基于预测控制的小型无人直升机自主飞行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直升机可以定点悬停、垂直起降,具有其它飞行器所不具有的突出优点,广泛应用在航拍、侦察等各个领域。小型无人直升机体积小、质量轻、成本低、结构简单,加载自主飞行控制系统以后还可以实现超视距飞行,能够完成许多常规飞行器所不能完成的任务。研究开发无人直升机自主飞行控制系统具有非常重要的现实意义。然而由于无人直升机本身是一个典型的欠驱动、强耦合、时变、有操纵滞后的非线性系统,开发无人直升机自主飞行控制系统是一个颇具挑战性的任务。
     针对当前小型无人直升机飞行控制研究中存在的问题,本文以一款单旋翼带尾桨式小型航模直升机为研究对象,设计开发了一套基于显式预测控制(EMPC)算法的小型无人直升机自主飞行控制系统,并通过飞行试验进行了实飞验证。论文的主要工作如下:
     1)小型无人直升机建模
     和大型直升机相比,小型无人直升机没有挥舞铰,其主旋翼具有更强的刚性和更高的转速,且主旋翼惯性效应非常明显,因此在建模中不仅将机体视作刚体,还将主旋翼也视作刚体,采用双刚体建模。论文以便于旋转运动学线性化的Yaw-Pitch-Roll(YPR,航向-俯仰-横滚角)为欧拉角,采用便于计算机求解的Kane方法详细推导了小型无人直升机的运动学方程和动力学方程,并对模型进行了分析和简化。
     2)飞行控制器设计
     针对常规无人直升机控制器不能有效处理执行器约束、输出约束以及操纵滞后等问题,本文采用预测控制算法实现无人直升机的飞行控制。但传统的预测控制需要在线优化,因此需要较大的计算量。为此论文引入显式预测控制算法。显式预测控制算法将在线优化问题离线化,在线计算时只需要查找相应的控制区域,通过简单的计算就可以得到控制量,因此非常适合嵌入式系统应用。小型无人直升机飞行控制器分为内环和外环,内环完成姿态控制,外环实现位置、速度控制。论文采用EMPC算法完成了姿态控制器、速度控制器和位置控制器的设计。
     3)鲁棒稳定性研究
     直升机在飞行中常会受到各种干扰的影响,因此控制器的鲁棒性就成为衡量控制器优良的重要指标。为考察EMPC的鲁棒稳定性,论文研究了飞行控制器在控制信号有干扰、机体变质量、外界风干扰等情况下的鲁棒稳定性,并和PID控制器进行了对比分析。
     4)路径跟踪能力验证
     为了验证飞行控制器的路径跟踪能力,文中通过仿真实验验证了飞行控制器跟踪矩形路径和“8”字型路径的能力。仿真实验表明,相比PID控制EMPC控制器具有较好的路径跟踪能力。
     5)实飞试验
     为验证飞行控制器的实际飞行性能,论文首先对实飞试验中需要知道的一些具体物理参数进行了辨识,然后在飞行实验室内进行了实飞试验。实飞试验表明,无人直升机姿态稳定,其俯仰角的变化范围在-2.9°~2.9°以内,横滚角的变化范围在-2°~2°以内,航向角变化不超过-2.9°~4.6°;无人直升机位置控制精度良好,其纵、横向通道位置精度达到0.15m,高度控制达到0.05m,完全可以满足工程应用需要。
     6)转向控制中的去耦问题
     针对直升机在转向过程中影响平面运动控制精度的问题,论文采用补偿算法对控制器进行了改进,并利用仿真和实飞试验进行了验证。仿真和实飞试验都表明,改进的预测控制算法能够较好的抑制这种耦合,具有较好的控制效果。
     围绕小型无人直升机控制器设计,本文从以上六个方面进行了研究,其主要贡献包括:论文提出将显式预测控制应用于6自由度小型无人直升机飞行控制;以YPR为欧拉角,采用Kane方法创建了小型无人直升机数学模型;基于所建模型和显式预测控制算法设计了小型无人直升机姿态控制器、速度控制器和位置控制器;另外,对于转向运动和平面运动之间的耦合论文还提出采用补偿算法进行改进。论文通过仿真和实飞试验验证了算法的有效性,本文所提方法在理论上和应用上都具有一定的借鉴作用和参考价值。
Helicopters have superior flight characteristics that other aerocrafts haven't, such as vertical take-off, landing and hovering, and are widely used in aviation photography, reconnaisance and other application fields. Small-scale unmanned helicopters have small size, light quality, low cost, simple structure and can fly beyond visual range and finish tasks that traditional aerospace can't when furnished with autonomous flight control system. Thereby developing an autonomously flight control system is very significative and practical. However, helicopter models are under-actuated, strongly coupled, time-varying, multi-variate, time delay nonlinear, therefore, the design of an autonomous flight control system is a challenging task.
