, G. Broadwater, Z. Rabbani, Cytokine profiling for prediction of symptomatic radiation-induced lung injury. Int J Radiat Oncol Biol Phys, 2005. 63 (5): 1448-54.
    
    48. Anscher, M.S., F.M. Kong, K. Andrews, Plasma transforming growth factor betal as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys, 1998. 41 (5): 1029-35.
    
    49. Anscher, M.S., L.B. Marks, T.D. Shafman, Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation. J Clin Oncol, 2001. 19 (17): 3758-65.
    
    50. Evans, E.S., Z. Kocak, S.M. Zhou, Does transforming growth factor-betal predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine, 2006. 35 (3-4): 186-92.
    
    51. Molteni, A., J.E. Moulder, E.F. Cohen, Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol,2000. 76 (4): 523-32.
    
    52. Kohno, N., S. Kyoizumi, Y. Awaya, New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest, 1989.96 (1): 68-73.
    
    53. Hara, R., J. Itami, T. Komiyama, Serum levels of KL-6 for predicting the occurrence of radiation pneumonitis after stereotactic radiotherapy for lung tumors. Chest, 2004. 125 (1): 340-4.
    
    54. Matsuno, Y., H. Satoh, H. Ishikawa, Simultaneous measurements of KL-6 and SP-D in patients undergoing thoracic radiotherapy. Med Oncol, 2006. 23 (1): 75-82.
    
    55. Inoue, A., H. Kunitoh, I. Sekine, Radiation pneumonitis in lung cancer patients: a retrospective study of risk factors and the long-term prognosis. Int J Radiat Oncol Biol Phys, 2001. 49 (3): 649-55.
    
    56. Fujita, J.O., Y.Bandoh, S.Takashima, H.Ueda, Y.Wu, F.Tojo, Y.Kubo,A.Ishida, T., Elevation of cytokeratin 19 fragment (CYFRA 21-1) in serum of patients with radiation pneumonitis: possible marker of epithelial cell damage. Respir Med, 2004. 98 (4): 294-300.
    1.Tsujino,K.,S.Hirota,Y.Kotani,Radiation pneumonitis following concurrent accelerated hyperfractionated radiotherapy and chemotherapy for limited-stage small-cell lung cancer:Dose-volume histogram analysis and comparison with conventional chemoradiation.Int J Radiat Oncol Biol Phys,2006.64(4):1100-5.
    2.Kong,F.M.,J.A.Hayman,K.A.Griffith,Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer(NSCLC):predictors for radiation pneumonitis and fibrosis.Int J Radiat Oncol Biol Phys,2006.65(4):1075-86.
    3.Evans,E.S.,Z.Kocak,S.M.Zhou,Does transforming growth factor-betal predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine,2006.35(3-4):186-92.
    4.Rancati,T.,G.L.Ceresoli,G.Gagliardi,Factors predicting radiation pneumonitis in lung cancer patients:a retrospective study.Radiother Oncol,2003.67(3):275-83.
    5. Yorke, E.D., A. Jackson, K.E. Rosenzweig, Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys, 2005. 63 (3): 672-82.
    
    6. Wang, S., Z. Liao, X. Wei, Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT).Int J Radiat Oncol Biol Phys, 2006. 66 (5): 1399-407.
    
    7. Barthelemy-Brichant, N., L. Bosquee, D. Cataldo, Increased IL-6 and TGF-betal concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy. Int J Radiat Oncol Biol Phys, 2004. 58 (3):758-67.
    
    8. Novakova-Jiresova, A., M.M. Van Gameren, R.P. Coppes, Transforming growth factor-beta plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiother Oncol, 2004. 71 (2): 183-9.
    
    9. Anscher, M.S., F.M. Kong, K. Andrews, Plasma transforming growth factor betal as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys, 1998. 41 (5): 1029-35.
    
