化学修饰电极的研制及其在分析化学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对化学修饰电极的类型、制备方法以及其应用价值,尤其是在分析化学中的应用作了比较详细的评述,在此基础上,以碳纳米管、4-氨基苯甲酸、巯基乙酸、铁氰化物等修饰材料在电极表面构建新的界面,并对它们的电化学性质和应用进行了研究。主要内容如下:
     1.多壁碳纳米管修饰玻碳电极伏安法测定氯霉素
     将纯化后的碳纳米管分散于无水乙醇中,并以此为修饰剂,制备出相应的修饰电极,研究了氯霉素(CAP)在该修饰电极上的电化学行为,发现在pH = 2.0的0.1 mol/L KCl-HCl底液中,CAP在该修饰电极上有一灵敏的还原峰(Ep = -0.36 V vs.Ag/AgCl),峰电流与CAP浓度成正比,线性范围为6.0×10-6 ~ 2.7×10-4 mol/L,检测限达3.0×10-6 mol/L。该方法灵敏、准确,用于模拟样品和实际样品的测定,结果满意。
     2.铁氰化物膜在巯基乙酸修饰金电极上的制备及其在电分析化学中的应用研究通过层层组装的方法,将金属盐(Ni2+、Co2+)和[Fe(CN)6]3-交替沉积在巯基乙酸功能化的金电极表面。制备了铁氰化物多层膜修饰电极,用循环伏安法研究了该多层膜的电化学行为,结果表明膜均匀增长,峰电流随膜层数的增加而增加。该修饰电极对一价金属离子Na+,K+和NH4+具有选择性响应,尤其对K+存在准能斯特响应;而且对抗坏血酸和S2O32-体系的氧化具有良好的电催化作用。所制备的电极均具有良好的稳定性。
     3.亚甲基蓝和纳米金共修饰电极的研制及其对甲醛的电催化氧化在玻碳电极上共价键合一层4-氨基苯甲酸,构建负电荷界面,然后通过静电作用沉积一层阳离子电子媒介体亚甲基蓝(MB),再通过金?硫、金?氮共价键合作用和静电吸附作用自组装一层纳米金(nano-Au),由此制备了纳米金/亚甲基蓝/4-氨基苯甲酸修饰电极(nano-Au/MB/4-ABA/GC)。在碱性介质中,该电极对甲醛有较好的催化氧化作用,使甲醛在+0.13 V和+0.28 V处出现两个氧化峰,可以根据+0.13 V处的氧化峰测定甲醛的含量,该法测定甲醛的线性范围为10 ~ 125 mg/L,检出限0.5 mg/L。
This article described in detail the types, preparation methods and applicable value of modified electrodes, especially in the field of analytical chemistry. Using functional material like carbon nanotubes, 4-Aminobenzoic acid, mercaptoacetic acid, metal hexacyanoferrates etc. as the modified agents, new interfaces were constructed at the electrode surface. Electrochemical behaviors and their applications of the resulting modified electrodes were studied. The main research work was as follows:
     1. Voltammetric determination of chloramphenicol using glassy carbon electrode modified with multi-wall carbon nanotubes
     Carbon nanotube was purified and dispersed in anhydrous alcohol, then as the modified material, it was dipped on the glassy carbon electrode to prepare chemical modified electrode. A sensitive electrochemical method was developed for determination of chloramphenicol (CAP) using a glassy carbon electrode modified with multi-wall carbon nanotubes (MWNTs) film. In 0.1 mol/L KCl-HCl solution of pH 2.0. A sensitive cathodic peak of CAP on the MWNTs modified electrode was obtained at around -0.36 V (vs. Ag/AgCl). Under the optimum conditions, the reduction peak current was linearly proportional with the concentration of CAP over the range of 6.0×10-6 to 2.7×10-4 mol/L with a detection limit of 3.0×10-6 mol/L. The proposed method is sensitive and accurate, and can be applied to determine CAP in simulated samples and real samples with satisfactory results.
     2. Assembly of metal hexacyanoferrates films immobilized on mercaptoacetic acid modified gold electrode and their applications in electroanalytical chemistry An electroactive metal hexacyanoferrates (MHCF, M=Ni2+ or Co2+) films through layer-by-layer assembly based on electrostatic attraction on the mercaptoacetic acid (MA) modified gold electrode. Experiments showed that the modified electrode exhibited selected response to these ions and exhibited a near-Nernstian response to K+. What’s more, it could catalyze the oxidation of AA and S2O32- in KCl solution. All these electrodes prepared exhibited good stability.
