易腐食品冷藏运输温度调控及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷藏运输装备作为串联整个冷链的运输工具,担负着保证食品品质、控制运输成本与降低能耗的重任。因此,研究精确控制冷藏运输装备的温度高低及波动范围显得尤为重要。本文围绕运输过程中的温度环境对食品品质的影响、冷藏运输车厢内温度均匀性、典型冷藏车厢的热稳定性、冷藏车厢内的温变特性及影响因素、车厢内温度波动及其控制办法等进行研究,进而对冷藏运输车厢体进行设计优化。具体研究内容如下:
     (1)温度均匀性及其温度波动
     冷藏运输过程车厢内温度的均匀性及其波动,都会对冷藏运输的易腐食品品质造成影响。采用airpak流体仿真软件,对影响车内温度均匀性的因素进行了数值模拟。研究表明,车厢聚氨酯隔热材料合理厚度为100-120mm;送风口位于车厢内正前下方位置车厢内温度均匀性最好;冷藏运输温度不同,车内最佳送风速度也不同,送风温度越高,合理的送风速度也高,且均对应有一个最佳风速。基于频域分析法,构建冷藏车厢内温度扰动数学模型与温度响应数学模型,对四种温度扰动的振幅与相角进行了分析。研究发现,在一定条件下,增大车厢体的比热容、厢体材料密度,减小车厢内外表面的对流换热系数,可降低车厢内温度波动;调节制冷频率与融霜频率处于系统衰减域,可达到衰减这两种扰动的作用;制冷与融霜温度扰动的相角相同时,此时温度振幅最小;车辆的气密性越好、车速的变化频率越大、车厢外表面颜色越浅,车厢内温度波动越小。
     (2)车厢内的热稳定性
     利用热工理论知识,研究了四种典型冷藏车隔热车厢对温度的衰减与延迟作用,以及对厢内热稳定性的影响。结果表明,车厢的隔热材料不同,对车外综合温度波的延迟时间与衰减倍数不同,厢体热惰性指标、热阻越大,延迟时间与衰减倍数相应越大;车辆行驶的方向、隔热材料不同,车厢体内壁面温度也不同;热稳定性主要由厢体隔热材料的热阻与热惰性指标决定,隔热材料复合厢体的热阻值与热惰性指标值越大,车厢的热稳定就越好。
     (3)厢内温度变化特性
     基于动态热平衡理论,构建单温冷藏车、双温冷藏车、以及冷藏车开门过程的车厢内温度变化数学模型。研究结果表明:降温过程中,车厢内的温度均随时间呈指数规律下降,开门过程车厢内的温度随时间呈指数规律上升;当车厢体厚度减小或热导率增大、车厢外表面对太阳辐射的吸收系数增大、车速增大、车厢漏气倍数增大、货物呼吸热增大、制冷量减小等均会导致车厢内降温所需时间延长。对于双温冷藏车,制冷量变小、货物呼吸热增大、车速升高或者车厢导热系数变大,两温区降温所需时间均延长;当两温区之间的电动风扇风速与出风口面积增大时,冷冻车厢内降温时间延长,而冷藏车厢降温时间缩短;当车厢总体积不变,冷冻车厢体积增大,冷冻车厢降温所需时间将会延长,而冷藏车厢降温所需时间基本保持不变。冷藏车开门过程,制冷开启与否、车厢内送风风速大小、车厢体隔热能力对厢内温度变化影响不大;车厢内外的温差越大、车门开启越大、车厢体积越小,车厢内的温度升高也相应的越大;车厢外有无风速以及风速方向不同,开门过程车厢内的升温快慢也不同。
     (4)厢体优化设计
     以车厢体传热系数最小与车厢内空间体积最大为目标函数,分析了不同参数条件下车厢内部体积空间与车厢体传热系数变化规律,以及最佳厢体隔热材料厚度。结果表明:不同车速、不同隔热材料厚度、不同隔热材料导热系数条件下对应的车厢体最优体积与传热系数各不相同;同时满足最佳车厢体总传热系数与最大车厢内体积条件的车厢体隔热材料最佳厚度,随着最佳车厢体传热系数的增大而增大。
     (5)冷藏运输温度条件与易腐食品品质关系
     每一种易腐食品对整个物流过程的最佳温湿度要求各不相同,通过试验模拟猪肉与荔枝不同温度条件物流全程。研究发现,不同的温湿度运输条件下及其后续的销售条件,荔枝的褐变指数、花色素苷-光密度差值、果皮色值、果肉PH值、失重率等指标的变化情况也不同。猪肉的运输、配送、销售环节的温湿度条件不同,对猪肉的品质影响也不同;肉质好坏、保鲜期的长短主要取决于运输与销售环节对温度的控制。
As one of the most important conveyances of connecting each step of the cold chain logistics, refrigerated transportation equipment undertakes an important business of guarantying food quality, controlling transportation costs and reducing energy consumption. Therefore, it is particularly important to study precisely the control of temperature and its fluctuation range of the refrigerated transportation equipment. The dissertation focuses on the aspects of the impact of temperature and environment to the quality of perishable foods during refrigerated transportation process, temperature uniformity inside the refrigerated compartment, the thermal stability of the typical refrigerated compartment, temperature change characteristics of refrigerated compartment, the factors affecting those characteristics, and temperature fluctuations inside refrigerated compartment as well as its control measures. Besides, optimization in the design of refrigerated compartment is covered in the research. Specific contents are as follows:
     (1) Temperature uniformity and temperature fluctuations
     Compartment inside temperature uniformity and its fluctuations will affect the quality of perishable foods during refrigerated transport process. Airpak fluid simulation software was introduced to numerically simulate the factors affecting the temperature uniformity inside the compartment. The results show that the most reasonable thickness of compartment polyurethane insulation materials between100and120mm; the best temperature uniformity could be reached when the outlet is located at the bottom position of the right front compartment; the different refrigerated transport temperature decides different wind speed inside the compartment, the higher of the air supply temperature, the faster of the reasonable wind speed, and it corresponds to a preferred wind speed. Based on the frequency domain analysis, refrigerated compartment temperature disturbance mathematical model and temperature response mathematical model are established to analyze the perturbation amplitude and phase angle of the four kinds of temperatures. It is found that the inside compartment temperature fluctuations could be reduced under certain conditions, which include increasing specific heat capacity of the compartment, insulation materials density of the compartment and reducing convective heat transfer coefficient of the inside and outside surface of compartment; their two perturbations are attenuated when refrigeration frequency and defrost frequency are within attenuation domain range; temperature amplitude reaches its minimum when refrigeration and defrost temperature perturbation are at the same phase angle; the inside compartment temperature fluctuations are reduced when the compartment is equipped with better airtightness, lighter color surface, and the vehicle change its speed with a frequent variation.