    10. Anscher, M.S., F.M. Kong, L.B. Marks, Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys, 1997. 37(2): 253-8.
    
    11. Anscher, M.S., T. Murase, D.M. Prescott, Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys, 1994. 30(3):671-6.
    12.Arpin,D.,D.Perol,J.Y.Blay,Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis.J Clin Oncol,2005.23(34):8748-56
    13.赵路军,王绿化,王小震,血液中TGF-β、IL-6及ACE含量在预测放射性肺炎中的价值.中华放射肿瘤学杂志,2006.15(3):217-21.
    14.姬巍,王绿化,赵路军,细胞因子联合DVH参数预测放射性肺炎的临床研究.中华放射肿瘤学杂志,2007.16(6):473-7.
    15.National Cancer Institute Common Terminology Criteria for Adverse Events v3.0(CTCAE) http://ctep.cancer.gov/reporting/ctc.html.
    16.Garipagaoglu M,M.M.,Hollis D,,The effect of patientspecific factors on radiation-induced regional lung injury..Int J Radiat Oncol,1999.45:331-38.
    17.De Jaeger,K.,Y.Seppenwoolde,L.J.Boersma,Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer.Int J Radiat Oncol Biol Phys,2003.55(5):1331-40.
    18.Robnett,T.J.,M.Machtay,E.F.Vines,Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer.Int J Radiat Oncol Biol Phys,2000.48(1):89-94.
    19.Monson,J.M.,P.Stark,J.J.Reilly,Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma.Cancer,1998.82(5):842-50.
    20.Zhao,L.,L.Wang,W.Ji,Association between plasma angiotensin-converting enzyme level and radiation pneumonitis.Cytokine, 2007. 37 (1): 71-5.
    
    21. Graham, M.V., J.A. Purdy, B. Emami, Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys, 1999. 45 (2): 323-9.
    
    22. Yorke, E.D., A. Jackson, K.E. Rosenzweig, Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys, 2002. 54 (2): 329-39.
    
    23. Hope, A.J., RE. Lindsay, I. El Naqa, Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys, 2006. 65 (1): 112-24.
    
    24. Fu, X.L., H. Huang, G. Bentel, Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys, 2001. 50 (4): 899-908.
    
    25. Hernando, M.L., L.B. Marks, G.C. Bentel, Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys, 2001. 51 (3): 650-9.
    
    26. Fay, M., A. Tan, R. Fisher, Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys, 2005. 61 (5): 1355-63.
    
    27. Kocak, Z., G.R. Borst, J. Zeng, Prospective assessment of dosimetric/physiologic-based models for predicting radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2007. 67 (1): 178-86.
    28. Tsujino, K., S. Hirota, M. Endo, Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys,2003. 55 (1): 110-5.
    
    29. Chang, D.T., K.R. Olivier, C.G. Morris, The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2006. 65 (1): 125-31.
    
    30. Claude, L., D. Perol, C. Ginestet, A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol,2004. 71 (2): 175-81.
    
    31. Byhardt RW, S.C., Sause WT, et al., Response, toxicity,failure patterns,and survival in five Radiation Therapy Oncology Group (RTOG) trials of sequential and/or concurrent chemotherapy and radiotherapy for locally advanced non-small-cell carcinoma of the lung. Int J Radiat Oncol Biol Phys, 1998. 42: 469-78.
    
    32. Bradley, J., M.V. Graham, K. Winter, Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma Int J Radiat Oncol Biol Phys, 2005. 61 (2): 318-28.
    
    33. Willner, J., A. Jost, K. Baier, A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with Jung cancer treated with 3-D conformal radiotherapy. Strahlenther Onkol, 2003. 179 (8): 548-56.
    