     3. Electrocatalytic oxidation of formaldehyde on methylene blue and nano-Au modified glassy carbon electrode
     4-Aminobenzoic acid (4?ABA) was covalently grafted on a glassy carbon electrode (GCE) to form a negatively charged surface, and cationic methylene blue was linked by electrostatic adsorption as an electron transfer mediator. The nano-Au was assembled on the electrode was linked by Au?S and Au?N covalent bond and electrostratic adsorption. The electrode had better catalytic oxidation to the formaldehyde (HCHO) in the alkalinemedia. The HCHO appeared two oxidation peaks at +0.13 V and +0.28 V, the former oxidation peak used to determine the concentration of HCHO range of 10 ~ 125 mg/L with a detection limit of 0.5 mg/L.
引文
[1] Ming Wen, Haiquan Qi, Wengang Zhao, Juan Chen et al., Phase transfer catalysis: Synthesis of monodispersed FePt nanoparticles and its electrocatalytic activity, Colloids and Surfaces A, 2008, 312(1): 73-78
    [2] Yiting Xu, Xiaoliang Peng, Haitao Zeng et al., Study of an anti-poisoning catalyst for methanol electro-oxidation based on PAn–C composite carriers, Comptes Rendus Chimie, 2008, 11(1-2): 147-151
    [3] Zhaoyue Liu, Kai Pan, Min Liu et al., Al2O3-coated SnO2/TiO2 composite electrode for the dye-sensitized solar cell, Electrochim. Acta, 2005, 50(13): 2583-2589
    [4] Chun Li, Tsukasa Hatano, Masayuki Takeuchi et al., Facile design of poly(3,4-ethylenedioxythiophene)-tris(2,2′-bipyridine)ruthenium (II) composite film suitable for a three-dimensional light-harvesting system, Tetrahedron, 2004, 60(37): 8037-8041
    [5] Kyung-Won Park, You-Jung Song, Jong-Min Lee et al., Influence of Pt and Au nanophases on electrochromism of WO3 in nanostructure thin-film electrodes, Electrochem. Commun., 2007, 9(8): 2111-2115
    [6] Yin-Hou Chen, Jau-Yann Wu and Yi-Chang Chung, Preparation of polyaniline-modified electrodes containing sulfonated polyelectrolytes using layer-by-layer techniques, Biosensors and Bioelectronics, 2006, 22(4): 489-494
    [7] Rahul M. Kotkar, Purvi B. Desai and Ashwini K. Srivastava, Behavior of riboflavin on plaincarbon paste and aza macrocycles based chemically modified electrodes, Sens. Actuat. B, 2007, 124(1): 90-98
    [8] Nianjun Yang, Xiaoxia Wang and Qijin Wan, Silver nucleation on mercaptoacetic acid covered gold electrodes, Electrochim. Acta, 2007, 52(14): 4818-4824
    [9] Xi Cheng, Shan Zhang, Hongyan Zhang, Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode, Food Chemistry, 2008, 106(2): 830-835
    [10] Allan Hjarb?k Holm, Karina H?jrup Vase, Bj?rn Winther-Jensen, Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes, Electrochim. Acta, 2007, 53(4): 1680-1688
    [11] S. Besbes, A. Ltaief, K. Reybier et al., Injection modifications by ITO functionalization with a self-assembled monolayer in OLEDs, Synthetic Metals., 2003, 138(1-2): 197-200
    [12] E. Cazzanelli, S. Marino, V. Bruno et al., Characterizations of mixed Bi/V oxide films, deposited via sol–gel route, used as electrodes in asymmetric liquid crystal cells, Solid State Ionics., 2003, 165(1-4): 201-208
