超临界CO_2流体萃取黄姜中重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄姜是我国特有经济作物,其有效成分甾体皂素是合成甾体激素药物的基础原料,拥有“药用黄金”之美誉。为降低黄姜中重金属含量并保护其有效成分,本论文进行了超临界CO_2流体络合萃取法净化黄姜中Cu、Cd、Pb的工艺研究,并探讨了黄姜中重金属净化后对其有效成分的影响。主要研究内容及结果如下:
     1、黄姜中重金属Cu、Cd、Pb的含量测定
     (1)通过比较微波消解和湿法消解两种样品前处理方式发现,前者消解效果更好,速度快,试剂用量少,测定结果更准确。
     (2)通过优化仪器操作参数,建立了微波消解—火焰原子吸收和微波消解—石墨炉原子吸收测定黄姜中Cu、Cd、Pb的方法。在优化后的条件下测得黄姜中Cu含量为11.51μg/g,Cd含量为0.28μg╱g,Pb含量为3.60μg╱g。
     2、超临界CO_2流体络合萃取黄姜中Cu、Cd、Pb的方法
     (1)采用单因素试验法对络合剂、络合方式、萃取压力、温度、时间、改性剂含量等因素的影响进行了考察。试验表明,二乙基二硫代氨基甲酸钠作络合剂效果较好;其络合方式为萃取前加入到样品中密闭放置1h;各条件因素对重金属萃取率的影响在开始阶段均表现为正相关。
     (2)综合单因素试验结果,采用L_9(3~4)正交表设计试验,结果分析表明,各因素的影响程度为:萃取压力>萃取温度>萃取时间>改性剂含量。
     (3)根据正交试验结果,采用中心组合设计法(三因素三水平响应面分析)对萃取条件进行了优化,建立了重金属净化率的二次回归方程。此模型拟合性好,通过响应面分析及岭嵴分析得到了优化组合条件。结果表明,压力、温度、时间均对净化率有极显著影响。当萃取条件为压力25.54MPa,温度59℃,时间35min时,黄姜中重金属净化率达到极大值。此条件下净化率预测值为71.71%,验证值为75.10%。净化后的黄姜达到了重金属国际限量标准。
     3、重金属净化后对黄姜中有效成分的影响
     (1)超临界CO_2流体萃取法与有机溶剂萃取法对比表明,前者对黄姜中甾体皂素的提取效果更好,萃取率较高,且安全高效、工艺简单、操作温度低、无溶剂污染。
     (2)采用超临界CO_2流体萃取法提取黄姜中甾体皂素,以可见分光光度法测定其含量,得到黄姜原样品及重金属净化后样品中甾体皂素含量分别为2.03%和1.84%,超临界CO_2流体络合萃取黄姜中Cu、Cd、Pb后对其有效成分影响不大。
Dioscorea Zingiberensis C. H. Wright is an important unique economic plant, whoseactive ingredient is called sapogenins and used in the synthesis of the body hormonemedicine as the foundation raw material, which makes it called officinal gold. In order toreduce the content of heavy metals in Dioscorea Zingiberensis C. H. Wright, and protectthe active ingredient, the technology of extracting Cu, Cd, Pb by supercritical CO_2 fluid,and the influence of depuration of heavy metals on the active ingredient were investigated.The main contents and results are listed as follows:
     1. Determination of Cu, Cd, Pb in Dioscorea Zingiberensis C. H. Wright
     (1) The microwave digestion method was investigated and compared with theorganic solvent extraction method. Experimental results showed that, the former methodhad the advantages of faster speed, less usage amount of digestive dissolvent and higheraccuracy.
     (2) Microwave digestion-flame/graphite furnace atomic absorption spectrometrymethods were established for the determination of Cu, Cd, Pb in Dioscorea ZingiberensisC. H. Wright. The content of Cu, Cd, Pb was 3.60μg/g, 0.28μg/g and 11.51μg/grespectively under optimum conditions.
     2. Supercritical CO_2 fluid chelating extraction of Cu, Cd, Pb from DioscoreaZingiberensis C. H. Wright
     (1) The effects of chelating agent, chelating mode, extraction pressure, temperature,time and content of modifier on extraction yield were investigated. Experimental resultsshowed that, sodium diethyldithiocarbamate was the best used as the chelating agent forthe extraction of heavy metals. It must be mixed into the sample before extraction for 1h.Extraction pressure, temperature, time and content of modifier all had positivecorrelation with extraction yield in intial stage.