     (2) Thermal stability of inside compartment
     Based on thermal theoretical knowledge, the attenuation and delay effect as well as the inside heat stability impact of four typical insulated compartments are investigated. It is founded that different insulating materials decide different outside sol-air temperature time lags and the attenuation coefficients, to be more specific, the bigger of the compartment thermal inertia index or resistance, the longer of the corresponding time lag and the bigger of attenuation coefficient; different traveling directions or insulating materials also decide different inner wall surface temperatures of compartment; thermal stability mainly depends on the thermal resistance and thermal inertia index of compartment insulation material, to put it another way, the higher of the thermal resistance and thermal inertia index value of the insulating material, the better of thermal stability of compartment.
     (3) Temperature change characteristics of compartment
     Based on the dynamic thermal equilibrium theory, the inner compartment temperature changes mathematical model, which covers the temperature changes of single-temperature, multi-temperature refrigerated vehicle and door-opening process, is constructed. It is shown that the inner temperature exponentially decrease during the cooling process and increase during the door-opening process; Longer hours are required when the compartment thickness is reduced or the thermal conductivity increased, the solar radiation absorption coefficient of outside surface of compartment increased, or speed increased, compartment leak multiples increased, goods respiratory heat increased and cooling capacity is decreased. For double-temperature refrigerated compartments, longer cooling hours is consumed in the two zones when cooling capacity is smaller, goods respiratory heat increased, the speed increased or compartments thermal conductivity increased; Longer cooling hours in the freezing compartment is taken, but less cooling hours for the refrigerated compartment, when wind speed of the electric fan and the outlet area increases between the two zones; Longer cooling hours in the freezing compartment is taken, but almost the same cooling hours for the refrigerated compartment, when the total volume of the compartment is unchanged and frozen zone volume increased. Door-opening process of refrigerated trucks, turn on or off the refrigeration system, blowing wind speed in the compartment and the insulation ability of compartment have little effect on temperature changes in the refrigerated compartment; the inside temperature is increased faster if there is a greater temperature difference in and out of the compartment, the door opened broader and the compartment volume decreased. Whether there is wind or no or even wind direction outside the compartment due to the different rates of elevated temperature during the door-opening process.
     (4) Compartment optimization design
     The smallest heat transfer coefficient and the maximum internal space of compartment as the objective function, analysis of the variation of compartment interior space and compartment heat transfer coefficient, and the best thickness of compartment insulation material under different parameters. The results showed that different speeds, different speeds, different thickness of the insulation material, different thermal conductivity of insulation materials, the smallest heat transfer coefficient and the maximum internal space of compartment are not the same; when the optimal compartment heat transfer coefficient and the optimal internal space of compartment conditions at the simultaneously time meet, thickness increases of compartment insulation material along with the optimal compartment heat transfer coefficient increases.
     (5) The relationship between refrigerated transport and the quality of perishable food
     The best temperature and humidity are different among different perishable foods whole logistics process, simulation pork and lychee logistics process under different temperature conditions. The experiment showed that different temperature and humidity conditions of transport and sale, lychee undergoes different changes in its brown change index, the anthocyanin-optical density difference, peel color values, pulp PH value, weight loss rate and in other indicators; he temperature and humidity conditions affect the quality of pork during the process of transport, distribution and sale; quality of the pork and its shelf life largely depend on the temperature control during the transport and sales process.
引文
[1]王海平,黄和升.控制微生物引起食品腐败变质的措施[J].农产品加工,2009,(11):55~56.
    [2]中国冷链物流联盟,中国食品工业协会食品物流专业委员会.中国冷链年鉴2011[M].北京:航空工业出版社.2012:23-56.
    [3]兰洪杰.食品冷链物流系统协同研究[D].北京:北京交通大学,2009.
    [4]王瑞,李学工.农产品冷链物流安全追溯系统的设计[J].综合运输,2011,(4):34-38.
    [5]中华人民共和国国家统计局.2011中国统计年鉴[M].北京:中国统计出版社,2012:15~18.
    [6]郑晨潇,刘泽勤,常远.冷藏运输业发展现状分析与建议[J].安徽农业科学,2012,40(33):16368~16370.
    [7]中国发展改革委.农产品冷链物流发展规划[R].北京,中国发展改革委员会,2010.
    [8]刘浩荣.多温区冷藏汽车性能测试及优化[D].广州:广州大学,2012.
    [9]孙永才.冷藏车热工性能分析及其真空隔热材料研制[D].广州:广州大学,2011.
    [10]刘广海.冷藏运输能耗分析与装备优化研究[D].长沙:中南大学,2007.