    [13] D. Panagoulis, E. Pontiki, E. Skeva et al., Synthesis and pharmacochemical study of new Cu(II) complexes with thiophen-2-yl saturated and α,β-unsaturated substituted carboxylic acids, J. Inorg. Biochem., 2007, 101(4): 623-634
    [14] Vanessa Biagiotti, Federica Valentini, Emanuela Tamburri et al., Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water, Sens. Actuat. B, 2007, 122(1): 236-242
    [15] Dhana Lakshmi, Piyush S. Sharma and Bhim B. Prasad, Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine, Biosensors and Bioelectronics, 2007, 22(12): 3302-3308
    [16] T. Mary Vergheese, Sheela Berchmans, Selective NO reduction using blue ferrocenyl cation, Electrochim. Acta, 2006, 52(2): 567-574
    [17] 董绍俊, 车广礼, 谢远武, 化学修饰电极,科学出版社, 1995;
    [18] J. F. Rusling, Variations in Electron-Transfer Rate at Polished Glassy Carbon Electrodes Exposed to Air, Anal. Chem., 1984, 56(3): 575-578
    [19] J. F.Evans, T. Kuwana, Introduction of Functional Groups onto Carbon Electrodes via Treatment with Radio-Frequency Plasmas, Anal. Chem., 1979, 51(3); 358-365
    [20] Melanie Poon ,Richard L. McCreery,In Situ Laser Activation of Glassy Carbon Electrodes, Anal. Chem., 1986, 58(13): 2745-2750,
    [21] I. M. Kolthoff,Nobuyuki Tanaka ,Rotated and Stationary Platinum Wire Electrodes Residual Current-Voltage Curves and Dissolution Patterns in Supporting Electrolytes, Anal. Chem., 1954, 26(4): 632-636
    [22] R. N. Adams, “Electrochemistry at Solid Electrodes”,Marcel Dekker,New York, 1969
    [23] Jian-Xing Feng, Michael Brazell, Kenneth Renner,Electrochemical Pretreatment of Carbon Fibers for in Vivo Electrochemistry: Effects on Sensitivity and Response Time, Anal. Chem., 1987, 59(14): 1863-1869
    [24] Jürgen Mattusch, Karl-Heinz Hallmeier, Karel tulík,Pretreatment of glassy carbon electrodes by anodic galvanostatic pulses with a large amplitude, Electroanlysis, 1989, 1(5): 405-412
    [25] 董绍俊, 一种新型有序超薄有机膜──自组膜, 化学通报, 1995, 10: 11-18
    [26] 长哲郎, 电气化学, 工业物理化学, 1989, 49, 380-386
    [27] 王国顺, 蒙脱石修饰碳糊电极测定氨基酸的研究Ⅰ .色氨酸的测定, 分析化学, 1993, 21(7): 779-781
    [28] E. Pale ek, F. Jelen, C. Teijeiro, V. Fu ík, Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level, Anal. Chim. Acta., 1993, 273(1-2): 175-186
    [29] L. L.Miller, M. R. Van de Mark, Electrode surface modification via polymer adsorption, J. Am. Chem. Soc., 1978, 100(2): 639 -640
    [30] P. Daum, R. W. Murray, Charge-transfer diffusion rates and activity relationshipsduring oxidation and reduction of plasma-polymerized vinylferrocene films, J. Phys. Chem., 1981, 85 (4): 389-396
    [31] 吕紫玲, 董绍俊, 化学修饰电极的研究 ⅩⅢ. 聚乙烯二茂铁(PVFc)薄膜电极和电催化效应, 物理化学学报, 1986, 2 (05): 408-416
    [32] A. Volkov, G. Tourillon, P. C. Lacaze, Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode, J. Electroanal. Chem., 1980, 115 (2): 279-291
    [33] Leon S. Van Dyke, Charles R. Martin, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced, Langmuir, 1990, 6(6): 1118-1123.