     In order to solve the problems encountered on current controller design, the author develops an autonomous flight control system based on explicit model predictive control (EMPC) for a single main rotor small-scale model helicopter with tail rotor. The contents of the paper will be discussed are listed as follows.
     1) Modeling of the small-scale unmanned helicopter
     Compared with large-scale helicopters, small scale unmanned helicopters haven't flapping hinges, but have stiffer and higher speed main rotors. The inertial effect of the main rotor is very significant and the main rotor should be modeled as rigid body besides the fuselage. Kinematical and dynamical equations are deduced by Kane method which can be realized by computer easily. In order to linearize the rotational kinematical equation more easily, Yaw-Pitch-Roll (YPR) angles are chosen as Euler angles during modeling.
     The author also analyzes and simplifies the model.
     2) Design of the flight controller
     Conventional controllers can't deal well with actuator constraints, output constraints and time delay, therefore the thesis proposes model predictive controller to control the unmanned helicopter. But ordinary model predictive controller needs online optimization and this leads to large computation complexity. Explicit model predictive control converts the online computation to offline and needs less computation complexity. It only looks up the control table and calculates the corresponding control input, so it is fit for embedded application. The flight controller consists of inner loop, which control the attitude, and outer loop, which control the position and velocity. The attitude controller, velocity controller and position controller are designed by the EMPC algorithms.
     3) Study on the robust stability
     Helicopters are usually disturbed during flight, so the robust stability of the flight controller is very important. In order to know the robust stability of EMPC, the controller undergoes control input noise, wind and the change of the mass of the helicopter. PID controller is also given for comparison.
     4) Validation of path tracking ability
     In order to validate the path tracking ability of the controller, the thesis simulate the controller to track rectangular path and "8" path. The simulation results show that explicit model predictive controller has better performance than PID controller.
     5) Real flight experiments
     In order to validate the performance of the flight controller in real environment, some real flight experiments are done in a flight lab. The results show that the helicopter can fly stably. The error of pitch angle doesn't exceed -2.9°~2.9°, roll angle not exceed -2.0°~2.0°and yaw angle not exceed -2.9°~4.6°. The position precision is fine. The longitudinal and lateral error is 0.15 m and the vertical error is only 0.05 m. This is enough for application.
     6) Decoupling of steering control
     A compensation algorithm is presented in this paper which is used to improve the precision of position control during steering. Simulations and real flight experiments validate its performance. The results show that the improved MPC algorithm works well and can restrain the coupling.
     The main contributions of the dissertation are as follows: EMPC is presented for the control of the small-scale unmanned helicopter; the mathematical model is deduced using Euler YPR by Kane method; the attitude controller, velocity controller, and position controller are designed based on the mathematical model and EMPC; in addition, the coupling between the steering motion and plane motion is dealt with compensations. The controller is validated by simulations and real flight experiments and the results show that the controller has good performance. The method given in the dissertation is worth to be used for reference in theory and application.