    [11]黄欣.冷藏链中易腐食品冷藏运输品质安全与能耗分析[D].长沙:中南大学,2011.
    [12]张建华.冷藏集装箱运输现状与发展方向[J].科技咨询,2011,(08):229~230.
    [13]Hobbs J E, Young L M. Closer vertical co-ordination in agri-food supply chains a conceptual framework and some preliminary evidence [J]. Supply Chain Management,2000,5(3):131-142.
    [14]Palmer C M. Building effective alliances in the meat supply chain lessons from the UK [J]. Supply Chain Management,1996,1(3):9-11.
    [15]Robson I, Rawnsley V. Co-operation or coercion Supplier networks and relationships in the UK food industry [J]. Supply Chain Management,2001, 6(1):39-47.
    [16]Martijn F L, Rademakers, Phillip J M. Concentration and co-operation within the Dutch potato supply chain [J]. Supply Chain Management,1998,3(4):203-213
    [17]Andrew F. The evolution of partnerships in the meat supply chain:insights from the British beef industry [J]. Supply Chain Management,1998,3(4):214-231
    [18]Silke B Jill E H, William A Kerr. Supply chain relationships in the Polish pork sector[J]. Supply Chain Management,2001,6(2):74-82.
    [19]Peter J B. Examining the performance of the supply chain for potatoes in the Red River Delta using a pluralistic approach [J]. Supply Chain Management,2003, 8(5):442-454.
    [20]Hunt I. Apply the concepts of extended products and extended enterprises to support the activities of dynamic supply networks in the agri-food industry [J]. Journal of Food Engineering,2005,70:393-402.
    [21]SadlerI, Hines P. Strategic operations planning process for manufacturers with a supply chain focus concepts and a meat processing application [J]. Supply Chain Management,2002,7(4):225-241.
    [22]Folkerts H, Koehorst H. Challenges in international food supply chains:vertical co-ordination in the European agribusiness and food industries [J]. Supply Chain Management,1997,2(1):11-14.
    [23]Georgiadis P. A system dynamics modeling framework for the strategic supply chain management of food chains [J]. Journal of food engineering,2005, 70:351-364.
    [24]Minegishi S, Thiel D. System dynamics modeling and simulation of a particular food supply chain [J]. Simulation practice and theory,2000, (8):321-339.
    [25]Hill C A. An empirical study of the impact of supply chain integration and information technology within food industry [D]. USA:vanderbilt university, 1998.
    [26]Vorst J G. Model and simulating multi-echelon food systems [J]. European Journal of operational research,2000,12(2):354-366.
    [27]Stringer M F, Hall M N. A generic model of the integrated food supply chain to aid the investigation of food safety breakdowns [J]. Food control,2006, (1):1-11.
    [28]Kumar S, Budin E M. Prevention and management of product recalls in the processed food industry:a case study based on an exporter's perspective [J]. Technovation,2006,26(2):739-750.
    [29]Hajnal E. It Support and statistics in traceability and product recall at food logistics providers [J]. periodica polytechnicaser chem,2004,48(1):21-29.
    [30]Beulens A J M. Food safety and transparency in food chains and networks Relationships and challenges [J]. Food Control,2005,16(3):481-486.
    [31]Iames S J. Using refrigeration to reduce weight loss from meat [R]. Langford Bristol:Meat research institute,1984.
    [32]Xie R H, Hu S J. Research on the problem of weight loss of perishable goods in refrigerated transportation [J]. International Journal of Refrigeration.1999,27(05): 214-219.
    [33]Commere B, Hautier J P. Transport:how to master the cold chain. [J].International Journal of Refrigeration,2001,91(2):79-83.
    [34]Cleland A C. Market-pull factor for refrigerated transport services[J]. International Journal of Refrigeration,2000,11(3):85-89.
    [35]谢如鹤,刘广海.铁路冷藏运输技术条件及试验研究技术报告[R].长沙:中南大学物流与运输研究所,2007.
    [36]刘广海,谢如鹤,宗岩.冷藏运输能耗管理与节能策略分析[J].铁道运输与经济.2011.33(07).28~31.
    [37]刘广海,谢如鹤.冷藏运输装备发展现状分析及发展趋势研究[J].广西轻工业,2009,(08):122~123.
    [38]宁文祥.冷藏保温车的历史和现状[J].专用汽车,2009,34(07):37-39.
    [39]嵇莉莉.基于模糊理论的铁路冷藏运输工具评价[J].物流科技,2012,(01):35~39.
    [40]李文.我国铁路冷藏运输存在的问题及对策[J].市场研究,2010,(04):22~23.
    [41]张洪春,孙吉栋.我国铁路冷藏运输发展方向及解决方案[J].铁道车辆,2012,23(9):4~5.
    [42]艾凯数据研究中心.汽车工业年鉴2010[M].北京:艾凯数据研究中心,2011:8-59.
    [43]王宏.新一代汽车冷藏车厢[J].2制冷,2010.23(04):730~733.
    [44]温永刚,杨建斌,陈光奇.真空绝热板(VIP)技术及其发展[J].低温工程,2008,(06):35~39.
    [45]Ahmed M, Meade O, Mario Medina A. Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials[J] Energy Conversion and Management,2010,(51):3834-392.
    [46]Fricke J, Heinemann U, Ebert H P.Vacuum insulation panels-From research to market [J].Vacuum,2008,03(07):680-690.
    [47]Caps R, Beyrichen H, KrausDl. Quality control of vacuum insulation panels: Methods of measuring gas pressure[J].Vacuum,2008,(82):691-699.