     (2) Four-factor and three-level orthogonal design was used to optimize the extractionconditions. The influence of various factors was in the order: pressure>temperature>time>content of modifier.
     (3) Based on orthogonal test, three levels of the factors were selected to the centralcomposite design experiment. The quadric regression model for the purifying rate wasestablished. The model was significantly fit well and the optimum combination wasobtained by response surface analysis and ridge analysis. Results showed that, pressure, temperature and time were all significant to the purifying rate. When the extractionparameters were composed of 25.54MPa, 59℃and 35min, the purifying rate reachedmaximum, which was verified to 75.10% and predicted to 71.71%. After depuration, thecontent of heavy metals in Dioscorea Zingiberensis C. H. Wright reached the limitedquantity of international standard.
     3. Influence of depuration of heavy metals in Dioscorea Zingiberensis C. H.Wright on the active ingredient
     (1) Supercritical CO_2 fluid chelating extraction was investigated and compared withthe organic solvent extraction method. Experimental results showed that, the formermethod had the advantages of high recoveries, safety, efficiency, simple crafts, lowoperating temperature and clean.
     (2) The ultraviolet spectrophotometry method as determining the content ofsapogenins was used to evaluate the change of the quality in Dioscorea Zingiberensis C.H. Wright before or after supercritical CO_2 fluid extraction. The content of sapogeninswas 2.03% and 1.84% respectively in original and depurative sample, which showed thatdepuration of Cu, Cd, Pb in Dioscorea Zingiberensis C. H. Wright by supercritical CO_2fluid extraction had little influence on the active ingredient.
引文
1.陈楚良.超临界流体萃取法.上海环境科学,1994,13(4):19-21
    2.陈钧,王俊,杨克迪,欧阳臻.超临界CO_2萃取薯蓣皂苷元的研究.江苏大学学报(自然科学版),2003,24(3):1-4
    3.陈俊英,韩志慧,刘国际,韩秀丽,马晓建.黄姜中薯蓣皂素的制取方法.农产品加工(学刊),2005(1):22-24
    4.陈维杻 编著.超临界流体萃取的原理和应用.北京:化学工业出版社,1998
    5.程霜,崔庆新,冯泽静.玉米胚芽油的超临界CO_2萃取.中国粮油学报,2000,15(6):29-33
    6.崔洪友,沈忠耀,王涛.超临界CO_2鳌合萃取金属离子及其影响因素.化工环保,2000,20(4):14—19
    7.崔洪友,王涛,关艳芬,沈忠耀.重金属的超临界络合萃取动力学.化工学报,2001,52(9):829-833
    8.都述虎.RP—HPLC法测定穿龙薯蓣总皂甙中薯蓣皂甙元的含量.中国药科大学学报,2001,32(1):37-40
    9.段先志,夏红英,罗平.夹带剂性质对超临界二氧化碳萃取的影响.日用化学工业,2004,34(1):40-43
    10.高小茵,黄齐林,白红梅,胡秋芬,杨光宇.微柱高效液相色谱法测定环境样品中钴镍铜锌钒.冶金分析,2006,26(1):6-9
    11.葛发欢,史庆龙,林香仙,童新华,李青,黄芳.超临界CO_2从黄山药中萃取薯蓣皂素的工艺研究.中草药,2000,31(3):181-183
    12.何月娥.超临界提取技术在食品工业中的应用现状及展望.包装与食品机械,1994,12(1):26
    13.黄进,张肇煜,李林,张声华.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究.农业工程学报,200l,17(6):119—122
    14.黄文哲,段金廒,杨柳.不同产地胡芦巴中薯蓣皂甙元的含量测定,中国中药杂志,1999,24(10):595-596
    15.黄志勇,杨妙峰,陈艳红,刘海波,陈成祥,庄峙厦,王小如.茶叶和蔬菜中铅的同位素稀释电感耦合等离子体质谱的测定.分析实验室,2005,24(6):65-68
    16.姜春燕,王继英,仇满德,张荣珍,张虎,周建科.离子色谱法同时测定几种金属离子.理化检验:化学分册,2006,42(8):653-654
    17.江天生.旋光法测定薯蓣皂甙元含量.吉首大学学报,1997,18(2):63-64
    18.郎庆勇,魏建谟.超临界流体萃取技术的应用及展望.岩矿测试,1998,17(3):216-222
    19.李力,陈宇红.黄芪皂甙提取与含量测定方法研究.福建分析测试,2004,13(3-4):2006-2010
    20.李仲瑞.石墨炉原子吸收光谱测定中成药中重金属含量.江苏药学与临床研究,2002,10:22-23