    34. Bolliger, C.T., C. Wyser, H. Roser, Lung scanning and exercise testing for the prediction of postoperative performance in lung resection candidates at increased risk for complications.Chest,1995.108(2):341-8.
    35.Giordano,A.,M.L.Calcagni,G.Meduri,Perfusion lung scintigraphy for the prediction of postlobectomy residual pulmonary function.Chest,1997.111(6):1542-7.
    36.王俊,潘中允,许佩璋,肺灌注显像在肺癌外科治疗中的应用价值.中华医学杂志,1991.71(3):620-2.
    37.Boersma,L.J.,E.M.Damen,R.W.de Boer,Dose-effect relations for local functional and structural changes of the lung after irradiation for malignant lymphoma.Radiother Oncol,1994.32(3):201-9.
    38.Theuws,J.C.,S.L.Kwa,A.C.Wagenaar,Prediction of overall pulmonary function loss in relation to the 3-D dose distribution for patients with breast cancer and malignant lymphoma.Radiother Oncol,1998.49(3):233-43.
    39.Abratt,R.P.,P.A.Willcox,J.A.Smith,Lung cancer in patients with borderline lung functions—zonal lung perfusion scans at presentation and lung function after high dose irradiation.Radiother Oncol,1990.19(4):317-22.
    40.Marks,L.B.,D.P.Spencer,G.C.Bentel,The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation.Int J Radiat Oncol Biol Phys,1993.26(4):659-68.
    41.Chen,Y.,P.Rubin,J.Williams,Circulating IL-6 as a predictor of radiation pneumonitis.Int J Radiat Oncol Biol Phys,2001.49(3):641-8.
    42.Chen,Y.,J.Williams,I.Ding,Radiation pneumonitis and early circulatory cytokine markers.Semin Radiat Oncol,2002.12(1 Suppl 1):26-33.
    43.Chen,Y.,O.Hyrien,J.Williams,Interleukin(IL)-IA and IL-6:applications to the predictive diagnostic testing of radiation pneumonitis.Int J Radiat Oncol Biol Phys,2005.62(1):260-6.
    44.Hart,J.P.,G.Broadwater,Z.Rabbani,Cytokine profiling for prediction of symptomatic radiation-induced lung injury.Int J Radiat Oncol Biol Phys,2005.63(5):1448-54.
    45.朱向帜,王绿化,欧广飞,三维适形放射治疗局部晚期非小细胞肺癌预后因素分析.中华肿瘤杂志,2007.29(10):748-53.
    46.Stanley,K.E.,Prognostic factors for survival in patients with inoperable lung cancer.J Natl Cancer Inst,1980.65(1):25-32.
    47.Werner-Wasik,M.,C.Scott,J.D.Cox,Recursive partitioning analysis of 1999 Radiation Therapy Oncology Group(RTOG) patients with locally-advanced non-small-cell lung cancer(LA-NSCLC):identification of five groups with different survival.Int J Radiat Oncol Biol Phys,2000.48(5):1475-82.
    48.Bradley,J.D.,N.Ieumwananonthachai,J.A.Purdy,Gross tumor volume,critical prognostic factor in patients treated with three-dimensional conformal radiation therapy for non-small-cell lung carcinoma.Int J Radiat Oncol Biol Phys,2002.52(1):49-57.
    49.Stinchcombe,T.E.,D.E.Morris,D.T.Moore,Post-chemotherapy gross tumor volume is predictive of survival in patients with stage Ⅲnon-small cell lung cancer treated with combined modality therapy. Lung Cancer,2006.52(1):67-74.
    50.Basaki,K.,Y.Abe,M.Aoki,Prognostic factors for survival in stage Ⅲnon-small-cell lung cancer treated with definitive radiation therapy:impact of tumor volume.Int J Radiat Oncol Biol Phys,2006.64(2):449-54.
    51.王守立,杨光华,步宏,TGF-β信号传导与肿瘤.中国肿瘤临床,2004.31(8):476-7.
    52.王秀梅,傅松滨,TGF-β/Smads信号传导通路与肿瘤关系研究进展.国外医学遗传学分册,2004.27(6):341-4.
    53.王旭东,战忠利,TGF-β及其受体与肿瘤的研究进展.中国肿瘤临床,2005.32(17):1016-20.
    54.Shariat,S.E,J.H.Kim,B.Andrews,Preoperative plasma levels of transforming growth factor beta(1) strongly predict clinical outcome in patients with bladder carcinoma.Cancer,2001.92(12):2985-92.
    55.de Caestecker,M.P.,E.Piek,A.B.Roberts,Role of transforming growth factor-beta signaling in cancer.J Natl Cancer Inst,2000.92(17):1388-402.
    56.Matsuzaki,K.,M.Date,F.Furukawa,Regulatory mechanisms for transforming growth factor beta as an autocrine inhibitor in human hepatocellular carcinoma:implications for roles of smads in its growth.Hepatology,2000.32(2):218-27.
    57.Hasegawa,Y.,S.Takanashi,Y.Kanehira,Transforming growth factor-betal level correlates with angiogenesis,tumor progression,and prognosis in patients with nonsmall cell lung carcinoma.Cancer,2001. 91 (5): 964-71.
    