    [48]Kwon J S, Jang C H, Jung H. Effective thermal conductivity of various filling materials for vacuum insulation panels[J].International Journal of Heat and Mass Transfer,2009,52(11):5525-5532.
    [49]Simmler H, Brunner S.Vacuum insulation panels for building application Basic properties, aging mechanisms and service life[J]. Energy and Buildings,2005,(37): 1122-1131.
    [50]Nussbaumer T, Bundi R,Tanner C.Thermal analysis of a wooden door system with integrated vacuum insulation panels[J]. Energy and Buildings,2005,(37): 1107-1113.
    [51]Araki K, Kamoto D, Matsuoka S. Optimization about multilayer laminated film and getter device materials of vacuum insulation panel for using at high temperature[J].Materials processing technology,2009,(29):271-282.
    [52]宁文祥.欧洲冷藏车的产品特点与发展趋势:智能化轻量化多功能[J].专用汽车,2011,(03):46~48.
    [53]Lorentzen G Revival of canbon dioxide as refrigerant[JJ. Int J Refrig,1994,17(5): 292-301.
    [54]Lorentzen G, Pettersen J A N. Efficient and environmentally benign system for car air conditioning[J]. Int J Refrig,1993,16(1):4-12.
    [55]Michael S, Jugen K. Air conditioning unit using CO2 as refrigerant installed in a bus[C]. International Conference on 0 zone Protection Technologies. Washington: International Journal of Refrigeration,1996:825-834.
    [56]Nobuo K, Takyoshi M, Kiwamu I. CO2 A/C and heat pump system for the FCHV-4[C].2000 SAE automotive alternate refrigerant systems symposium. Scottsdale: International Journal of Refrigeration,2000:348-354.
    [57]Bullard C W, Yin J M, Hmjak P S. Transcritical CO2 mobile heat pump and A/C systen experimental and model results[C].2000 SAE automotive alternate refrigerant systems symposium. Scottsdale:International Journal of Refrigeration, 2000:428-435.
    [58]Jostein P, Petter N. Consequences of the newest improvements in R-744 systems[C].2003 SAE automotive alternate refrigerant systems symposium. Scottsdale:International Journal of Refrigeration,2003:721-732.
    [59]Wiestaw Z. Thermal damage to the load in cold chain transport [J]. Procedia Social and Behavioral Sciences,2011, (20):761-766.
    [60]Silvia E F, Andrew.Eddy. Thermal performance indicators for refrigerated road vehicles [J]. International Journal of Refrigeration,2006,(29):889-898.
    [61]Rodriguez J B. Thermal study of a transport container [J]. Journal of Food Engineering,2007, (80):517-527.
    [62]Moureh J, Flick D. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets [J]. International Journal of Refrigeration,2004,(27):464-474.
    [63]Nahor H B, Hoang M L, Verboven P1. CFD model of the airflow, heat and mass transfer in cool stores [J]. International Journal of Refrigeration,2005,12(28): 368-380.
    [64]Tso CP, Yu S C, Poh H J. Experimental study on the heat and mass transfer characteristics in a refrigerated truck [J]. International Journal of Refrigeration, 2002,25(11):340-350.
    [65]Foster A M, Swain M J, Barrett R, et al. Experimental verification of analysis and CFD predictions of infiltration through cold store entrance[J]. International Journal of Refrigeration,2003,(26):918-925.
    [66]Foster A M, Barrett R, James S J, et al. Measurement and prediction of air movement through doorway in refrigerated rooms [J]. International Journal of Refrigeration,2002,(25):1102-1109.
    [67]Chen P, Cleland D J, Lovatt S J, et al. An empirical model for predicting air infiltration into refrigerated stores through doors[J]. International Journal of Refrigeration,2002,(25):799-812.
    [68]Gajewski M, Przyby J L, Bajer M, et al. The influence of controlled atmosphere storage on phytosterols in broccoli heads [J]. Journal of Food Processing and Preservation,2011,35(5):722-728.
    [69]Singh A K, Goswami T K. Controlled atmosphere storage of fruits and vegetables: A review[J]. Journal of Food Science and Technology,2006,43(1):1-7.
    [70]Graell J, Lopez M L, Fuentes T, et al. Quality and volatile emission changes of 'Mondial Gala' apples during on-tree maturation and postharvest storage in air or controlled atmosphere[J]. Food Science and Technology International,2008, 14(3):285-294.
    [71]Sudhakar R D V,Gopalakrishna R K P. Effect of controlled atmosphere conditions and pre-treatments on ripening behaviour and quality of mangoes stored at low temperature [J]. Journal of Food Science and Technology,2009,46(4):300-306.
    [72]李建黎.我国果蔬气调保鲜产业存在的问题及对策[J].农业工程技术,2006,3(04):55~56.
    [73]Zagory D, Kader A A. Modified atmosphere packaging of fresh produce[J]. Food Technology,1988,42(9):70-77.
    [74]Wild D Y. Overview on controlled atmosphere transportation in containers[C]. 19th International Conference of Refrigeration Proceedings, Scottsdale: International Journal of Refrigeration,1995:627-633.
    [75]Bermejo J R. Thermal study of a transport container[J].Food Engineering,2007, (8):517-527.
    [76]Kan A K, Han H D. Study on temperature field distribution inside reefer containers[C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale:International Journal of Refrigeration,2008:884-887.
    [77]Tanner B E, Nicolai B M, Debaerdemaeker J. Temperature variability during shipment of fresh produce[J]. International Journal of Refrigeration, 2003,21(5):193-203.
    [78]Tanner D. Temperature variance in a 12m integral reefer container carrying plums under a dual temperature shipping regime[J]. Proceedings of the International Conference Postharvest:International Journal of Refrigeration,2005:289-295.