    21.廖传华,黄振仁.超临界CO_2流体萃取技术—工艺开发及其应用.北京化学工业出版社,2004
    22.廖传华,黄振仁.超临界CO_2萃取技术与中药现代化.中成药,2006,28(1):110-113
    23.刘军,王涛,崔洪友,沈忠耀.超临界络合萃取铅的研究进展.环境污染治理技术与设备,2002,3(5):7-11
    24.刘玉峰,杜宝中,姚秉华.恒电流库仑法测定工业废水中Cr(Ⅵ)的方法研究.分析科学学报,2005,21(4):411-413
    25.鲁鑫焱,赵怀清.薯蓣皂苷元的提取与分离分析方法.沈阳药科大学学报,2003,20(6):465-468
    26.马敬中,陈长水,江洪,李雪刚.黄姜中皂素的提取及含量分析.广西师范大学学报,2000,111-113
    27.苗健,高琦,许思来.微量元素与相关疾病.河南医科大学出版社,1999,4:171-172
    28.文震,党志,余德顺,尚爱安.超临界CO_2流体萃取重金属的研究进展.化学进展,2001,13(4):310-314
    29.任慧,丁一刚,王存文,吴元欣,李定或.超临界CO_2络合萃取去除乳酸钙中痕量金属.精细石油化工,2005,(2):56-58
    30.萨嘎拉,乌云,照日格图.微波消解/等离子体发射光谱法测定蒙药敖西根-18中的多种元素含量.化学世界,2007,2:278-280
    31.单振芬.微量元素与人体健康.微量元素健康研究,2006,23(3):66-67
    32.石艳霞.银屑灵冲剂中薯蓣皂甙元的重量测定法.中医药动态,1993,增:77-79
    33.宋发军.甾体药物源植物薯蓣属植物中薯蓣皂甙元的研究及生产状况.天然产物研究与开发,2002,14(3):89-93
    34.王锋.示波极谱法测定饮料中铅和镉.理化检验:化学分册,2005,41(3):204-205
    35.王少芬,魏建谟.超临界流体萃取技术在核废料处理方面的应用.应用化学,2003,20(5):409-414
    36.韦建荣,董讯.重楼中薯蓣皂甙元的RP—HPLC测定.色谱,1999,17(5):498-499
    37.吴守国,王莉.Fenton试剂预处理溶出伏安法测定印染废水中的铅.分析化学, 2005,33(6):896-896
    38.谢连宏.氢化物发生原子吸收光谱法测定食品中的铅.理化检验:化学分册,2005,41(5):334-335,340
    39.徐江滔,汤谷乎,吴敏,邹韵.薄层扫描法测定麦冬皂甙成分.药物分析杂志,1997,17(3):164—166
    40.于恩平,朱美文,方之蓉,李焕文.关于超临界萃取过程中使用夹带剂的研究.化学工程,1989,17(4):21-24
    41.袁道强.毛细管电泳法测定奶粉中的镉、铅和铜.食品科学,2002,23(10):111-114
    42.张向和.火焰原子吸收分光光度法测定总铬.环境工程,2004,22(6):76-77
    43.曾宇崇,林章金.原子荧光光谱法测定芦荟中铅和镉.盐矿测试,2005,24(2):157-158
    44.朱海.超临界流体萃取技术与环境保护.化工环保,1994,14(1):12-17
    45. Addleman R S, Wai C M. Distribution coefficients of UO_2(NO_3)_2·2TBP in supercritical fluid CO_2 as determined by on-line time resolved laser induced fluorescence. Radiochim Acta, 2001, 89:27-34
    46. Arancibia V, Valderrama M, Silva K, Tapia T. Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography. J Chromatog B, 2003, 785(2): 303-309
    47. Arancibia V, Alarcon L, Segura R. Supercritical fluid extraction of cadmium as Cd-oxine complex from human hair: Determination by square wave anodic or adsorptive stripping voltammetry. Analytica Chimica Acta, 2004, 502(2): 189-194
    48. Arancibia V, Lopez A, Zuniga M C, Segura R. Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry. Talanta, 2006, 68(5): 1567-1573
    49. Ashraf-Khorassani M, Combs M T, Taylor L T. Solubility of metal chelates and their extraction from an aqueous environment via supercritical CO_2. Talanta, 1997, 44(5): 744-763
    50. Bφwadt S, Hawthorne S B. Supercritical fluid extraction in environmental analysis. J Chromatogr B, 1995, 703:549-571
    51. Cross W, Akgerman A, Erkey C. Determination of metal-chelate complex solubilities in supercritical carbon dioxide, lnd Eng Chem Res, 1996, 35(5): 1765-1770
    52. Du S, Cui Z. Liquid Chromatogr&Related Technol, 2005, 28(10): 1487-1495
    53. El-Fatah S A, Goto M, Kodama A, Hirose T. Supercritical fluid extraction of hazardous metals from CCA wood. Supercrit Fluids, 2004, 28(1): 21-27
    67. Lin Y, Wai C M. Supercritical fluid extraction of lanthanides with fluorinated p-diketones and tributyl phosphate. Anal Chem, 1994,66(13): 1971-1975
    
