基于DSP的四旋翼无人机驱动器的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋翼无人机具有体积小、重量轻、机械结构简单等特点,与传统的单旋翼无人机相比,四旋翼无人机不需要尾桨来抵消反转力矩,使得四旋翼无人机电机转速低、消耗小、安全性高,因此四旋翼无人机可以在窄小的空间内飞行并且具有良好的机动性能。基于以上特点,四旋翼无人机具有广泛军用和民用价值。但是其本身所具有的模型结构复杂、易受环境影响等缺点制约了四旋翼无人机的进一步发展,因此对四旋翼无人机的研究具有十分重要的意义。在四旋翼无人机的硬件结构中,驱动器作为无人机的动力装置,直接决定着无人机的飞行效果。因此,本文针对四旋翼无人机的驱动器做了一系列研究,包括无刷电机转速的测量、无刷电机的特性建模以及无刷电机转速的控制器设计等。
     四旋翼无人机采用无刷直流电机作为动力装置。对无刷电机的特点和运动特性的分析,是建立在无刷电机转速测量的基础上,因此本文设计了两种无刷电机转速测量的方法:1).基于霍尔传感器的无刷电机转速测量;2).基于端电压频率的无刷电机转速测量。两种方法各有利弊,可根据不同场合选用不同的方法测量无刷电机转速。
     本文设计了“PC机-数字信号处理器(DSP)-电子调速器-无刷电机-霍尔传感器”的硬件装置,利用此装置采样电机的转速信息,并使用MATLAB软件和非线性回归分析,建立了无刷电机的稳态模型和动态模型,完成了无刷电机的特性建模。
     接下来本文设计了两种控制器来实现对无刷电机转速的实时控制,分别为开环控制器和闭环控制器。基于无刷电机稳态模型,根据给定的电机转速和电源电压,解算出控制信号PWM波占空比,实现了对无刷电机转速的开环控制;采用模糊控制结合专家系统参数自整定PID控制的方法,从而减小了无刷电机转速控制的上升时间,提高了电机的响应速度,实现了无刷电机转速的闭环控制。
     最后,结合四旋翼无人机驱动器的实际应用,本文设计了基于DSP的四旋翼无人机驱动电路,制作了相应的印刷电路板,并使用印刷电路板完成了四个电机转速跟踪惯性测量单元(IMU)给定信号的实验,取得了较为理想的结果。实验证明,本文设计的电机转速控制器运行稳定,能够达到了预期的控制效果。
The quadrotor unmanned aerial vehicle (UAV) has a special configuration which results in better mobility, simpler structural design, and smaller comparing with other rotorcrafts. Meanwhile, the value of the quadrotor UAVs in both military use and civil use is huge, but the quadrotor has the disadvantages of complex dynamic model and environmental impact greatly which restrict its development and application, so more and more researchers have begun the research on the control quadrotor UAVs. As an important part of the quadrotor UAV systems, the actuators directly determine the quadrotor’s flying performance, so a series of research will be done about the modeling and control of the quadrotor’s actuators in this thesis.
     Brushless motor is often used as the actuator of quadrotor UAVs. Since the control of brushless motor might need speed measurements, so two methods of measuring motor speed which is motor speed sampling via hall sensor and terminal voltage frequency are proposed in this thesis. Both methods have its own advantages and disadvantages, which method will be used is determined by the actual implementation.
     A hardware architecture of computer, DSP, ESC, brushless motors and hall sensor is being designed to obtain steady state and dynamic models of the brushless motor via nonlinear regression analysis.
     Two controllers which are the open-loop controller and the closed-loop controller are designed for real-time motor speed control system. The open-loop control system uses steady state model which is established in the second chapter, according to motor speed and supply voltage, to calculate out the duty cycle signal of PWM wave. The closed-loop control uses fuzzy and expert PID control method to achieve brushless motor closed-loop control. This controller greatly reduces the system's rise time, delay time, and increase the sensitivity of the brushless motor.
     Finally,a drive circuit is designed and two PCB boards are produced to achieve the underlying control on quadrotor UAVs. And the experiment that four brushless motors track are controlled to track the actual attitude angles obtained from the on-board IMU is completed via the two PCB boards. Through the results of these experiments, it can be concluded that the brushless motor speed control system works stably, and the desired objectives are achieved.