    [79]Billing D P, Mcdonald B, Hayes A J. Temperature characteristics within 20-foot feefer container during export of New Zealand produce[J]. Refrigeration science and technology,1998,(2):137-147.
    [80]Cahill O, Brien B P, Nevin M P. Controlled atmosphere system for a refrigerated container. European patent:0687966A2,1995-12-20.
    [81]Carrier. Total environment control [C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale:International Journal of Refrigeration, 2005:125-134.
    [82]Wild D Y. Controlled atmosphere update:a cast benefut ananlysis[C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale: International Journal of Refrigeration,1998:1-7.
    [83]王世良.机械制冷冷藏集装箱与运输[M].北京:人们交通出版社,2005:23~29.
    [84]张青,龚海辉,徐世琼,等.果蔬气调运输技术及设备的现状[J].包装与食品机械,2006,(6):46~48.
    [85]Business news. Purfresh transport outperforms gas injection controlled atmo-sphere in maintaining quality of stone fruit during transit[C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale: International Journal of Refrigeration,2001:112-113.
    [86]Anon. Purfresh transport. How does it work[C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale:International Journal of Refrigeration,2009:213-221.
    [87]Teixeira C A, Leal A B. Development of electronic controls for refrigerators based on supervisory control theory[J]. Automation Science and Engineering, 2008,(s):35-40.
    [88]Spiteri S. Embedded fuzzy control for reefer refrigeration systems[C]. The 10th IEEE International Conference Ona Fuzzy Systems, Scottsdale:International Journal of Refrigeration,2001:1088-1091.
    [89]Ruiz-Garcia L, Barreiro P, Rofriguez-Bermejoz J, et al. Review. monitoring the intermodal, refrigerated transport of fruit using sensor networks[J]. Spanish Journal of Agricultural Research,2007,5(2):142-156.
    [90]Dan C, Zhao B j, Han H d, et al. Design on remote diagnosis system of refri-gerated containers [J]. Knowledge acquisition and modeling,2008,(s):375-379.
    [91]Burke M. ATP Report working group[J]. Spanish Journal of Agricultural Research,2009,5(9):172-179.
    [92]Chatzidakis S K, ChatzidakisK S. Measuring procedure and heat transfer modeling of a four-compartment isothermal liquid foodstuff tank tested according to the international ATP Agreement [J]. International Journal of Refrigeration, 2007,30(3):446-453.
    [93]Ji J, Hun H, Gan W. Development on a comprehensive thermal test station of refrigerated container [J]. International Journal of Refrigeration,2009,20(5): 416-421.
    [94]IIR. IIR list of refrigeration research priorities[J]. Journal of Refrigeration,2006, 18(3):231-234.
    [95]James S J, James C, Evans J A. Modeling of food transportation systems[J]. International Journal of Refrigeration,2006,29(6):947-95.
    [96]Robert Heap. Refrigeration and food safety[C]. The 22nd International Congress of Refrigeration, Beijing:International Journal of Refrigeration,2007:.21-26.
    [97]谢如鹤,李夏苗.论我国易腐货物运输的综合发展[J].综合运输,1996,(7):8-10.
    [98]韩林.冷藏车保温车厢体制作技术及隔热材料的应用[J].商用汽车,2005,12(08):78~79.
    [99]谢如鹤,胡思继.对易腐货物在运输中干耗的研究分析[J].制冷学报,1999,(3):51~56.
    [100]谢如鹤,胡思继,罗贵秀.冷藏运输中货物干耗问题的研究[J].制冷学报,1999,(2):42-49.
    [101]谢如鹤,李绍荣,孙金萍等.冷藏链中的包装及对食品质量的影响[J].制冷学报,1997,(1):35~39.
    [102]谢如鹤.机械冷藏车装运荔枝的容许装货量[J].制冷学报,1994,(4):49~52.
    [103]邱祝强,谢如鹤,桂寿平.生鲜食品物流安全控制机理探讨[J],物流技术,2008,(09):23~25.
    [104]林朝朋,谢如鹤,许晓春,等.消费者对猪肉供应链安全风险的关注程度和信息获取渠道分析——基于韶关市消费者的调查分析[J],广东农业科学,2008,(03):100~102.
    [105]林朝朋,谢如鹤,许晓春.低温运输期间鲜切马铃薯的品质变化及其保鲜剂筛选的研究[J].西南农业学报,2008,21(3):733-736.
    [106]邹毅峰,谢如鹤,林朝朋.冷链系统安全可靠度研究[C].第六届全国食品冷藏链大会论文集,上海:中国制冷学会,2008:58~62.
    [107]罗荣武,谢如鹤.机械冷藏车运输青椒的试验分析[J].制冷学报,2006,27(2):59~61.
    [108]Xie Ruhe, Liu Haorong, Liu Guanghai, et al. Influence on Litchi'quality in different logistics conditions[J].9th EASTS Conference, Jeju, Korea,2011.6. 68-74.
    [109]曾莲.荔枝、龙眼等南亚热带水果商品流通上存在的问题和解决途径[J].中国南方果树,1996,25(3):32-33.
    [110]申江,李超,和晓楠.叶菜类蔬菜公路冷藏运输模拟实验研究[J].食品科技,2011,(5):70~73.
    [111]和晓楠.冷藏运输车流场分析及运输过程对蔬菜品质影响研究[D].天津:天津商业大学,2010.
    [112]何国庚.液氮冷藏集装箱的箱型选择与结构设计[J].低温工程,1997,(1):36-40.
    [113]刘晓晨.日本工业标准保温、冷藏汽车的保温厢体.[J].专用汽车,1997,(2):55~56.