    [34] 陈衍珍, 黄海涛, 田昭武, 水溶液中噻吩的电化学聚合成膜, 高等学校化学学报, 1986, 7(10): 917-923
    [35] 傅谊, 马建标, 聚苯胺膜修饰电极对儿茶酚及对苯二酚的催化氧化, 分析测试学报, 1998, 17(5): 43-46
    [36] J. Labuda, V. Plasko I, Determination of mercury ions on a diphenylcarbazone bulk modified graphite electrode, Anal. Chim. Acta, 1990, 228: 259-263
    [37] 王美全,方惠群,史坚,功能聚吡咯膜修饰电极的制备及其应用,分析化学, 1993, 21(4), 474-476
    [38] Guang-Zhi Hu, Da-Peng Zhang, Wei-Li Wu et al., Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode, Colloids and Surfaces B: Biointerfaces, 2008, 62(2): 199-205
    [39] Xiaomei Cao, Liqiang Luo, Yaping Ding et al., Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode, Sens. Actuat. B, 2008, 129(2): 941-946,
    [40] Robson P. da Silva, Antonio William O. Lima, Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopaminesolution, Anal. Chim. Acta, 2008, 612(1): 89-98
    [41] Suhee Jo, Haesang Jeong, Si Ra Bae et al., Modified platinum electrode with phytic acid and single-walled carbon nanotube: Application to the selective determination of dopamine in the presence of ascorbic and uric acids, Microchemical Journal, 2008, 88(1): 1-6
    [42] Yinghong Xiao, Chunxian Guo, Chang Ming Li et al., Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film, Anal. Biochem., 2007, 371(2): 229-237
    [43] Zheng Jia, Jing Liu, Yanbin Shen, Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid, Electrochem. Commun., 2007, 9(12): 2739-2743
    [44] Soundappan Thiagarajan, Shen-Ming Chen, Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid, Talanta, 2007, 74(2): 212-222
    [45] Umasankar Yogeswaran, Shen-Ming Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid, Sens. Actuat.B, 2008, 130(2): 739-749
    [46] Po Wang, Yongxin Li, Xue Huang, Lun Wang Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid, Talanta, 2007, 73(3): 431-437
    [47] Saeed Shahrokhian, Hamid Reza Zare-Mehrjardi, Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid, Electrochim. Acta, 2007, 52(22): 6310-6317
    [48] A. Balamurugan, Shen-Ming Chen, Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode, Sens. Actuat. B, 2008, 129(2): 850-858
    [49] Ana-Maria Gurban, Thierry Noguer, Camelia Bala et al., Improvement of NADH detectionusing Prussian blue modified screen-printed electrodes and different strategies of immobilization, Sens. Actuat. B, 2008, 128(2): 536-544
    [50] A. Radoi, D. Compagnone, M. A. Valcarcel et al., Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue, Electrochim. Acta, 2008, 53(5): 2161-2169
    [51] Liande Zhu, Jiangli Zhai, Ruilan Yang et al., Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes, Biosensors and Bioelectronics, 2007, 22(11): 2768-2773
    [52] Francesco Ricci, Aziz Amine, Danila Moscone et al., A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications, Biosensors and Bioelectronics, 2007, 22(6): 854-862
    [53] Hamid R. Zare, Navid Nasirizadeh, Mohammad Mazloum-Ardakani et al., Electrochemical properties and electrocatalytic activity of hematoxylin modified carbon paste electrode toward the oxidation of reduced nicotinamide adenine dinucleotide (NADH), Sens. Actuat. B, 2006, 120(1): 288-294
    [54] 王娜, 袁若, 柴雅琴等, 天青Ⅰ修饰玻碳电极的电化学性质及其对 NADH 的催化氧化,分析科学学报, 2006, 22(5): 537-539
    [55] Yuping Shan, Guocheng Yang, Yongling Sun et al., ITO electrode modified by self-assembling multilayer film of polyoxometallate on poly(vinyl alcohol) nanofibers and its electrocatalytic behavior, Electrochim. Acta, 2007, 53(2): 569-574,
    [56] Oleg Brylev, Mathieu Sarrazin, Lionel Rouéet al., Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes, Electrochim. Acta, 2007, 52(21): 6237-6247
    [57] Yi Xie, Hongyun Liu, Naifei Hu, Layer-by-layer films of hemoglobin or myoglobin assembled with zeolite particles: Electrochemistry and electrocatalysis, Bioelectrochem., 2007, 70(2): 311-319
    [58] Yu-Tsern Chang, Kuo-Chiang Lin, Shen-Ming Chen, Preparation, characterization andelectrocatalytic properties of poly(luminol) and polyoxometalate hybrid film modified electrodes, Electrochim. Acta, 2005, 51(3): 450-461
    [59] Yazhen Wang, Qing Li, Shengshui Hu, A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria, Bioelectrochem., 2005, 65(2): 135-142
    [60] Cuili Xiang, Yongjin Zou, Li-Xian Sun et al., Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubes-modified electrode, Talanta, 2007, 74(2): 206-211
    [61] Xueao Zhang, Jianfang Wang, Wenjian Wu et al., Immobilization and electrochemistry of cytochrome c on amino-functionalized mesoporous silica thin films, Electrochem. Commun., 2007, 9(8): 2098-2104.
