用户名: 密码: 验证码:
厌氧—兼氧—好氧废水处理系统中水解酶的活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在废水生物处理中,微生物对废水中污染物质的降解和转化都是在酶的催化作用下进行的一系列复杂的生化反应过程,因此研究废水处理系统中微生物酶活性及其作用对于深入反应系统机理,提高废水处理效率等有着十分重要的意义。为研究酶的活性分布,环境因素对酶活性的影响,氮盐、磷盐对酶活性的影响,酶的活性与出水水质的关系以及各种酶活性的变化,本课题选取β-葡萄糖苷酶、碱性磷酸酶、亮氨酸氨基肽酶和脂肪酶四种水解胞外酶作为研究对象,对厌氧-缺氧-好氧废水生物处理系统中上述酶的活性作了较为深入的研究。
     分析酶的活性分布试验表明,绝大部分胞外酶是与细胞相连或固定在细胞外多聚基质里,而不是被微生物以自由、溶解状态释放到溶液中。通过环境因素对酶的影响的研究得,β-葡萄糖苷酶、碱性磷酸酶、亮氨酸氨基肽酶和脂肪酶在60℃有最高酶活;偏碱性条件(pH=8~9)有利于酶促反应的进行;酶活随底物浓度的增加而增大;通常抑制剂含量越大其抑制作用越强,但对各待测酶的抑制效果不尽相同;β-葡萄糖苷酶、亮氨酸氨基肽酶和脂肪酶在抑制剂存在下24h内活性下降最多,而磷酸酶却较稳定,其活性几乎不受抑制剂作用时间的影响。超声波对酶促反应起加速作用,在超声作用功率为0W-480W的范围内,待测四种胞外水解酶的活性都随超声功率的增强而升高,在超声作用时间为0~10min的时间内,酶活性随时间持续增强。对氮、磷对酶活性的影响研究发现,对于β-葡萄糖苷酶和脂肪酶,较高浓度的NO2-、NO3-和PO43-(浓度大于100mg/L)有助于提高酶的活性;对于碱性磷酸酶,NO2的存在抑制了碱性磷酸酶的活性,NO3-对碱性磷酸酶的活性起激活作用,较高浓度的PO43-能够提高酶促反应速度,增大酶的活性;对于亮氨酸氨基肽酶,较低浓度的NO2-、NO3和PO43-(浓度小于100mg/L)有利于酶活性的发挥。由此得出控制相关作用条件可最大限度地发挥酶的作用性能,提高微生物活性。
     对酶的活性分析还发现,酶活性可以有效地反映微生物的活性,可考虑用其代替MLSS、MLVSS或VSS/SS来表征微生物活性。β-葡萄糖苷酶和脂酶的活性直接影响COD和TOC的去除,β-葡萄糖苷酶的活性大小及其水解作用对废水中有机物的降解以及系统COD去除性能至关重要。碱性磷酸酶活性越大,总磷的去除率越高,反之亦然。碱性磷酸酶的活性与总磷去除率表现出了显著的相关性。亮氨酸氨基肽酶的活性都随氨氮和总氮去除率的提高而增大。各反应池中相对稳定的碱性磷酸酶、亮氨酸氨基肽酶和脂酶的活性大小说明系统中酶的消耗与合成达到了一个动态平衡。
Microbial degradation and transformation of pollutants in wastewater are a series of complicated biochemical reaction process as conducted by enzyme. It is significant that study on enzymatic activities in wastewater biotreatment system contributes to going deep into reaction mechanism and improving removal efficiency. In order to kown the distribution of enzymatic activities, the environmental factors and NO_2~-, NO_4~-, PO_4~(3-) effect on enzymes, the relation between enzymatic activities and treated water quality and comparation of enzymatic activities, four extracellular hydrolysis enzymes were selected in this study, i. eβ-glucosidase, alkaline phosphatase, leucine-aminopeptidase and lipase, to investigate their activities and action in an anaerobic-anoxic-aerobic system.