引文
[1]曲东才,微型无人机军事应用、研究进展及关键技术,空间科学技术,2004,pp:24-27
    [2] E. B. Nice, Design of a Four Rotor Hovering Vehicle, Doctor of Philosophy Thesis, University of Cornell, 2004, pp: 47-55
    [3] S. Park, D. H. Won and M. S. Kang, RIC(Robust Internal-loop Compensator) Based Flight Control of a Quad-Rotor Type UAV, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005, pp: 1024-1030
    [4] E. Stingu and F. Lewis, Design and Implementation of a Structured Flight Controller for a 6DoF Quadrotor Using Quaternions, Proceedings of the 17th Mediterranean Conferencen Control & Automation, June 2009, pp: 24-26
    [5] Website, http://arri.uta.edu/acs/pestingu/UAV/
    [6] O. Bourquardez and N. Guenard, Kinematic Visual Servo Controls of an X4-?yer: Practical Study, Proceedings of the Mediterranean Conference on Intelligent Systems and Automation, CISA'08, 2008, pp: 54-61
    [7] G. Hoffmann, D. G. Rajnarayan and S. L. Waslande, The Stanford Testbed of Autonomous Rotorcraft for Multi Agent Control (STARMAC), Proceedings of the Digital Avionics Systems Conference, volume 2, October 2004, pp: 4-10
    [8] G. M. Hoffmann, H. Huang and C.J. Tomlin, Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment,Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, August, 2007,6461, pp: 1-20
    [9] S. Bouabdallah, A. Noth and R. Siegwan, PID vs LQ Control Techniques Applied to an Indoormicro-Quadrotor, Proceedings of the IEEE International Conference on Intelligent Robots and Systems(IROS), 2004, pp: 2451-2456
    [10] S. Bouabdallah, A. Noth and R. Siegwan, Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor, Proceedings of the International Conference on Robotics and Automation, Barcelona, 2005, pp: 24-26
    [11] S. Bouabdallah, A. Noth and R. Siegwan, Towards Intelligent Minia-Ture Flying Robots, Proceedings of the Field and Service Robotics, Australia, Port Douglas, 2005, pp: 38-45
    [12] W. Guo and J. F. Horn, Modeling and Simulation for the Development of a Quad-Rotor UAV Capable of Indoor Flight, Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, August, 2006, 6735, pp: 1-11
    [13] J. P. How, B. Bethke and A. Frank, Real-time Indoor Autonomous Vehicle Test Environment, Proceedings of the IEEE Control Systems Magazine, April, 2008, pp: 51-64
    [14] F. Kendoul and K. Nonami, Optic Flow-based Vision System for Autonomous 3D Localization and Control of Small Aerial Vehicles, Journal of the Robotics and Autonomous Systems, 2009, pp: 591-602
    [15] F. Kendoul and K. Nonami, Guidance and Nonlinear Control System for Autonomous Flight of Minirotorcraft Unmanned Aerial Vehicles, Journal of the Field Robotics, Nov-Dec 2009, pp: 591-602
    [16] F. Kendoul, A Visual Navigation System for Autonomous Flight of Micro Air Vehicles, Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, October 11-15, 2009, pp: 3888-3893
    [17] O. A. Rawashdeh and H. C. Yang, Microrapyor: a Low-cost Autonomus Quadrotor System, Proceedings of the 2009 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications (MESA09), August 30 September 2, 2009, pp: 532-539
    [18] N. Guenard, T. Hamel and R. Mahony, A Practical Visual Servo Control for an Unmanned Aerial Vehicle, Proceedings of the IEEE. Transactions on Robotics, April, 2008, pp: 331-340
    [19] X. J. Liu and X. H. Zhao, Application and Design of Real-time Control System for the Quad-rotor Helicopter, Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, 2009, pp: 40-44