    [62] Yun-Chun Liu, Jun Zhao, Wei-Li Wu et al., Direct electrochemical behavior of cytochrome c on DNA modified glassy carbon electrode and its application to nitric oxide biosensor, Electrochim. Acta, 2007, 52(14): 4848-4852
    [63] 李红丽, 王荣, 魏雅等, 细胞色素 C 在离子液体修饰电极上的电化学行为, 化学研究与应用, 2007, 19(9): 987-990
    [64] 魏雅, 吴霞琴, 李红丽等, 细胞色素 C 在电沉积 PAMAM?HA 修饰电极上的电化学行为, 上海师范大学学报, 2006, 35(4): 52-57
    [65] 李红丽, 吴霞琴, 魏雅等, 细胞色素 C 在 SAM 修饰电极上的电化学行为, 上海师范大学学报, 2006,35(3): 52-55
    [66] 刘云春, 崔士强, 杨周生, 细胞色素 C/L?半胱氨酸修饰电极的电化学行为研究, 安徽师范大学学报, 2006,29(3): 255-257
    [67] Umasankar Yogeswaran, Shen-Ming Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid, Sens. Actuat. B, 2008, 130(2): 739-749
    [68] Jing Li, Xiang-Qin Lin, Electrodeposition of gold nanoclusters on overoxidized polypyrrolefilm modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid, Anal. Chim. Acta, 2007, 596(2): 222-230
    [69] Zhousheng Yang, Guangzhi Hu, Xi Chen et al., The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid, Colloids and Surfaces B: Biointerfaces, 2007, 54(2): 230-235
    [70] Wei Ma, Deng-Ming Sun, Simultaneous Determination of Epinephrine and Dopamine with Poly(L-arginine) Modified Electrode, Chinese Journal of Analytical Chemistry, 2007, 35(1): 66-70
    [71] 马建国, 彭道锋, 康文等, 肾上腺素在聚氨基?β?环糊精修饰电极上的电化学行为, 理化检验: 化学分册, 2007, 43(1): 1-4
    [72] 马伟, 孙登明, 聚 L-苏氨酸修饰电极对多巴胺和肾上腺素的电催化氧化, 物理化学学报, 2007, 23(3): 332-336
    [73] 李洪坤, 贾晶晶, 李军等, 肾上腺素在对甲苯磺酸修饰电极上的电化学行为,分析试验室, 2007, 26(1): 89-92
    [74] 颜权平, 赵发琼, 曾百肇, 肾上腺素在碳纳米管?离子液体糊修饰电极上的伏安行为, 分析科学学报, 2006, 22(5): 523-526
    [75] 李敏, 朱秋芳, 陈志敏, Mb?Collagen 薄膜电极对 O2, H2O2 的电化学催化, 中北大学学报, 2007, 28(4): 332-334
    [76] 乔中云, 程闯, 冯良东, CoHCF/Au 修饰电极的电化学性质及电催化氧化 H2O2 的研究,淮阴师范学院学报, 2007, 6(2): 152-155
    [77] 干宁, 王志颖, 葛从辛, 巯基丁二酸镍(Ⅱ)自组装单分子层修饰金电极的制备及 H2O2传感器的研制, 分析仪器, 2006, 4: 14-17
    [78] 李建平, 杨志宇, 唐飞, 纳米六氰合铁酸铜化学修饰丝网印刷电极对 H2O2 电催化性能的研究, 分析化学, 2006, 34(8): 1141-1144
    [1] 赵银杰, 紫外分光光度法测定氯霉素注射液的含量, 中国兽药, 2004, 23(1): 22-23
    [2] Christian Hummert, Bernd Luckas, Hans Siebenlist. Deternination of chloramphenicol in animal tissue using high-performance liquid chromatography with a column-switching system and ultraviolet detection, J .Chromatogr, 1995, 668: 53-58
    [3] 关日晴, 氯霉素片剂中氯霉素含量的 HPLC 法测定, 分析测试学报, 2002, 21(6): 96-97
    [4] 林朝仙, 旋光法测定氯霉素眼药水中氯霉素含量, 汕头大学医学院学报, 1997, 10(4): 77-78
    [5] 杨元华, 高红艳, 和晓燕, 氯霉素的单扫描示波极谱法测定, 延安大学学报, 2004, 23(1): 53-54
    [6] 胡劲波, 尚军, 李启隆, 氯霉素在 Pt/GC 离子注入修饰电极上的伏安行为及其测定, 分析试验室, 2000, 19(1): 27-29
    [7] 曾庆慧, 肖什文, 氯霉素在聚茜素红薄膜修饰电极上的伏安行为及其测定, 安徽化工, 2005, 31(1): 33-35
    [8] 赵登飞, 赵文勇, 氯霉素的注射液微生物检定条件, 广西中医学院报, 2002, 5 (2): 50-51
    [9] Iijima S, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354: 56-58.
