一种球形飞行器的设计与飞行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步和需求的增长,小型无人飞行器逐渐成为了各国科研机构和高校研究的重点,小型无人飞行器以其良好的机动性、简单的结构、经济低廉的研究经费等特点,在军事和民用领域都发挥着至关重要的作用,可以执行诸如低空侦察任务和灾害现场勘察等危险任务。本文针对一种新型的单桨球形飞行器进行了结构设计,并对其进行了研究和分析。
     首先研究了国内外各种飞行器的研究和应用现状,总结了各自的优点和缺点,最后指出课题研究目的,对本论文的主要研究内容进行了描述。
     其次通过理论计算,得出了飞行器的整体结构净升力的计算公式。利用动量定理对螺旋桨产生的升力进行了分析计算,还对导流翼板对飞行器飞行的阻力进行了研究,最后得出了飞行器的净升力的计算公式。并分别对球形飞行器的地面运动和空中飞行的动力学进行了分析与建模,并对所建模型进行了仿真分析。
     然后对飞行器的主体结构进行了静力学分析,包括在有限元分析软件中的仿真分析和利用材料力学理论进行的理论计算,两种方法的结果基本吻合。
     再次对飞行器结构的流体动力学进行了分析,借助于计算流体力学分析软件分别对孤立螺旋桨、螺旋桨加机体结构、导流翼板结构在所设定的边界条件下的流场中的受力情况进行了数值仿真。
     最后从球形飞行器的设计要求出发,提出了飞行器的结构方案,对其运动原理进行了阐述,最后通过分析选定了零部件所用材料,并进行了实验研究。
With the advancement of technology and the growth in demand, small unmanned aircrafts have gradually become the focus of many research institutions and universities in the world. Small unmanned aircrafts have played a very important role both in military and civilian fields with its good maneuverability, simple structure, low cost and other characteristics. It can perform dangerous tasks such as low-altitude reconnaissance missions and hazard exploration. In this thesis, a new single-propeller spherical aircraft structure was designed and studied.
     Firstly the research and application status of all kinds of aircrafts at home and abroad was studied; and the respective advantages and disadvantages of the aircrafts were summarized. The purpose of the research was pointed out and the main contents of this thesis were described.
     Secondly the calculation formula of the net lift of the aircraft structure was drawn through theoretical calculation. The lift of the propeller was calculated with the help of the momentum theorem, also the resistance of the deflector flaps was studied. Finally the calculation formula of the net lift of the aircraft was derived. The dynamics of the aircraft both on the ground and in the sky was analyzed and modeled.
     Thirdly the statics analysis of structure was conducted, including simulation analysis in finite element analysis software and the theoretical calculation with the mechanics of materials. And the results of the two methods are basically consistent.
     Fourthly the fluid dynamics of the aircraft structure was analyzed. The isolated propeller, airframe structure, and the deflector structure's forces in the flow field were numerically simulated by means of computational fluid dynamics analysis software.
     Finally, the aircraft's structure program was proposed based on the design requirements and its movement principle was expounded in detail. Also the materials of every part were selected through analyses. At last tests were conducted and researched.
引文
[1]吴怀宇,周兆英,熊沈蜀,等.微型飞行器的研究现状及其关键技术[J].武汉科技大学学报(自然科学版),2000,23(2):170-173.
    [2]GRASMEYER J M, KEENNON M T. Development of the Black Widow Micro Air Vehicle [R]. Reno:AIAA,2001.
    [3]WILSON J R. Micro STAR Meets MAV [J]. Aerospace American,1999, 10(2):32-35.
    [4]KROOI, PRINZ F, SHANTZ M, etc. The Mesic-opter:A Miniature Rotorcraft Concept, Phase Ⅱ Interim Report [R]. Stanford:Stanford University,2000.
    [5]KEENNON M T, GRASMEYE J M. Development of the Black Widow and Microbat MAVs and a Vision of the Future of MAV Design [R]. Dayton: AIAA,2003.
    [6]BRIDGES A. Flying Robots Create a Buzz [M]. Monterey County Herall, 2002:15-20.
    [7]朱自强,王晓璐,吴宗成,等.小型和微型无人机的气动特点和设计[J].航空学报,2006,27(3):353-364.
    [8]陈国栋,贾培发,刘艳.微型飞行器的研究与发展[J].机器人技术与应用,2006,2:34—44.
    [9]杨兰生,钟钢.仿生扑翼飞行机构模型的研究[J].哈尔滨理工大学学报,1992,16(1):1—8.
    [10]陈亮,管贻生,张宪民.仿鸟扑翼机器人气动力建模与分析[J].华南理工大学学报(自然科学版),2011,39(6):53—57,70.
    [11]SPAULDING C M. Nonlinear inversion control for a ducted fan UAV [C] //AIAA Atmospheric Flight Mechanics Conference and Exhibit. San Francisco, California:AIAA,2005:1-23.