     The study on the distribution of enzymatic activities showed that most of extracellular enzymes were associated with cells or immobilized in extracellular polymeric substrates, rather than releasing to the solution as a free, soluble state. The environmental factors effect on enzymes study showed the highest enzymatic activity appeared at 60℃. Enzymatic activities were accelerated under alkaline condition (pH=8-9) and increased with increase of substrate concentration. Higher inhibitor concentration induced to a better prohibitive effect, but inhibitory effect was different for each enzyme. Inhibitor decreased the enzymatic activities ofβ-glucosidase, leucine-aminopeptidase and lipase after 24 hours. However, the activity of alkaline phosphatase was observed to be quite stable. Ultrasonic irradiation accelerated the enzymatic catalys. Enzymatic activities increased with increase of ultrasonic power within 0-480W, and increased with increase of ultrasonic process time within 0-10min. The study on enzymatic stability found that forβ-glucosidase and lipase, a higher NO_2~-, NO_3~- and PO_4~(3-) concentration (more than 100mg/L) conduced to increase enzymatic activities. For alkaline phosphatase, NO_2~- inhibited its activity, but NO_3~- advanced its activity, high PO_4~(3-) concentration (more than 100mg/L) increased enzymatic activity. For leucine-aminopeptidase, low concentration of NO_2~-, NO_3~- and PO_4~(3-) (less than 100mg/L) resulted in increases of enzymatic activities. Thus, high enzymatic activities were expected to obtain through controlling the related conditions.
     The study on enzymatic activities showed that, the enzymatic activities could be as an indicator to reflect the microbial activity instead of MLSS, MLVSS and VSS/SS. The enzymatic activity ofβ-glucosidase and lipase were correlated with COD, TOC removal, and organic compound degradation in the system. A higher alkaline phosphatase activity, a higher TP removal was obtained, vice versa. Alkaline phosphatase activity was related to TP removal notably. Similar to alkaline phosphatase, higher leucine-aminopeptidase activity, higher NH_3-N and TN removal was obtained, vice versa. The stable alkaline phosphatase, leucine-aminopeptidase and lipase activities were found in each reactor could be proposed that an equilibration existed between enzyme consumption and production at steady state.
引文
[1]周群英,高廷耀.环境工程微生物学.北京;高等教育出版社.2000;82-83.
    [2]任南琪,马放,杨基先等.污染控制微生物学.哈尔滨;哈尔滨工业大学出版社.2002;84-85.
    [3]夏北成.环境污染物生物降解.北京;化学工业出版社.2003;43-44.
    [4]孙兰英,刘娜,孙立波.现代环境微生物技术.北京;清华大学出版社.2005;325.
    [5]李晓燕,张元勤,刘志昌等.一种高灵敏度测定血红蛋白的荧光分析法.分析化学;2005.33(1);54-56.
    [6]胡学智,史济平.旋光法测定葡萄糖异构酶力.微生物学通报;1982.1(1);41-43.
    [7]陈守文,陈九武,赵山.利用黑曲霉呀葡萄糖苷酶改善葡萄酒的风味.中国酿造;1993.20(3);17-19.
    [8]江昌俊,李叶云.茶叶中β-葡萄糖苷酶活性测定条件的研究.安徽农业大学学报;1999.26(2);212-215.
    [9]Mateo J J,Stefano R D.Description of the β-glucosidase activity of wine yeasts.Food Microbiology;1997.14(5);583-591.
    [10]Gunata Z,Dugelay I,Vallier M J,etc.Multile forms of glycosidases in an enzyme preparation from Aspegillus niger.partial characterization of P-glucosidase.Enzyme MicrobTechnol;1997.21(3);39-44.
    [11]孙宏丹,孟秀香,贾莉等.微生物脂肪酶及其相关研究进展.大连医科大学学报;2001.23(4);292-295.
    [12]Paavilainen S,Helisto P,Korpela T.Conversion of carbohydrates to organic acids by alkaliphilic bacilli.J Fermentation and Bioengineering;1994.78(3);17-222.
    [13]彭喜春,彭志英.β-葡萄糖苷酶的研究现状及应用前景.江苏食品与发酵;2001.12(4);22-25.
    [14]许晶,张永忠,孙艳梅.β-葡萄糖苷酶的研究进展.食品研究与开发;2005.26(6);183-185.