    [1] 贾莉,孟娟,张修华等,L-半胱氨酸自组装膜修饰电极对对氨基酚电催化氧化及其分析应用,分析科学学报, 003, 19(6): 507-510
    [2] Cai, C. X. ; Ju, H. X.; Chen, H. Y, Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate, Anal. Chim. Acta, 1995, 310(1): 145-151.
    [3] Zhou, D. M.; Ju, H. X.; Chen, H. Y, Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion?, J Electroanal. Chem., 1996, 408(1-2): 219-223
    [4] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism, Fundamentals and Applications, VCH, Weinheim, 1995 (Chapter 6).
    [5] M. K. Carpenter, R. S. Conell, A single-film electrochromic device, Electrochem. Soc., 1990, 137(8): 2464-2467
    [6] M. Kaneko, T. Okada, A secondary battery composed of multilayer Prussian Blue and its reaction characteristics, J. Electroanal. Chem., 1988, 255(1-2): 45-52
    [7] C. Loos-Neskovic, M. Fedoroff, E. Garnier, Preparation, composition and structure of some nickel and zinc ferrocyanides: Experimental results, Talanta, 1989, 36(7): 749-759
    [8] Z. Deng, W. H. Smyrl, Application of electroactive films in corrosion protection, Electrochem. Soc., 1991, 138(7): 1911-1918
    [9] Z. Y. Xun, C. X. Cai, W. Xing, et al., Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method, J. Electroanal. Chem., 2003, 545, 19-27
    [10] R. O. Lezna, R. Romagnoli, N. R. Tacconi, et al., Cobalt Hexacyanoferrate: Compound Stoichiometry, Infrared Spectroelectrochemistry, and Photoinduced Electron Transfer, J. Phys.Chem. B, 2002, 106(14): 3612 - 3621
    [11] S. M. Chen, C. M. Chan, Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes, J. Electroanal. Chem., 2003, 543(2): 161-173
    [12] C. X. Cai, K. H. Xue, S. M. Xu, Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation, J. Electroanal. Chem., 2000, 486(2): 111-118
    [13] S.M. Chen, Characterization and electrocatalytic properties of cobalt hexacyanoferrate films, Electrochim. Acta, 1998, 43(21-22): 3359-3369
    [1] NEFF V D, Electrochemical oxidation and reduction of thin films of Prussian blue, Electrochem. Soc., 1978, 125(6): 886-887
    [2] Cai, C. X, Ju, H. X, Chen, H. Y, Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel Hexacyanoferrate, Anal. Chim. Acta, 1995, 3101(1): 145-151
    [3] Zhou, D. M, Ju, H. X, Chen, H. Y, Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion?, J. Electroanal. Chem., 1996, 408(1-2): 219-223
    [4] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism, Fundamentals and Applications, VCH, Weinheim, 1995 (Chapter 6)
    [5] M. K. Carpenter, R. S. Conell, A single-film electrochromic device, Electrochem. Soc., 1990, 137(8): 2464-2467
    [6] Vernon D. Neff, Some performance characteristics of a Prussian blue battery, J. Electrochem Sot., 1985, 132, 1382-1384
    [7] M Kaneko, T. Okada, A secondary battery composed of multilayer Prussian Blue and its reaction characteristics, J. Electroanal. Chem., 1988, 255(1-2): 45-52
    [8] C. Loos-Neskovic, M. Fedoroff, E. Garnier. Preparation, composition and structure of some nickel and zinc ferrocyanides: Experimental results, Talanta, 1989, 36(7): 749-759
    [9] Z. Deng, W. H. Smyrl, Application of electroactive films in corrosion protection, J. Electrochem. Soc., 1991, 138(7): 1911-1918
    [10] Bharathi, S., Nogami, M., Ikeda, S., Layer by Layer Self-Assembly of Thin Films of Metal Hexacyanoferrate Multilayers, Langmuir, 2001, 17(24): 7468–7471
    [11] Abdollah Salimi, Kamaleddin Abdi, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta, 2004, 63(2): 475–483
    [12] Sylvie Longchamp, Fabrice Goubard, AB5-type intermetallic compound as a substrate for nickel hexacyanoferrate modified electrodes, Sens. Actuat. B, 2004, 99(2-3): 516–524