    68. Lin Y, Smart N G, Wai C M. Supercritical fluid extraction and chromatography of metal chelate and organometallic compounds. Trends Anal Chem, 1995, 14(3): 123-133
    
    69. Lin Y, Smart N G, Wai C M. Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents. Environ Sci Technol, 1995,29(10): 2706-2708
    
    70. Lin Y, Liu C, Wu H, Yak H K, Wai C M. Supercritical fluid extraction of toxic heavy metals and uranium from acidic solutions with sulfur-containing organophosphorus reagents. Indust Eng Chem Res, 2003, 42(7): 1400-1405
    
    71. Liu J, Wang W, Li G. A new strategy for supercritical fluid extraction of copper ions. Talanta, 2001, 53(6): 1149-1154
    
    72. Liu Y, Lopez-Avila V, Alcaraz M, et al. Determination of metals in solid samples by complexation-supercritical fluid extraction and gas chromatography-atomic emission detection. Chromatogr Sci, 1993, 31: 310-316
    
    73. Murphy J M, Erkey C. Copper(II) removal from aqueous solutions by chelation in supercritical carbon dioxide using fluorinated P-diketones. Ind Eng Chem Res, 1997, 12(36): 5371-5376
    
    74. Shamsipur M, Ghiasvand A R, Yamini Y. Extraction of uranium from solid matrices using modified supercritical fluid CO2. Supercrit Fluids, 2001, 20(2): 163-169
    
    75. Shimizu R, Sawada K, Enokida Y, Yamamoto I. Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps.Supercrit Fluids, 2005, 33(3): 235-241
    
    76. Shu X, Gao Z, Yang X. Supercritical fluid extraction of sapogenins from tubers of Smilax china. Fitoterapia, 2004, 75: 656-661
    
    77. Smart N G, Carleson T E, Elshani S, Wang S, Wai C M. Extraction of toxic metals using supercritical fluid carbon dioxide containing organophosphorus reagents. Ind Eng Chem Res, 1997,36(5): 1819-1826
    
    78. Tai C Y, You G S, Chen S L. Kinetics study on supercritical fluid extraction of zinc(II) ion from aqueous solutions. Supercrit Fluids, 2000, 18(3): 201-212
    
    79. Takeshita Y, Sato Y, Nishi S. Study of extraction of metals from CCA-treated wood with supercritical CO2 containing acetylacetone: extraction of Cu by continuous addition of acetylacetone. Ind Eng Chem Res, 2000, 39(12): 4496-4499
    
    80. Takeshita Y, Sato Y, Nishi S. A study of feasibility of extracting metals from CCA-treated woods by using supercritical carbondioxide. Waste Manage Res, 2000, 11(2): 94-100
    
    81. Toews K L, Shroll R M, Wai C M, Smart N G. pH-defining equilibrium between water and supercritical CO2. Influence on SFE of organics and metal chelates. Anal Chem, 1995, 67 (22): 4040-4043
    
    82. Tomioka O, Enokida Y, Yamamoto I. Solvent extraction of lanthanides from their xides with TBP in supercritical carbon dioxide. Nucl Sci Technol, 1998, 35(7): 515-516
    
    83. Tomioka O, Enokida Y, Yamamoto I, Takahash T. Cleaning of materials contaminated with metal oxides through supercritical fluid extraction with CO2 containing TBP. Progress in Nuclear Energy, 2000, 37(1-4): 417-422
    
    84. Trofimov T I, Samsonov M D, Kulyako Y M, Myasoedov B F. Comptes Rendus Chimie, 2004, 7(12): 1209-1213
    
    85. Wai C M, Lin Y, Brauer R, Wang S, Beckert W F. Supercritical fluid extraction of organic and inorganic mercury from solid materials. Talanta, 1993, 40(9): 1325-1330
    
    86. Wai C M, Wang S, Liu Y, Lopez-Avila V, Beckert W F. Evaluation of dithiocarbamates and β-diketones as chelating agents in supercritical fluid extraction of Cd, Pb and Hg from solid samples. Tanlanta,1996, 43(12): 2083-2091
    
    87. Wai C M, Wang S.Supercritical fluid extraction: metal as complexes. J Chromatogr A, 1997, 785(1-2): 369-383
    
    88. Wang J, Marshall W D. Recovery of metals from aqueous media by extraction with supercritical carbon dioxide. Anal Chem, 1994,66: 1658-1663
    
    89. Wang S, Elshani S, Wai C M. Selective extraction of mercury with ionizable crown ethers in supercritical carbon dioxide. Anal Chem, 1995, 67(5): 919-923
    
    90. Wenclawiak B W, Hees T, Zoller C E, Kabus H P. Rhodium and palladium P-diketonate determination with on-line supercritical fluid extraction-high performance liquid chromatography via solid phase extraction. Anal Chem, 1997, 358(4):471-474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700