引文
[1]资料:直升机及其操纵系统简介.http://mil.news.sina.com.cn/2006-04-17/120336 4378.html.2006
    [2]直升机.http://baike.baidu.com/view/22518.html?wtp=tt
    [3]胡春华.纵列式无人直升机建模与非线性控制[博士论文].北京:清华大学,2004
    [4]王海,徐国华.无人驾驶直升机的研究现状和发展趋势.直升机技术,2003(2):45-49
    [5] Helicopter.http://en.wikipedia.org/wiki/Helicopter.2008
    [6]飞机的知识.http://www.lkc1968.com/gongzuoshi/article/show.asp?id=1082.2007
    [7]美国“火力侦察兵”无人机.http://9link.116.com.cn/node/35965.2007
    [8] GTMax.http://www.ae.gatech.edu/people/ejohnson/gtmax3small.jpg.2005
    [9] EC120.http://www.ausaero.com.au/Portals/3/CivilHeli/EC120/EC120.jpg
    [10] NOTAR.http://www.aviastar.org/foto/hughes_500-notar.jpg
    [11] CL-327.http://www.aric.or.kr/trend/history/images/uav/uav_top10_cl327.jpg
    [12] Chinook.http://www.fas.org/man/dod-101/sys/ac/ch47-002.jpg
    [13] Mi-12.http://upload.wikimedia.org/wikipedia/commons/thumb/2/25/MI-12.JPG/800 px-MI-12.JPG
    [14] HH-43.http://www.h43-huskie.info/Photos/81845-PhanRang-Aug66-TravisA04.jpg
    [15]了解飞机.http://www.kepu.net.cn/gb/beyond/aviation/knowledge/kno220.html
    [16]王赓.小型无人直升机自主飞行控制系统研究[博士论文].上海:上海交通大学,2007
    [17]周建军,陈超,崔麦会.无人直升机的发展及其军事应用.航空科学技术,2003(1):38-40
    [18]党芬,王敏芳,汪银辉.无人机发展现状及趋势.地面防空武器,2005(3):49-54
    [19] Georgia Tech Aerial Rotics.http://controls.ae.gatech.edu/gtar/overview/
    [20] International Aerial Robotics Competition (IARC) .http://avdil.gtri.gatech.edu/ AUVS/IARCLaunchPoint.html
    [21] Stanford University HUMMINGBIRD . http://sun-valley.stanford.edu/projects/ helicopters/helicopters.html/.1996
    [22] MIT/Draper Autonomous Helicopter Project . http://web.mit.edu/whall/www/heli. 1997
    [23] Autonomous helicopter project . http://www.cs.cmu.edu/afs/cs/project/chopper/ www/history.html.1998
    [24] Marvin.http://pdv.cs.tu-berlin.de/MARVIN/index.html.2007
    [25]日本政府称雅马哈公司涉嫌违规对华出口直升机.http://news.tom.com/2006 -01-24/000T/74804599.html.2006
    [26] Christophersen H. B., Dhingra M., Guily R. Development of an autonomous aerial reconnaissance system at Georgia tech. http://controls.ae.gatech.edu/labs/gtar. 2002
    [27] Johnson E. N., Proctor A. A., Ha J., et al. Development and Test of Highly Autonomous Unmanned Aerial Vehicles. Journal of Aerospace Computing, Information, and Communication, 2004, 1
    [28] Johnson E. N., Mishra S. Flight Simulation for the Develpment of an Experimental UAV. AIAA Modeling and Simulation Technologies Conference and Exhibit. Monterey, California, 2002
    [29] Johnson E. N., Schrage D. P. System Integration and Operation of a Research Unmanned Aerial Vehicle. Journal of Aerospace Computing, Information, and Communication, 2004, 1
    [30] Johnson E. N., Schrage D. P. The Georgia Tech Unmanned Aerial Research Vehicle: GTMax. AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, 2003
    [31] Johnson E. N., Schrage D. P., Prasad J. V. R., et al. UAV Flight Test Programs at Georgia Tech. AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Chicago, Illinois, 2004
    [32] Musial M., Brandenburg U. W., Hommel G. Success of an Inexpensive system design: The flying robot MARVIN. Unmanned Air Vehicle Systems: Sixteenth International UAVs Conference. Bristol, UK, 2001
    [33] Musial M., Brandenburg U. W., Hommel G. Cooperative Autonomous Mission Planning and Execution for the Flying Robot MARVIN. Intelligent Autonomous Systems, 2000:636-643
    [34] Musial M., Brandenburg U. W., Hommel G. MARVIN-Technische Universit?t Berlin's flying robot for the IARC Millennial Event. Proc. Symposium of the Association for Unmanned Vehicle Systems. Orlando, Florida, USA, 2000