    58. Biswas, S., M. Guix, C. Rinehart, Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest, 2007. 117 (5): 1305-13.
    
    59. Saji, H., H. Nakamura, I. Awut, Significance of expression of TGF-beta in pulmonary metastasis in non-small cell lung cancer tissues. Ann Thorac Cardiovasc Surg, 2003. 9 (5): 295-300.
    1. Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. PORT Meta-analysis Trialists Group.Lancet, 1998. 352 (9124): 257-63.
    
    2. Postoperative radiotherapy for non-small cell lung cancer. Cochrane Database Syst Rev, 2005 (2): CD002142.
    
    3. Burdett, S.,L. Stewart, Postoperative radiotherapy in non-small-cell lung cancer: update of an individual patient data meta-analysis. Lung Cancer,2005. 47 (1): 81-3.
    
    4. Fu, X.L., H. Huang, G. Bentel, Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta Int J Radiat Oncol Biol Phys, 2001. 50 (4): 899-908.
    
    5. Hernando, M.L., L.B. Marks, G.C. Bentel, Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys, 2001. 51 (3): 650-9.
    
    6. Bradley, J., M.V. Graham, K. Winter, Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma Int J Radiat Oncol Biol Phys, 2005. 61 (2): 318-28.
    
    7. Fay, M., A. Tan, R. Fisher, Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys, 2005. 61 (5): 1355-63.
    
    8. Hope, A.J., P.E. Lindsay, I. El Naqa, Modeling radiation pneumonitis risk with clinical,dosimetric,and spatial parameters.Int J Radiat Oncol Biol Phys,2006.65(1):112-24.
    9.Kong,F.M.,J.A.Hayman,K.A.Griffith,Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer(NSCLC):predictors for radiation pneumonitis and fibrosis.Int J Radiat Oncol Biol Phys,2006.65(4):1075-86.
    10.Wang,S.,Z.Liao,X.Wei,Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis(TRP) in patients with non-small-cell lung cancer(NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy(3D-CRT).Int J Radiat Oncol Biol Phys,2006.66(5):1399-407.
    11.朱向帜,王绿化,王颖杰,三维适形放疗局部晚期非小细胞肺癌的放射性肺炎风险因素研究.中华放射肿瘤学杂志,2007.16(6):421-6.
    12.Feng,Q.F.,M.Wang,L.J.Wang,A study of postoperative radiotherapy in patients with non-small-cell lung cancer:a randomized trial.Int J Radiat Oncol Biol Phys,2000.47(4):925-9.
    13.Lally,B.E.,D.Zelterman,J.M.Colasanto,Postoperative radiotherapy for stage Ⅱ or Ⅲ non-small-cell lung cancer using the surveillance,epidemiology,and end results database.J Clin Oncol,2006.24(19):2998-3006.
    14.Douillard,J.,Impact Of Radiation On Survival After Complete Resection Of Non Small Cell Lung Cancer:Descriptive Analysis In The Randomized Adjuvant Chemotherapy Trial Anita 1.Int J Radiat Oncol Biol Phys,2006.66(3):S2.
    15.Bekelman,J.E.,K.E.Rosenzweig,P.B.Bach,Trends in the use of postoperative radiotherapy for resected non-small-cell lung cancer.Int J Radiat Oncol Biol Phys,2006.66(2):492-9.
    16.Uno,T.,M.Sumi,A.Kihara,Postoperative radiotherapy for non-small-cell lung cancer:results of the 1999-2001 patterns of care study nationwide process survey in Japan.Lung Cancer,2007.56(3):357-62.
    17.Effects of postoperative mediastinal radiation on completely resected stage Ⅱ and stage Ⅲ epidermoid cancer of the lung.The Lung Cancer Study Group.N Engl J Med,1986.315(22):1377-81.
    18.Machtay,M.,J.H.Lee,J.B.Shrager,Risk of death from intercurrent disease is not excessively increased by modern postoperative radiotherapy for high-risk resected non-small-cell lung carcinoma.J Clin Oncol,2001.19(19):3912-7.
    19.Turrisi,A.,S.Keller,Since chemotherapy is now the standard in node-positive lung cancer,what is the role of postoperative radiotherapy?J Clin Oncol,2007.25(4):459-60;author reply 460-1.
    20.Le Pechoux,C.,A.Dunant,J.P.Pignon,Need for a new trial to evaluate adjuvant postoperative radiotherapy in non-small-cell lung cancer patients with N2 mediastinal involvement.J Clin Oncol,2007.25(7):e10-1.
    21.中国抗癌协会肺癌专业委员会,2007中国肺癌临床指南.人民卫生出版社2007年6月:106-7.
    22.Bradley,J.D.,R.Paulus,M.V.Graham,Phase Ⅱ trial of postoperative adjuvant paclitaxel/carboplatin and thoracic radiotherapy in resected stage II and IIIA non-small-cell lung cancer: promising long-term results of the Radiation Therapy Oncology Group-RTOG 9705. J Clin Oncol,2005. 23 (15): 3480-7.
    