    [114]姜涤清.公路冷藏车的设计研究[J].集装箱化,2005,(09):37~38.
    [115]阚安康,韩厚德,曹丹.开孔聚氨酯真空绝热板芯材的研究[J].绝缘材料,2008,(04):45~48.
    [116]胡永年,汪坤明,林志祥.真空绝热板的性能研究[J].家电科技,2007,(09):56~ 58.
    [117]郭靖华,智欧.表面隔膜对真空绝热板性能的影响[J].保温材料与建筑节能,2003,(07):30~32.
    [118]章镛初.冷藏保温汽车隔热车厢结构型式[J].专用汽车,986,(2):34~37.
    [119]朱光辉.谈谈隔热车厢的硬聚氨醋隔热层及其注入发泡工艺[J].专用汽车,1988,(2):54~56.
    [120]徐达.一种新型的冷藏车厢[J].专用汽车,1998,(4):37-38.
    [121]刘枫.厢式货车冷藏保温厢体的改装设计[J].物流科技,2008,(9):34~36.
    [122]陆蓓蕾,陈瑞球,黄建昌.低温流场气流组织的数值分析[J].流体机械,2006,34(10):84~86.
    [123]李锦,谢如鹤,刘广海.易腐食品冷藏运输车内温度场影响因素仿真研究[J].食品与机械,2012,28(03):190~194.
    [124]谢晶,徐倩.多温区冷藏车厢内温度场和速度场的数值模拟及优化设计[J].食品与机械,2008,24(6):88~92.
    [125]张娅妮,陈洁,陈蕴光,等.机械式冷藏汽车厢体内部气流组织模拟研究[J].制冷空调与电力机械,2007,28(2):10~13.
    [126]王以忠,胡春园,陈绍慧,等.冷藏车内温度场和湿度场的数值模拟研究[J].保鲜与加工,2010,10(3):26~29.
    [127]谢如鹤,刘广海,傅伟.送风工况对冷藏集装箱箱内温度场影响的实验与仿真研究[C].2009年学术年会论文集,天津:中国制冷学会,2009:123~129.
    [128]刘敬辉,陈江平,陈芝久.风幕对冷藏车性能影响的仿真分析和试验研究[J].流体机械.2006,34(01):52~55.
    [129]李锦,谢如鹤,刘广海,等.多温冷藏车降温特性及其影响参数研究[J].农业机械学报,2013,44(2):128~135.
    [130]方贵银.汽车空调模拟实验台的研制及其应用[J].实验技术与研究,1994,11(3):42~54.
    [131]吴宝志,方贵银.汽车空调模拟实验装置的研制[J].安徽工学院学报,1990,9(1):1-7.
    [132]刘洪胜,陈江平,陈芝久.C02轿车空调降温性能试验研究[J].汽车工程,2006,28(6):586~589.
    [133]孙淑凤,王宜义,陈流芳,等.汽车空调系统降温性能加模拟计算[J].低温与超导,2000,28(2):36~40.
    [134]王金凤.一种轿车空调的性能改进[J].上海汽车,2011,(7):16~18.
    [135]刘训海,陈仁奎,蒋能照,等.冷藏保温汽车热工性能试验室的研制[J].流 体工程,1987,58(7):53~60.
    [136]刘训海.冷藏集装箱热工性能测试装置的研制[J].上海理工大学学报,2000,24(4):356~363.
    [137]李建坤.冷藏车热工参数的确定——对“铁标”中有关热工参数规定的探讨[J].铁道车辆,1990,(9):28~32.
    [138]李建坤,欧阳仲志.冷藏车热性能的老化[J].制冷学报,1993,56(4):12~18.
    [139]刘广海,孙永才,谢如鹤,等.冷藏集装箱渗透漏气量动态性能研究[C].第七届全国食品冷藏链大会论文集,青岛:中国制冷学会,2010:173~176.
    [140]刘浩荣,谢如鹤,刘广海,等.多温区冷藏车行驶调温性能试验研究[J].制冷,2012,31(1):1-7.
    [141]章学来,吕磊磊,廖留柱.冷藏集装箱漏热性能试验研究[J].中国水运,2008,8(4):198~199.
    [142]玄哲浩,张忠进.冷藏汽车和保温汽车隔热性能的评价方法[J].专用汽车,1994,(2):12~14.
    [143]陈焕新,欧阳召文,蔡敏.空调列车运行能耗调查与分析[J].节能技术,2003,(01):18~20.
    [144]陈焕新,刘蔚巍.铁路空调客车负荷的确定[J].中国铁道科学,2002,131(05):123-127.
    [145]刘广海,谢如鹤.冷藏车热状况的模拟分析与实验研究[J].武汉理工大学学报:交通科学与工程版,2009,(04).76~82.
    [146]刘广海,谢如鹤.冷藏车热性能及能耗分析模型的建立与实验研究[J].制冷学报,2008,(06):47-53.
    [147]刘广海,谢如鹤.基于季节及品类考虑的冷藏运输能耗调查与分析[J].广西轻工业,2009,(7):135~137.
    [148]王文铭,刘晓亮.我国冷链物流能耗现状及对策研究[J].中国流通经济,2011,(10):29~31.
    [149]刘晓晨,高峰.气调保鲜冷藏车[J].重型汽车,998,(4):33~35.
    [150]杨前明,刘廷瑞,李光元.气调保鲜集装箱机组在线状态监测与自动控制[C].2007年学术年会论文集,济南:山东省制冷学会,2007:576-578.
    [151]杨前明,刘廷瑞,李光元.基于ITU总线技术的气调保鲜冷藏箱机组在线监控[J].农机化研究,2005,(3):737~740.