    [12]PAUL Y O, JOYCE M, GALLAGHER J. Designing an aerial robot for hover-and-stare surveillance [C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. San Francisco, California:AIAA,2005:1 — 23.
    [13]新华网.日本科学家发明球形飞行器.[EB/OL][2011-08-05],http://news. xinhuanet.com/photo/2011-08/05/c_121820804.htm
    [14]孙汉旭,王亮清,贾庆轩,等.BYQ-3球形机器人的动力学模型[J].机械工程学报,2009,45(10):8-14DOI:10.3901/JME.2009.10.008.
    [15]赵凯亮.BYQ-4球形机器人运动特性分析及操作任务研究[D].北京邮电大学,2009.
    [16]张鹏,程飞,曹宇强,等.一种新型四轴搜救飞行器设计.科技广场,2010年9月:145-147.
    [17]郭晓鸿,杨忠,杨成顺,等.一种基于STM32的四旋翼飞行器控制器.应用科技,2011,38(7):35-40.
    [18]樊鹏辉,王新华,蔡开元.可垂直起降高速前飞的飞行器计与控制.控制理论与应用,2010,27(9):1171-1177.
    [19]张广玉,张洪涛,李隆球,等.四旋翼微型飞行器设计[J].哈尔滨理工大学学报,2012,17(3):110-114.
    [20]迟鹏程,张卫平,陈文元,等.基于MEMS技术的SU-8仿昆虫微扑翼飞行器设计及制作[J].机器人,2011,33(3):366-370DOI:10.3724/SP.J.1218.2011.00366.
    [21]许建华,宋文萍,韩忠华,等.基于CFD技术的螺旋桨气动特性研究[J].航空动力学报,2010,25(5):1103-1109.
    [22]张正娟,屠恒章,沈怀荣,等.基于Fluent的低雷诺数下翼型数值模拟[C].//'2007系统仿真技术及其应用学术研讨会.2007:105-109.
    [23]吴利红,董连斌,许文海等.基于MATLAB和ProE的螺旋桨三维建模[J].大连海事大学学报:自然科学版,2011,37(2):17-20.
    [24]张宏伟,王树新,侯巍等.螺旋桨三维建模方法研究[J].机床与液压,2006,(5):60-62.
    [25]吴大卫,李寒冰,李书等.微小型垂直起降飞行器升力螺旋桨实验[J].航空动力学报,2011,26(4):897-902.
    [26]蒋金哲.单旋翼涵道风扇式无人直升机的钟摆控制技术研究[D].南京航空航天大学,2008.
    [27]李建波,高正.涵道风扇空气动力学特性分析[J].南京航空航天大学学报,2005,37(6):680-684.
    [28]李建波,高正,唐正飞等.涵道风扇升力系统的升阻特性试验研究[J].南京航空航天大学学报,2004,36(2):164-168.
    [29]李远伟,奚伯齐,伊国兴,等.小型涵道式无人机的研究进展.哈尔滨工业大学学报,2010,42(5):700-704.
    [30]王强.涵道风扇无人机气动性能数值模拟[D].国防科学技术大学,2008.
    [31]孙传伟.涵道螺旋桨式反扭矩系统气动特性工程计算方法研究[J].直升机技术,2008,(3):35-40.
    [32]许和勇,叶正寅.涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J].航空 动力学报,2011,26(12):2820-2825.
    [33]雷小光.基于CFD的涵道风扇无人机姿态调整分析[J].机械制造,2010,48(3):5-8.
    [34]高铁红.仿水黾机器人机构及性能分析研究[D].河北工业大学,2008.
    [35]岳基隆.四旋翼无人机自适应控制方法研究[D].国防科学技术大学,2010.
    [36]刘立.一种小型涵道无人机研究设计[D].北京邮电大学,2009.
    [37]常永强.涵道风扇式无人机结构布局及其叶片空气动力学分析[D].哈尔滨工业大学,2006.
    [38]樊鹏辉,王新华,蔡开元等.可垂直起降、高速前飞的飞行器设计与控制[J].控制理论与应用,2010,27(9):1171-1177.
    [39]孙瑜,张杰,刘虎等.MAV微型飞行器研究进展与总体设计[J].飞机设计,2010,30(6):11-16.
    [40]庞庆霈.四旋翼飞行器设计与稳定控制研究[D].中国科学技术大学.
    [41]张阳胜,刘荣.一种新型六旋翼飞行器的设计[J].机械与电子,2010,(5):64-66.
    [42]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006:60-95.
    [43]濮良贵,纪名刚.机械设计(第八版)[M].北京:高等教育出版社,2006:387-406.
    [44]程靳.理论力学(第六版)[M].北京:高等教育出版社,2007:233-352.
    [45]单辉祖.材料力学[M].北京:高等教育出版社,2003:117-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700