    23. Arriagada, R., B. Bergman, A. Dunant, Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med, 2004. 350 (4): 351-60.
    
    24. Winton, T., R. Livingston, D. Johnson, Vinorelbine plus cisplatin vs.observation in resected non-small-cell lung cancer. N Engl J Med, 2005.352 (25): 2589-97.
    
    25. Douillard, J.Y., R. Rosell, M. De Lena, Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol, 2006. 7 (9): 719-27.
    
    26. Federation Nationale des Centres de Lutte Contre le Cancer. Phase III Randomized Study of Adjuvant Conformal Radiotherapy Versus No Radiotherapy in Patients With Completely Resected Non-Small Cell Lung Cancer and Mediastinal N2 Involvement www.clinicaltrails.gov NCT00410683 2007.
    
    27. Sekine, I., M. Sumi, Y. Ito, Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother Oncol,2006. 80 (1): 93-7.
    
    28. Garipagaoglu M, M.M., Hollis D,, The effect of patientspecific factors on radiation-induced regional lung injury.. Int J Radiat Oncol, 1999. 45:331-38.
    
    29. De Jaeger, K., Y. Seppenwoolde, L.J. Boersma, Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys, 2003. 55 (5): 1331-40.
    
    30. Gopal, R., S.L. Tucker, R. Komaki, The relationship between local dose and loss of function for irradiated lung. Int J Radiat Oncol Biol Phys,2003. 56 (1): 106-13.
    
    31. Robnett, T.J., M. Machtay, E.F. Vines, Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys, 2000. 48 (1): 89-94.
    
    32. Monson, J.M., P. Stark, J.J. Reilly, Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma.Cancer, 1998. 82 (5): 842-50.
    
    33. Yorke, E.D., A. Jackson, K.E. Rosenzweig, Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys, 2002. 54 (2): 329-39.
    
    34. Yamada, M, S. Kudoh, K. Hirata, Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer, 1998. 34 (1): 71-5.
    
    35. Graham, M.V., J.A. Purdy, B. Emami, Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys, 1999. 45 (2): 323-9.
    
    36. Chang, D.T., K.R. Olivier, C.G. Morris, The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis. Int J Radiat Oncol Biol Phys, 2006. 65 (1): 125-31.
    