    [35] COMETS. http://www.comets-uavs.org/. 2006
    [36] Abbeel P., Coates A., Quigley M., et al. An Application of Reinforcement Learning to Aerobatic Helicopter Flight. NIPS, 2007
    [37] Andrew Y. N., Adam C., Mark D., et al. Autonomous inverted helicopter flight via reinforcement learning. International Symposium on Experimental Robotics, 2004
    [38] Stanford University Autonomous Helicopter. http://heli.stanford.edu/. 2007
    [39]天鹰-3无人直升机-访总参第60研究所科技处处长刘国富.http://www.fyjs.cn /viewarticle.php?id=63578.2006
    [40] Z-3型无人直升机.http://www.nrist.com/wurenji-z-3.asp.2007
    [41] 602所U8型无人直升机年内首飞.http://mil.jschina.com.cn/Get/WQZB/07051017 795.htm.2006
    [42]中国LE110无人驾驶直升机在上海成功现实首飞.http://military.china.com/zh_cn /news/568/20020628/11281975.html.2002
    [43]旋翼无人机.http://hbhxhk.com/xywrj.html.2008
    [44]“飞豹杯”2004中国空中机器人大赛.http://it.sohu.com/s2004/AirRobot.sht ml.2004
    [45]马动涛.无人直升机控制系统设计及控制方法研究[硕士论文].西安:西北工业大学,2005
    [46]沈毅,于晓敏,李爱军.无人直升机的动态逆模糊集成控制.北京航空航天大学学报,2003,29(12):1133-1135
    [47]黄一敏.直升机飞行控制技术研究[博士论文].南京:南京航空航天大学,1999
    [48]黄文明.直升机神经网络控制与飞行品质要求的实现[博士论文].南京:南京航空航天大学,2002
    [49]王辉,徐锦法.小型无人直升机飞行动力学建模及增稳设计.南京航空航天大学学报,2003,35(3):277-282
    [50]孙传伟.直升机飞行动力学模型与飞行品质评估[博士论文].南京:南京航空航天大学,2002
    [51]王彪.无人驾驶直升机飞行控制系统含实物仿真技术研究[硕士论文].南京:南京航空航天大学,2000
    [52]宋子善,沈为群.无人直升机综合飞行控制系统设计.北京航空航天大学学报,1999,25(3):280-283
    [53]徐军,张明廉,宋子善.飞行控制系统的非线性鲁棒控制.航空学报,1998,19(2):169-172
    [54]代冀旺.基于进化算法的直升机鲁棒飞行控制及故障检测研究[博士论文].北京:北京航空航天大学,2001
    [55]王三喜.微型无人直升机飞行控制系统软件仿真与系统设计研究[硕士论文].杭州:浙江大学,2004
    [56]周涛.微小型无人直升机简化模型及控制系统研究[硕士论文].杭州:浙江大学,2006
    [57]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究[博士论文].杭州:浙江大学,2007
    [58]孟焱,孙增圻,朱纪洪.无人直升机模态转换控制器的设计.计算机工程与应用,2002(1):217-219
    [59]陈皓生,陈大融.悬停状态下微型直升机航向模型的系统辨识.清华大学学报(自然科学版),2003,43(2):184-187
    [60]胡一凡.飞行机器人的建模和控制[硕士论文].广州:华南理工大学,2004
    [61]黄亮.小型直升机自主飞行系统设计与实现[硕士论文].广州:华南理工大学,2005
    [62]闫超.小型无人直升机物理参数辨识问题的研究[硕士论文].广州:华南理工大学,2004
    [63]税海涛.无人驾驶直升机飞行控制算法研究[硕士论文].长沙:国防科学技术大学,2005
    [64]张庆杰.无人直升机多模态切换模糊控制方法与逻辑管理问题研究[硕士论文].长沙:国防科学技术大学,2006
    [65]王德宇.小型无人直升机飞行控制系统研究[硕士论文].长沙:国防科学技术大学,2005
    [66]邓寅喆,刘亮,龚振邦.基于倾角传感器和角速率陀螺的超小型无人直升机姿态控制器.机电一体化,2004(4):47-50
    [67]罗均,邢兰兴,周焱,等.C8051F020的微型旋翼飞行器实验平台的控制系统.光学精密工程,2007,15(5):713-718
    [68]高同跃,龚振邦,罗均,等.滞空状态下超小型旋翼机系统的姿态模型辨识.系统仿真学报,2008,20(1):7-10
    [69]郑卫龙.超小型旋翼机悬停状态下控制用数学模型的建立[硕士论文].上海:上海大学,2006
    [70] Wang G.., Kondak K., Marek M., et al. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model. Journal of Shanghai Jiaotong University, 2007, E-12(6):744-752
    [71]陈皓生,陈大融.微型直升机动力学建模的研究现状.飞行力学,2003,21(3):1-5
    [72] Gool V. Manual for the aero spatiale SA 2330 Puma helicopter simulation software package. Deft:Deft University of Technology, 1992
    [73] Bink J. J., Shaft I. Design of stability augmentation system for a model helicopter. Annual forum proceedings of American helicopter society, 1998, 2(5): 806-821
    [74] Gilbert L., Fregence K. A control structure for autonomous model helicopter navigation. Electrical and computer engineering. Canada, 2000: 103~107
    [75] Martin F Weilenmann, Geering H. P. Test bench for rotorcraft hover control. Journal of guidance, control and dynamics, 1994, 17(7-8): 729~736
    [76]彭召勇.无人直升机飞行控制技术研究[硕士论文].南京:南京航空航天大学,2001
    [77] Mahony R. Hamel T. Hover control via lyapunov control for an autonomous helicopter. Proceedings of 38th IEEE conference on decision & control. Piscataway, 1994: 1238~1242.