    [15]杨阳,任大明.黑曲霉β-葡萄糖苷酶稳定性的研究.饲料营养;2006.20(5);22.
    [16]Fikret K,Heitmann J A,Joyce T W.Effect of shear fields on hemicellulase binding to pulp fibers.Chem Technol;1996.45(1);23-31.
    [17]Barton S,Bullock C.The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance.Enzyme and Micro-bial;Technology,
    1996.18(3);190-194.
    [18]Ateqad N,Iqbal J.Indian.J Biochem Biophys;1985.22(3);190-192.
    [19]Sakakibara M,Wang D,Takahashi R.Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by inverses.Enzyme Microb Technol;1996.18(6);444.
    [20]Vargas L H M,Piao A C S,Domingos R N,etc.Ultrasound effects on invertase from a sperg illusniger.World Journal of Microbiology& Biotechnology;2004.20(2);137-142.
    [21]张富新,锦屏,林强.用超声处理提取皱胃酶的实验研究.农业工程学报;2004.20(3);153-156.
    [22]肖贵平.瓜蛋白酶超声法提取工艺及其酶学性质.福建农林大学学报;2005.34(3);318-323.
    [23]Ertugay M F.Yuksel Y,Sengul M.The effect of ultrasound on lactoperoxidase and alkaline phosphatase enzymes from milk.Milchwissenschaft;2003.58(11-12);593-595,33.
    [24]Raviyan P,Zhang Z,Feng H.Ultrasonication for tomato pectin-methylesterase inactivation;effect of cavitation intensity and temperature on inactivation.Journal of Food Engineering;2005.70(2);189-196.
    [25]Zhong M T,Ming X W,Su P W,etc.Effects of ultrasound and additives on the function and structure of trypsin.Ultrasonic Sonochemistry;2004.(11);399-404.
    [26]Kashkooli H A,Rooney J A,Roxby R.J Acount Soc Am;1980.87(5);1798-1801.
    [27]林建城.酶在食品工程、轻工业和环境保护上的应用分析.莆田学院学报;2005.12(2);17-20.
    [28]上海畜牧办.畜禽养殖污水治理达标排放新技术.河北畜牧兽医;2005.21(9);48.
    [29]苏振华.酶在制浆造纸废水处理中的应用.上海造纸;2005.36(2);47-50.
    [30]李晓敏,万金泉,陈德强等.碱性脂肪酶法脱墨废水处理的初步研究.中国造纸;2006,25(5);13-15.
    [31]许燕滨,杨汝德,刘鸿等.极端酶的稳定性及其在废水处理中的应用.化工环保;2001.21(1);21-24.
    [32]杨红红,贺启环.嗜热菌好氧处理焦化厂含酚氰废水的研究.污染防治技术;1998.11(1);40-42.
    [33]周群英,王士芬.含酚废水高温生物处理效果的研究.城市环境与城市生态;1998.11(2);6-9.
    [34]高铭木.利用真菌菌丝生长法去除废水中重金属之研究.第2届海峡两岸环境保护学术研讨论文集;84-97.
    [35]Shann H S S.欧洲的纺织生物技术——废水中染料的微生物降解.纺织导 报;2006.6;85-86.
    [36]Raunkjar K,Hvitved-Jacobsen T,Nielsen P H.Measurement of pools of protein,carbonydrate and lipid in domestic wastewater.Water Res;1994.28;251-262.
    [37]Nielsen P H,Roslev P,Dueholm T,etc.Microtrix parvicella,a specialize lipid consumer in anaerobic-aerobic activated sludge plants.Water Sci Tech;2002.46;73-80.
    [38]Fralund B,Palmgren R,Keiding K,etc.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res;1996.30;1749-1758.
    [39]Gessesse A,Dueholm T,Petersen S B,etc.Lipase and protease extraction from activated sludge.Water Res;2003.37;3652-3657.
    [40]Whiteley C,Pletschke B,Rose P,etc.Specific sulphur metabolities stimulate β-glucosidase activity in an anaerobic sulphidogenic bioreactor.Biotech Lett;2002.24;1509-1513.