    37. Claude, L., D. Perol, C. Ginestet, A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer:clinical and dosimetric factors analysis.Radiother Oncol,2004.71(2):175-81.
    38.Rancati,T.,G.L.Ceresoli,G.Gagliardi,Factors predicting radiation pneumonitis in lung cancer patients:a retrospective study.Radiother Oncol,2003.67(3):275-83.
    39.Z.Kocak,S.Z.,D.Kahn,D.Hollis,R.Clough,R.Folz,M.Anscher,N.Larrier,L.Marks,Prospective Assessment of Models to Predict Radiation Pneumonitis Based on Dosimetric,/Functional Parameters..Int J Radiat Oncol Biol Phys,2005:S388-S388.
    40.Yorke,E.D.,A.Jackson,K.E.Rosenzweig,Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study.Int J Radiat Oncol Biol Phys,2005.63(3):672-82.
    41.Seppenwoolde,Y.,J.V.Lebesque,K.de Jaeger,Comparing different NTCP models that predict the incidence of radiation pneumonitis.Normal tissue complication probability.Int J Radiat Oncol Biol Phys,2003.55(3):724-35.
    42.Dautzenberg,B.,R.Arriagada,A.B.Chammard,A controlled study of postoperative radiotherapy for patients with completely resected nonsmall cell lung carcinoma.Groupe d'Etude et de Traitement des Cancers Bronchiques.Cancer,1999.86(2):265-73.
    43.姬巍,王绿化,赵路军,细胞因子联合DVH参数预测放射性肺炎的临床研究.中华放射肿瘤学杂志,2007.16(6):473-7.
    1.Iyer,S.N.,J.S.Wild et al.,Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters.J Lab Clin Med,1995.125(6):779-85.
    2.Ashcroft,T.,J.M.Simpson et al.,Simple method of estimating severity of pulmonary fibrosis on a numerical scale.J Clin Pathol,1988.41(4):467-70.
    3.Oku,H.,H.Nakazato et al.,Pirfenidone suppresses tumor necrosis factor-alpha,enhances interleukin-10 and protects mice from endotoxic shock.Eur J Pharmacol,2002.446(1-3):167-76.
    4.Hale,M.L.,S.B.Margolin et al.,Pirfenidone blocks the in vitro and in vivo effects of staphylococcal enterotoxin B. Infect Immun, 2002. 70(6):2989-94.
    
    5. Nakazato, H., H. Oku et ah, A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-alpha at the translational level. Eur J Pharmacol, 2002. 446(1-3): 177-85.
    
    6. Tsuchiya, H., M. Kaibori et al., Pirfenidone prevents endotoxin-induced liver injury after partial hepatectomy in rats. J Hepatol, 2004. 40(1):94-101.
    
    7. Iyer, S.N., G. Gurujeyalakshmi et al., Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther, 1999. 289(1):211-8.
    
    8. Giri, S.N., S. Leonard et al., Effects of pirfenidone on the generation of reactive oxygen species in vitro. J Environ Pathol Toxicol Oncol, 1999.18(3): 169-77.
    
    9. Iyer, S.N., G. Gurujeyalakshmi et al., Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther, 1999. 291(1): 367-73.
    
    10. Iyer, S.N., D.M. Hyde et al., Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammatioa Inflammation, 2000.24(5): 477-91.
    
    11. Iyer, S.N., S.B. Margolin et al., Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp Lung Res, 1998. 24(1): 119-32.
    12. Tsoutsou, P.G.,M.I. Koukourakis, Radiation pneumonitis and fibrosis:Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys, 2006. 66(5): 1281-93.
    
    13. Vujaskovic, Z., Q.F. Feng et al., Assessment of the protective effect of amifostine on radiation-induced pulmonary toxicity. Exp Lung Res,2002. 28(7): 577-90.
    
    14. Karvonen, R.L., F. Fernandez-Madrid et al., An animal model of pulmonary radiation fibrosis with biochemical, physiologic,immunologic, and morphologic observations. Radiat Res, 1987. 111(1):68-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700