    [78] Vilchis J. C. A. Nonlinear Modelling and Control of Helicopters. Automatica, 2003, 39: 1583-1596
    [79] Pallett T. J., Ahmad S. Adaptive neural neutral network control of a helicopter in vertical flight. Aerospace control systems, 1993, 2(1): 264~268
    [80] Hashimoto S., Ogawa T. System identification experiments on a large-scale unmanned helicopter for autonomous flight. IEEE International conference on control applications. Anchorage, USA, 2000: 25~27
    [81] Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design [PhD thesis]. Pittsburgh: Carnegie Mellon University, 2001
    [82] Mettler B., Tishler M. B., Kanade T. System identification modelling of a small-scale rotorcraft for flight control. International Journal of Robotics Research, 2002, 20(10): 795-807
    [83] Kim S. K. Modeling, Identification, and Trajectory Planning for a Model-Scale Helicopter [PhD thesis]. Ann Arbor: University of Michigan, 2001
    [84] Kim S. K., Tilbury D. M. Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics. J. Robot. Syst., 2004, 21(3): 95-116
    [85] Sabatto S. Z., Zheng Y. X. Intelligent flight controllers for helicopter control. International conference on neural networks, 1997: 617~621
    [86] Ma G., Saleh Z.-S. Intelligent flight control design for helicopter yaw control. Proceedings of the Thirtieth southeastern symposium on system theory. NY, USA, 1998: 184~188
    [87] Kondak K., Deeg C., Hommel G., et al. Mechanical Model and Control of an Autonomous Small Size Helicopter with a Stiff Main Rotor. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004: 2469-2474
    [88] Kondak K., M. B., N. L., et al. Elaborated modeling and control for autonomoussmall size helicopters. VDI Berichte, 2006(1956): 207-219
    [89] Tait-Bryan angles. http://en.wikipedia.org/wiki/Tait-Bryan_angles. 2007
    [90] Sanders C. P., DeBitettoc P. A. Hierarchical Control of Small Autonomous Helicopters. Proceedings of the 37th IEEE Conference on Decision & Control. Tampa, Florida, USA, 1998: 3629-3633
    [91] Andrew Richard C. Autonomous control of an unstable model helicopter using carrier phase gps only[PhD thesis]: Stanford University, 1995
    [92] Shim D. H., Kim H. J., Sastry S. Hierachical control system synthesis for rotorcraft-based unmmanned aerial vehicles. AIAA Guidance, Navigation, and Control Conference and Exhibit. Denver, Co, 2000
    [93] Roberts J. M., Corke P. I., Buskey G. Low-cost flight control system for a small autonomous helicopter. Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003: 546-551
    [94] Corban J. E., A.J.Calise, Prasad J. V. R. Implementation of adaptive nonlinear control for flight test on an unmanned helicopter. Proceeding of the 37th IEEE Conference on Decision & Control. Tampa, Florida USA, 1998
    [95] Johnson E. N., Kannan S. K. Adaptive flight control for an autonomous unmanned helicopter. AIAA Guidance, Navigation and Control Conference. Monterey, CA, 2002
    [96] A. Dzul, R. Lozano, Castillo. P. Adaptive control for a radio-controlled helicopter in a vertical flying stand. Journal of Adaptive Control and Signal Processing, 2004, 18(5): 473-485
    [97] Nakanishi H., Inoue K. Development of Autonomous Flight Control System for Unmanned Helicopter by Use of Neural Networks. Portland, OR, United States, 2003: 2400-2405
    [98] Nakanishi H., Inoue K. Robust control system design by use of neural networks and its application to UAV flight control. 2004 International Joint Conference on Neural Networks, 2004