    [41]Whiteley C G,Heron P,Tschievhunge S,etc.The enzymology of sludge solubilisation utilising sulphate-reducing systems;properties of proteases and phosphatases.Enzyme Microb Tech;2002.31;419-424.
    [42]Watson S D,Akhurst T,Whiteley C G,etc.Primary sludge floc degradation is accelerated under biosulphidogenic conditions;enzymological aspects.Enzyme Microb Tech;2004.34;595-602.
    [43]Goel R,Mino T,Satoh H,etc.Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor.Water Res;1998.32;2081-2088.
    [44]Goel R,Mino T,Satoh H,etc.Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor condition.Water Sci Tech;1998.37;335-343.
    [45]Niemi R M,Vepsalainen M.Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils.J Microbiol Meth;2005.60(2);195-205.
    [46]Barjenbruch M,Kopplow O.Enzymatic,mechanical and thermal pre-treatment of surplus sludge.Adv Environ Res;2003.7;715-720.
    [47]Czerska B,Miksch K,Matsche N,etc.Application of enzymatic activity measurements to biological phosphate removal from wastewater.Water Sci Technol;1997.36;87-95.
    [48]李远华.β-葡萄糖苷酶的研究进展(综述).安徽农业大学学报;2002.29(4);421-425.
    [49]魏复盛,寇洪茹,洪水皆等.水和废水监测分析方法.北京;中国环境科学出版社,1989;252-278.
    [50]Confer D R,Logan B E.Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater culture.Water Res;1998.32(1);31-38.
    [51]Richards S R,Hastewell C,Davis M.The comparative examination of 14 activated-sludge plants using enzymatic techniques.Wat Pollut Control;1984.83;300-313.
    [52]马放,冯玉杰,任南琪.环境生物技术.北京;化学工业出版社,2004;54-55.
    [53]Chrost R J.Characterization and significance of β-glucosidase activity in lake water Limnol Oceanogr;1989.34(4);660-672.
    [54]周东美,郑春荣,陈怀满.镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究.土壤学报;2002.39(1);29-36.
    [55]Floros J D,Liang H.Acoustically aspsisted diffusion through membranes and biomaterials.Food Technol;1994.48;79-84.
    [56]黄卓烈.超声波对酵母过氧化氢酶及多酚氧化酶活性的影响.中国生物工程杂志;2003.23(4);89-93.
    [57]朱国辉,黄卓烈,陈小丽.超声波对菠萝果蛋白酶活性和光谱的影响.应用声学;2003.22(6);10-14,38.
    [58]陈小丽,黄卓烈,朱国辉.超声波对淀粉酶催化活性的影响.华南农业大学学报;2005.26(1);76-79.
    [59]马歌丽,董文惠,张勇等.超声波对脂肪酶酶学特性的影响.现代食品科技;2007.23(8);17-19.
    [60]朱少娟.超声波加速胰蛋白酶反应及其机理的探讨.江南大学;2004.14-15.
    [61]Nybroe O,J0rgensen P E,Henze M.Enzyme activities in waste water and activated sludge.Water Res;1992.26(5);579-584.
    [62]Frolund B,Griebe T,Nielsen PH.Enzymatic activity in the activated-sludge floc matrix.Appl Microbiol Biot;1995.43(4);755-761.
    [63]Cadoret A,Conrad A,Block J-C.Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludge.Enzyme Microb Technol;2002.31(1-2);179-186.
    [64]Li Yin,Chrost R J.Microbial enzymatic activities in aerobic activated sludge model reactors.Enzyme Microb Technol;2006.39(4);568-572.
    [65]Li Yin,Chrost R J.Enzymatic activities in petroleum wastewater purification system by an activated sludge process.J.Microb.Biotechnol;2006.16(2);200-204.
    [66]Reichardt W.Catalytic mobilization of phosphate in lake water and by Cyanophyta.Hydrobiolgia;1971.38;377-394.
    [67]Wynne D,Kaplan B,Berman T.Phosphatase activities in lake Kinneret phytoplankton In;Chrost R J(editor),Microbial enzymes in aquatic environments.Springer-Verlag,New York;1991.220-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700