    [20]魏丽文,四旋翼飞行器控制系统设计,工学硕士学位论文,哈尔滨,哈尔滨工业大学,2010
    [21]钟佳朋,四旋翼无人机的导航与控制,工学硕士学位论文,哈尔滨,哈尔滨工业大学,2010
    [22]姚元鹏,四旋翼直升机控制问题研究,工学硕士学位论文,哈尔滨,哈尔滨工业大学,2007
    [23] S. Grzonka and W. Burgard, Towards a Navigation System for Autonomous Indoor Flying, Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, 2009, pp: 2878-2883
    [24] Website, http://diydrones.com/
    [25] Website, http://www.microdrones.com/index-en.php
    [26]苏奎峰,吕强,TMS320x28xxx原理与开发,北京:电子工业出版社,2009
    [27]何苏勤,王忠勇,TMS320C2000系列DSP原理及实用技术,北京:电子工业出版社,2003
    [28] S. L. Waslander, G. M. Hoffmann and J. S. Jang, Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode vs Reinforcement Learning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp: 3713-3715
    [29] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS-320F28232, Digital Signal Controllers (DSCs) Data Manual,Texas Instruments, June 2007
    [30] TMS320x2833x, 2823x System Control and Interrupts, Texas Instruments, September 2007
    [31] TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module, Texas Instruments, October 2008
    [32] TMS320x2833x, 2823x Enhanced Capture (eCAP) Module, Texas Instruments, August 2008
    [33] T. Cheviron and F. Plestan, Generic Nonlinear Model of Reduced Scale UAVs, Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, 2009, pp: 3271-3277
    [34]王鹏,闰健,基于PLC的电机转速测量,PLC&FA,2008,pp:60-61
    [35]张会林,胡爱军,李静,无刷直流电机的模糊PI速度控制,昆明理工大学学报(理工版),2007年4月,第32卷第2期,pp:52-55
    [36] Texas Instruments Incorprated著,牛金海等编译, Code Composer Studio(CCS)集成开发环境(IDE)入门指导书,上海,上海交通大学出版社,2005
    [37]彭启宗,管庆,DSP集成开发环境-CCS及DSP/BIOS的原理与应用,北京:电子工业出版社,2005
    [38]王可,毛志伋,基于MATLAB实现最小二乘曲线拟合,北京广播学院学报(自然科学版),2005年6月,第12卷第2期,pp:52-56
    [39]刘建勇,刘华巧,曲线拟合分类与求解,知识丛林,2007年第3期,pp:144-145
    [40] E. Stingu and F. Lewis, Design and Implementation of a Structured Flight Controller for a 6DoF Quadrotor Using Quaternions, Proceedings of the 17th Mediterranean Conferencen Control & Automation, June 2009, pp: 24-26
    [41]杨明志,四旋翼飞行器自动驾驶仪设计,工学硕士学位论文,南京,南京航空航天大学,2008
    [42] J. Kim, M. S. Kang and S. Park, Accurate Modeling and Robust Hovering Control for a Quad–rotor VTOL Aircraft, Journal of the Intelligent and Robot Systems, January, 2010, pp: 9-26
    [43] F. Hoffmann, N. Goddemeier and T. Bertram, Attitude estimation and control of a quadrocopter, Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots Systems, Taipei, Taiwan, October, 18-22, 2010, pp: 1072-1077
    [44] M. Karpenko, P. Sekhava and J. Park, Closed-Loop Optimal Guidance and Control of Quadrotor Unmanned Aerial Vehicle, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, 2-5 August 2010, 6283, pp: 108-115
    [45] D. Mellinger, M. Shomin and V. Kumar, Control of Quadrotors for Robust Perching and Landing, Proceedings of the International Powered Lift Conference, Philadelphia, October 5-7, 2010, pp: 244-251
    [46] K. J. Astrom, PID Controllers: Theory, Design and Tuning, Journal of the Instrument Society of America, Research Triangle Park, North Carolina, 2nd Edition, 1995, pp: 30-36
    [47] T. Dierks, Output Feedback Control of a Quadrotor UAV Using Neural Networks, Proceedings of the IEEE Transactions on Neural Networks, January 2010, pp: 50-66
    [48]李晓丹,模糊PID控制器的设计研究,工学硕士学位论文,天津,天津大学,2005
    [49]丁坚,模糊PID控制器的研究,工学硕士学位论文,哈尔滨,哈尔滨工程大学,2009
    [50]张泽兴,模糊参数自整定PID控制器在梭式窑中的应用,工学硕士学位论文,景德镇,景德镇陶瓷学院,2009
    [51]汪海燕,李娟娟,张敬华,自适应模糊PID控制的无刷直流电机及仿真,微电机,2003年底36卷,pp:14-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700