    [99] Buskey G., Wyeth G., Roberts J. Autonomous helicopter hover using an artificial neural network. IEEE International Conference on Robotics and Automation, 2001: 1635-1640
    [100] Sugeno M., Griffin M. F., Bastian A. Fuzzy Hierarchical Control of an Unmanned Helicopter. Proceedings of the International Fuzzy Systems and Applications conference, 1993: 1262-1265
    [101] Sugeno M., Hirano I., Nakamura S., et al. Development of an intelligent unmannedhelicopter. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium . Japan, 1995: 33-34
    [102] Cavalcante C., Cardoso J., Ramos J. J. G., et al. Design and tuning of a helicopter fuzzy controller. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems, 1995: 1549-1554
    [103] Sasaki M., Sasaki M., Ishida H., et al. Learning fuzzy logic controller for hovering a helicopter. Ishida. Fuzzy Information Processing Society - NAFIPS, 1998 Conference of the North American, 1998: 25-28
    [104] Chang D. J., Seung I. S., Sang K. K., et al. Helicopter Flight Control with Fuzzy Logic and Genetic Algorithms. Engineering Applications of Artificial Intelligence, 1996, 9(2): 175-184
    [105] Rojas I., Pomares H., Hoffmann F., et al. New design for an on-line adaptive fuzzy controller. Seoul, South Korea, 1999: 1287-1292
    [106] Kadmiry B., Driankov D. A fuzzy flight controller combining linguistic and model-based fuzzy control. Fuzzy Sets and Systems, 2004, 146: 313-347
    [107] Maharaj D. Y. The application of nonlinear control theroy to robust helicopter flight control[PhD thesis]. London: Imperial Colledge, 1994
    [108] Shim H., Koo T. J., Hoffmann F., et al. A comprehensive study of control design for an autonomous helicopter. Proceedings of the 37th IEEE Conference on Decision and Control, 1998: 3653-3658
    [109] Montgomery J. F., Bekey G. A. Learning helicopter control through "teaching byshowing". Proceedings of the 37th IEEE Conference on Decision and Control, 1998: 3647-3652
    [110] Wan E. A., Bogdanov A. A. Model predictive neural control with application to a 6 DOF heliocopter. Proceeding of the American Control Conference. Arlington, VA, 2001: 488493
    [111] An S., Park B., Suk J. Intelligent Attitude Control of an Unmanned Helicopter. http://2005.iccas.org/submission/paper/upload/2full_paper.pdf. 2005
    [112] Fujiawara D., Nonami K. H∞hovering and guidance control for autonomous small-scale unmanned helicopter. 2004 IEEE/RSJ International conference on intelligent robots and systems. Sendai, Japan, 2004: 2463-2468
    [113] Jinok S., Kenzo N., Daigo F., et al. Model-based optimal attitude and positioning control of small-scale unmanned helicopter. Robotica, 2005, 23(1): 51-63
    [114] Civita M. L., Papageorgiou G., Messner W., et al. Design and Flight Testing of aHigh-Bandwidth H-infinity Loop Shaping Controller for a Robotic Helicopter. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 485 - 494
    [115]席裕庚.预测控制.北京:国防工业出版社,1993
    [116]汪斌.无人模型直升机自主飞行控制方法研究和系统构成[硕士论文].上海:上海交通大学,2005
    [117] Zeldes M. J. Dynamic Aerodynamics. http://www.dynamicflight.com/aerodynamic s. 2007
    [118]刘沛清.空气螺旋桨理论及其应用.北京:北京航空航天大学出版社,2006
    [119]徐轶群,万隆君,黄茂林.基于Kane方法的平面五杆二自由度机构动力特性分析:机械,1998
    [120]诸静.智能预测控制及其应用.杭州:浙江大学出版社,2002
    [121]许超等.预测控制技术及应用发展综述.化工自动化及仪表,2002,29(3):1-10
    [122]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1996
    [123] Rouhani R. Model Algorithmic Control Basic Theoretical Properties. Automatica, 1982, 18(4): 401-414