    [152]吕恩利,陆华忠,杨洲,等.果蔬气调保鲜运输技术发展研究[J].农机化研究,2010,(6)2:225~228.
    [153]吕恩利.果蔬气调运输保鲜环境调控机理及优化[D].广州:华南农业大 学,2007.
    [154]吕恩利,陆华忠,罗锡文,等.果蔬气调保鲜运输车的设计与试验[J].农业工程学报,2012,28(19):9~16.
    [155]吕恩利,陆华忠,韩小腾,等.气调保鲜运输车变频通风系统调控与能耗分析[J].农业工程学报,2012,28(16):248~253.
    [156]王广海,吕恩利,陆华忠,等.保鲜运输用液氮充注气调控制系统的设计与试验[J].农业工程学报,2012,28(1):255~259.
    [157]韩谓,吕恩利,陆华忠,等.液氮充注气调保鲜运输厢内环境因素间耦合关系[J].农业工程学报,2012,28(17):275~280.
    [158]许锦锋,吕恩利,陆华忠,等.液氮充注气调保鲜运输试验平台的设计[J].安徽农业科学,2012,40(4):2318~2320.
    [159]杨松夏,吕恩利,陆华忠,等.荔枝物流中保鲜技术的应用现状与分析[J].广东农业科学,2012,(16):196~199.
    [160]QC/T449-2010,保温车、冷藏车技术条件及试验方法[S].北京:中国标准出版社,2010.
    [161]郭旭峰,淘乐仁.液氮喷淋流态化速冻系统及速冻性能研究[J].工程热物理学报,2003,24(3):23~25.
    [162]李艳.液氮冷藏车喷淋冷冻冷藏性能模拟分析[D].吉林:吉林大学,2006.
    [163]Wagner S M, Boutellier R. Capabilities for managing a portfolio of supplier relationships[J]. Business Horizons,2002,(12):79-82.
    [164]GB/T 22918—2008,易腐食品控温运输技术要求[S].北京:中国标准出版社,2008.
    [165]谢如鹤,刘广海,罗贵秀,等.冷藏链中冷藏运输技术条件模拟与控制[R].北京:国家自然科学基金研究报告,2007:71-103.
    [166]郭运,钱剑锋.空调采暖双重功能住宅的屋顶保温层优化分析[J].哈尔滨商业大学学报,2009,25(5):611~616.
    [167]赵金玲,庄智,李伯军.建筑围护结构保温层经济厚度计算方法的研究[J].建筑热能通风空调,2005,24(3):65-68.
    [168]俞颐秦.保温层经济厚度分析与简化线图计算[J].河北工学院学报,1984,(2):58-66.
    [169]谢如鹤.冷藏车隔热层厚度的合理确定[J].铁道车辆,1990,16(4):39-43.
    [170]吴俊云,陈国娟,吴兆林,等.风口布置对空调车室内流动与传热影响的数值研究[J].上海理工大学学报,2007,29(4):395~398.
    [171]连之伟,王海英,陈坤荣.下送风空调气流组织设计方法[J].暖通空调, 2004,34(2):51-54.
    [172]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:51-74.
    [173]蔡敏,陈焕新.外部热环境对冷板冷藏车车体传热的影响[J].铁道车辆,2004,(3):27-29.
    [174]李夔宁,杨颖,童明伟.微型汽车空调冷负荷计算[J].重庆大学学报:自然科学版,2002,25(8):65~69.
    [175]杨昭,郁文红,张甫仁.节能建筑复合墙体的非稳态热工性能[J].天津大学学报,2004,37(11):975~979.
    [176]朱轶韵,张群,刘加平,等.西北地区居住建筑节能外墙构造热稳定性研究[J].西安理工大学学报,2011,27(1):46-50.
    [177]Moureh J, Menia N, Flick D. Numerical and experimental study of airflow in a typical refrigerated truck configuration loaded with pallets[J]. Computers and Electronics in Agriculture,2002,32(1):106-112.
    [178]Alifianov O M, Yu I, Jadze G Thermal loads identification technique for materials and structures in real time[J]. Acta Astronautica,1997,41 (3):255-265.
    [179]Ampofo F, Maidment G, Missenden J. Undergoundrailway environment in the UK Part 2:Investigation of heat load[J]. Applied Thermal Engineering,2004, 24:633-645.
    [180]Asksaka H. Development of expanded AMeDAS weather data for building energy calculation in Japan[J]. ASHRAE Trans,2000,106(2):455-465.
    [181]Huang J. The impact of different weather data on simulated Residential heating and cooling loads[J]. ASHRAE Trans,1998,104(2):516-527.
    [182]叶韵.建筑热环境[M].北京:清华大学出版社.1996:.57~58.
    [183]单寄平.空调负荷实用计算法[M].北京:中国建材工业出版社,1989:129-130.
    [184]王文君,阚安康,韩厚德,等.真空绝热板应用于寒冷地区活动房最佳位置的研究[J].新型建筑材料,2010,(2):34-40.
    [185]路延魁.空气调节设计手册[M].北京:中国建筑工业出版社,1995:73-75.
    [186]张东霞,吕恩利,陆华忠,等.保鲜运输车温度场分布特性试验研究[J].农业工程学报,2012,28(11):254~260.
    [187]Clement V, James T, Stefanie W. Transportation of fresh horticultural produce[J]. Postharvest Technologies for Horticultural Crops,2009, (2):1-24.
    [188]Tohru K. Analysis of vehicle passenger compartment ventilation using experimental and numerical model[C]. International Conference on cryogenies and Refrigeration Proceedings, Scottsdale:International Journal of Refrigeration, 1989:213-221.