    [13] Decher G, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 1997, 277, 1232-1337
    [14] Kaschak D M, Lean J T, Waraksa C C, et al., Photoinduced Energy and Electron TransferReactions in Lamellar Polyanion/Polycation Thin Films: Toward an Inorganic "Leaf", J. Am. Chem. Soc., 1999, 121(14): 3435
    [15] Ostrander J W, Mamedov A A,Kotov N A, Two Modes of Linear Layer-by-Layer Growth of Nanoparticle-Polylectrolyte Multilayers and Different Interactions in the Layer-by-layer Deposition, J. Am.Chem. Soc., 2001. 123(6): 1101-1110
    [16] B. Nalini, S. S. Narayanan, Electrocatalytic oxidation of ascorbic acid at a graphite electrode modified with a new ruthenium (III) dithiocarbamate complex, bull. Electrochem., 1997, 13: 330–334
    [17] Itaya K, Uchida I, Neff V D, Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues, Acc. Chem. Res., 1986, 19(6): 162
    [18] Kingo Itaya, Tatsuaki Ataka, and Shinobu Toshima, Electrochemical preparation of a Prussian blue analog: iron-ruthenium cyanide, J. Am. Chem. Soc., 1982, 104(13): 3751-3752
    [19] Dong Shaojun, Li Fengbin, Researches on chemically modified electroded: Part XV. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode, J. Electroanal. Chem., 1986, 210(1): 31-44
    [20] Pawel J. Kulesza, Mariola Faszynska, Indium( Ⅲ )-hexacyanoferrate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates, J. Electroanal. Chem., 1988, 252(2): 461-466
    [21] Shaojun Dong, Zhe Jin,Electrochemistry of indium hexacyanoferrate film modified electrodes, Electrochim. Acta, 1989, 34(7): 963-968
    [22] 曹锡章, 王杏乔, 宋天佑, 无机化学, 第三版, 高等教育出版社, 北京, 997, 819, 1012, 1028
    [23] Tao, W., Pan, D., Liu, Y., Nie, L., Yao, S, Characterization and electrocatalytic properties of cobalt hexacyanoferrate films immobilized on Au-colloid modified gold electrodes, J. Electroanal. Chem., 2004, 572(1): 109-117
    [1] Caruso F, Spasora M, Salgueirino-Maceira V, et al., Multilayer assemblies of silica-encapsulated gold nanopar-ticles on decomposable colloid templates, Adv. Mater., 2001, 13(14): 1090-1094
    [2] G Frens, Nature (London) Phys.Sci. 1973, 241: 20-22
    [3] Katherine C, Grabar R, Griffith Freeman, Michael B, et al., Preparation and Characterization of Au Colloid Monolayers, Anal Chem, 1995, 67(4): 735-743
    [4] Walter, Michael A. Jackson, Andrea P. Guthrie, et al, Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture, J. Am. Chem. Soc., 1996, 118(5): 1148-1153
    [5] Umasankar Yogeswaran, Shen-Ming Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid, Sens. Actuat. B, 2008, 130(2): 39-749
    [6] Kiyochika Yahikozawa, Katsunori Nishimura, Mari Kumazawa, et al., Electrocatalytic properties of ultrafine gold particles supported onto glassy carbon substrates toward formaldehyde oxidation in alkaline media, Electrochim. Acta, 1992, 37(3): 453-455
    [7] Weiwei Yang, Yancai Li, Yu Bai, et al., Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film, Sens. Actuat. B, 2006, 115(1): 42-48
    [8] Chow M K,Zukoski C F. Formation of colloidal gold. Journal of Colloid and Interface Sci , 1994, 165: 97-99
    [9] Kreibig U , Vollmer M . Optical properities of metal clusters. Berlin: Springer, 1995: 4-10
    [10] Randall S Deinhammer, Mankit Ho, James W Anderegg, et al., Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes, Langmuir, 1994, 10(4): 1306-1313
    [11] Downard A J,Mohamed A, pression of Protein Adsorption at Glassy Carbon Electrodes Covalently Modified with Tetraethylene Glycol Diamine, Electroanalysis, 1999, 11(6): 418-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700