    [124] Qin S. J. An overview of Industrial Model Predictive Control Technology. IEEE-SMS Symposimum on Control Optimaiztion and supervison. Paris, 1996
    [125] Richalet J. Model Predictive Heuristic Control: Application to Industrial Processes. Automatica, 1978, 14(5): 413-428
    [126] Cutler C. R., Hawkins R. B. Constrained Multivariable Control of a Hydrocracker Reactor. Proceeding of the 1987 American Control Conference. 1014~1020, 1987
    [127] Richalet J. Predictive Functional Control: Application to Fast and Accurate Robots. 10th IFAC World Congress. Munich, Germany, 1997
    [128] Jacubasch A., et al. Anwendung eines neuen Verfahrens zur schnellen und robusten Positionsregrlung von Industrierobotern . Robetersysteme, 1978, 3(3): 129 -138
    [129] Balderud J., Wilon D. Application of predictive control to a toy helicopter. Proceeding of the 2002 IEEE lnternational Conference on control Applications. Glasgow, Scotland, U.K, 2002: 1225-1229
    [130] Dutka A. S., Ordys A. W., Grimble M. J. Non-linear Predictive Control of 2DOF helicopter model. Proceedings of the 42nd IEEE Conference on Decision and Control. Mad, Hawaii USA, 2003: 3954-3958
    [131] Mehra R. K., Prasanth R. K., Gopalaswamy S. XV-15 Tiltrotor Flight Control System Design Using Model Predictive Control. IEEE, 1998
    [132] Zheng A. A Computationally Efficient Nonlinear MPC Algorithm. Proceedings ofthe American Control Conference. Albrquerque, New Mexico, 1997: 1623-1627
    [133]徐祖华.模型预测控制理论及应用研究[博士论文].杭州:浙江大学出版社,2004
    [134]杜晓宁.预测控制新型优化策略的研究及分析[博士论文].上海:上海交通大学,2001
    [135] Bemporad A., Morari M., Dua V., et al. The explicit linear quadratic reguator for constrained systems. Automatica, 2002, 38: 3-20
    [136] Tondel P., Johansen T. A., Bemporad A. An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 1199-1204
    [137] Franklin G. F., Powell J. D., Workman M. L..Digital control of dynamic systems.北京:清华大学出版社,2001
    [138] Moudgalya K. M. Digital control . Chichester: John Wiley & Sons, 2007
    [139]卡尔曼滤波器.http://baike.baidu.com/view/302394.html
    [140]陈丽,龚振邦,刘亮.超小型旋翼机系统的输出跟踪控制器设计.系统仿真学报,2006,18(2):500-504
    [141]皮道映,张政江,孙优贤.非线性系统开闭环PI型迭代学习控制的鲁棒性:浙江大学学报(工学版),2001
    [142] GPS.http://www.intergps.com/oem4-g2.html.2008
    [143]微型应变仪公司推出3DM-GX1传感器.http://www.jungong.net/_info/content/ content_6952.htm.2004
    [144] 3DM-GX1.http://www.microstrain.com/3dm-gx1.aspx.2008
    [145]全球定位系统.http://zhidao.baidu.com/question/2208504.html?si=2.2005
    [146]北斗专家组成员公开北斗定位精度毫米级.http://hi.baidu.com/zyjlr/blog/item/ ae4ae0f8d9570e0ed9f9fd4f.html.2007
    [147]全球定位系统.http://zhidao.baidu.com/question/21950347.html?si=1.2007
    [148]北斗与伽利略全球卫星的区别.http://zhidao.baidu.com/question/24161790. html?si=3.2007
    [149] GPS实时差分定位解决方案.http://www.navchina.com/productcontent.asp? ID=41.2007
    [150] NovAtel GPS.http://www.novatel.com/.2008
    [151] Orfanidis S. J..Introduction to signal processing.北京:清华大学出版社,1998
    [152] V.Oppenheim A.,S.Willsky A.,Nawab S. H..信号与系统.西安:西安交通大学出版社,1998
    [153]拉姆,冯谲云.模拟和数字滤波器设计与实现.北京:人民邮电出版社,1985
    [154]杨素行.模拟电子技术基础简明教程.北京:高等教育出版社,1997
    [155]陈维芹,徐国华,梅卫胜.悬停状态直升机剪刀式旋翼的试验研究.流体力学实验与测量,2002,16(3):50-55
    [156] Bemporad A..Hybrid Toolbox For Real-Time Apllications User's Guide,2006
    [157]董英伟.三线摆测刚体的转动惯量问题讨论:天津职业技术师范学院学报,2001
    [158]陈文清,陈林峰.三线扭摆法测刚体转动惯量所用近似方法的分析:洛阳工业高等专科学校学报,2004
    [159]于辉,曲铁平.实验测试转动惯量的方法与分析:沈阳工业学院学报,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700