    [189]Hara J, Fujitani K. Computer simulation of passenger compartment airflow[C].International Conference on cryogenies and Refrigeration Proceedings, Scottsdale:International Journal of Refrigeration,1988:213-221.
    [190]Han T. Three-dimensional navier-stokes simulation for passenger compartment cooling[J]. International Journal of Vehicle design,1989,10(2): 56-61.
    [191]Douglas W R. Simulation modeling of automobile comfort cooling requirement J]. Int. J.of Vehicle design,1975,34 (5):53-56.
    [192]Ingersoll J G. Automobile passenger compartment thermal comfort equation and compartment cool-down/warm-up calculation[C]. [J]. International Journal of Vehicle design,1992,31 (7):153-159.
    [193]龙恩深,王勇,付祥钊,等.夏季户外停车空调汽车的车内温变特性研究[J].重庆建筑大学学报,2003,25(4):49~53.
    [194]龙恩深,王勇.空调汽车停——启时车内温变特性的理论分析与实验检验[J].重庆建筑大学学报,2003,25(8):83~88.
    [195]孙淑凤,王宜义,陈流芳,等.汽车空调系统降温性能的模拟计算[J].低温与超导,2000,28(2):36-40.
    [196]刘洪胜,陈江平,陈芝久.C02轿车空调降温性能试验研究[J].汽车工程,2006,28(6):577-89.
    [197]刘广海,孙永才,谢如鹤,等.冷藏集装箱渗透漏气量动态性能研究[C].第七届全国食品冷藏链大会论文集,青岛:中国制冷学会,2010:173~176.
    [198]谢晶,徐倩,方恒和.多温区冷藏车热负荷计算的研究[J].食品与机械,2007,23(4):98~101.
    [199]蔡燧林.常微分方程[M].杭州:浙江大学出版社,2005:63~152.
    [200]段双平,张国强,彭建国,等.自然通风技术研究进展[J].暖通空调,2004,34(3):22~28.
    [201]何媛,南晓红.三维CFD模型预测热压作用下冷库门的冷风渗透率[J].农业工程学报,2008,24(6):26-30.
    [202]何佳鹏.冷库大门的流场分析[J].流体机械,1994,22(2):58-61.
    [203]何佳鹏.冷库大门的空气幕结构设计计算模型[J].南京建筑工程学院学报,1999,49(2):48~52.
    [204]杨彦宾.热压与风压耦合作用下冷库大门空气幕性能的数值研究[D].西安:西安建筑科技大学,2009.
    [205]孟岩勇,南晓红.冷库门在热压作用下冷量渗透的数值模拟[J].建筑热能通风空调,2007,26(2):41-63.
    [206]谢晶,吴天.小型冷库开门过程温度场的数值模拟[J].上海水产大学学报,2006,15(3):333-339.
    [207]孙一坚.工业通风(第三版)[M].北京:中国建筑工业出版社,1994:230-238.
    [208]张登春.旅客列车车厢内气流分布特征与环境舒适性研究[D].上海:上海大学,2009.
    [209]傅伟.冷藏集装箱的送风工况对箱内温度场的影响研究[D].广州:广州大学,2009.
    [210]Virseda P, Pinazo J M. Heat conduction in multilayer spherical products by transfer function[J].International Journal of Refrigeration,1998,21(4):285-294.
    [211]Sesttrada A C, Cleland D J. Prediction of the dynamic thermal behavior of walls for refrigerated rooms using lumped and distributed parameter models[J]. International Journal of Refrigeration,2001,24(6):272-284.
    [212]Seem J E, Klein S A, Beckman W A. Model reduction of transfer function using a dominant root method[J]. Journal of Heat Transfer,1990,(11):547-552.
    [213]陈楠,申江,邹同华.冷库温度波动频域分析[J].制冷学报,2002,(4):13-17.
    [214]陆海燕.冷库温度波动的频域分析与实验研究[D].天津:天津商学院,2004.
    [215]杨培志.冷板冷藏车整车传热系数的计算分析[J].制冷与空调,2004,4(6):53-55.
    [216]谢如鹤,欧阳仲志.铁路冷藏车传热系数的优化[J].铁道学报,1999,21(1):33~37.
    [217]李锦,谢如鹤,刘广海,等.车外综合温度条件下典型冷藏车厢内热稳定性研究[J].农业机械学报,2012,43(8):159~166.
    [218]王德彬,宋全伟.冷藏汽车隔热车厢的优化设计[J].江苏工学院学报,1993,14(2):13~18.
    [219]崔靖.专用汽车设计[M].西安:陕西科学技术出版社,1998:57~82.
    [220]胡新宇.荔枝采后生理与常温保鲜的研究[D].广州.华南理工大学,2001.
    [221]吴建生,李关荣,永良,等.荔枝采后生理与保鲜关系研究[J].食品科学,2004,25(5):186~189.
    [222]袁艳春.荔枝保鲜原理与技术[J].中国南方果树,1997,26(3):30-31.
    [223]Lin H T, Chen S J, Xi Y F. Commercial postharvest handled and storage technology of litchi fruit [J]. Chinese Society of Agricultural Engineering, 2003,19(5):130-131.
    [224]Jiang Y M. Effect of spermidine on the regulation of senescence of litchi fruit and its relation to ethylene [J]. Chinese Journal of Botany,1995,7(2):121-125.
    [225]林朝朋.生鲜猪肉供应链安全风险及控制研究[D].长沙:中南大学,2009.
    [226]霍全文.关于测定挥发性盐基总氮过程中几个问题的挥讨[J].动物检疫,1990,(35):42~43.
    [227]周全,刘红.猪肉食品安全卫生质量的管理与监控[J].中国动物检疫,2001,19(10):17~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700