旋翼无人飞行器非线性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋翼无人飞行器是一种典型的欠驱动系统,所谓欠驱动特性是指在系统中控制输入变量数目少于系统自由度数目,这种特性虽然可以有效降低系统的设计与制造难度,但是给系统的控制设计带来了很大的挑战。此外四旋翼无人飞行器动力学模型还具有非线性、强耦合以及静不稳定等特点,加之飞行器在飞行过程中容易受到非线性的空气阻力、阻力矩以及阵风等不确定因素的影响,所以控制设计具有很大的难度。
     四旋翼无人飞行器具有垂直起降、操作灵活以及精确悬停等特点,已经被广泛用于军事以及民用等领域。但是操作四旋翼无人飞行器要求操纵人员具有丰富的遥控经验,因此为保障四旋翼无人飞行器的飞行安全,提高飞行任务的效率,需要研究具有高精度和高可靠性的飞行控制策略。四旋翼无人飞行器位姿控制是利用飞行器在飞行过程中的实时位姿信号设计反馈控制器,使飞行器对预定的位置和姿态轨迹进行跟踪,并且由于飞行器机载驱动器输出功率的限制,控制输出必须保持在合理的范围以内。近年来,国内外许多科研人员对于四旋翼无人飞行器位姿控制进行了广泛研究,提出了多种控制策略,但是这些方法都存在一些不足,因此目前四旋翼无人飞行器位姿控制问题尚没有得到完全的解决。
     本文针对具有建模不确定性的四旋翼无人飞行器系统进行了深入研究,并设计了数种性能可靠的控制策略。针对四旋翼无人飞行器动力学模型中存在未知参数的情况,论文采用速度有界PID算法以及自适应控制算法设计了一种调节控制器,该控制器可以保证飞行器快速准确地调节至指定位置与航向。由于飞行器在飞行过程中容易受到阵风等外界扰动的影响,论文利用非线性滑模控制算法与自适应算法设计了一种自适应滑模控制器,这种飞行控制器可以实现对四旋翼无人飞行器三个方向的位置与偏航角的跟踪控制。论文采用反步法并结合非线性鲁棒算法提出了一类光滑的非线性跟踪控制算法,该算法可以有效消地除传统滑模控制器中存在的颤振问题。由于四旋翼无人飞行器自身负载能力有限,无法携带高精度传感器,论文针对无人飞行器位姿控制问题,采用单位四元数姿态描述方法,在部分飞行状态不可测量的约束条件下,设计了一种输出反馈跟踪控制器。论文利用基于Lyapunov的稳定性分析、Barbalat引理以及零扰动定理等对所提出的控制器进行稳定性分析。同时,为了验证控制器的控制效果,论文采用Matlab仿真软件对所提算法进行仿真测试,并且得到了较好的控制效果。
The quadrotor unmanned aerial vehicle (UAV) is a typical underactuated system, which has less control inputs than the degrees of freedoms. Although this property can simplify the design and manufacture, it brings a great challenge to the control development. The dynamics of the quadrotor UAV also suffers from various control complexities such as: strongly coupling and nonlinearity. Besides, the quadrotor UAV is effected by the nonlinear aerodynamic drag during the flight. These dynamic uncertainties complicate the development of the controller.
     Due to its advantages such as vertical taking off and landing (VTOL), rapid maneuvering and precise hovering, the potential for the quadrotor UAV in civil and military applications has been well established. However, a lot of experience is required for the human pilot. High performance control laws are required for the autonomous flying control of the quadrotor UAV. Meanwhile, in consideration of the limitation of onboard actuators, the control inputs should be with some reasonable values. Recently, several literatures have proposed some new methods for the control of the quadrotor UAV, but the design of nonlinear control mechanisms for the quadrotor UAV in the presence of structural uncertainties and unknown external disturbances is still a challenging task.
     A further investigation on controller design for the quadrotor UAV is proposed, and several kinds of control algorithms are developed in this dissertation. In the chapter II, a new nonlinear adaptive controller is proposed for a class of quadrotor UAV, which is subjected to parametric uncertainties. The on-line parameter estimations are combined with the feedback control to develop the nonlinear adaptive regulation controller, which yields a global asymptotic regulation result for the UAV's Cartesian position and yaw angle while keeps the closed system stable. In the chapter III, an adaptive sliding mode tracking controller is proposed for the quadrotor UAV which is subject to parametric uncertainties and external disturbances. By using Lyapunov-based stability analysis, it can be proved that the proposed control law yields a global asymptotic tracking result for the UAV's Cartesian position and the yaw orientation. In the chapter IV, on-line parameter estimations are combined with a robust control design based on hyperbolic tangent functions to develop a new continuous and differentiable tracking controller, which yields an asymptotic tracking result for the UAV's Cartesian position and an asymptotic regulation result for the yaw orientation. Because of the load capacity of the UAV, some high accuracy sensors may not apply to this class of aircraft. In the chapter V, an attitude and altitude output feedback tracking controller is developed, which uses only the system's output state and yields a semi-global asymptotic tracking result. With the aid of Lyapunov-based stability analysis, Barbalat's Lemma and vanishing perturbation theorem, the stability of the closed-loop system can be guaranteed for the proposed control strategies. Numerical simulation results are included to validate the performance of the presented control laws.
引文
[1]蔡昌军,无人驾驶飞机的发展趋势[J],中国航天,2000,3:16-18.
    [2]王淑芬,吴卫,无人机发展的情报研究[J],飞航导弹,1998,10:31-42.
    [3]党芬,王敏芳,汪银辉,无人机发展现状及趋势[J],地面防空武器,2005,3:49-54.
    [4]李娜英,李惠峰,军用无人机发展现状及趋势分析[J],航空制造技术,2004,10:34-40.
    [5]武元,具有巨大商机的美国无人机市场[J].飞航导弹,2003,8:42-44.
    [6]李文杰,徐文,无人驾驶飞行器[J],飞航导弹,2002,12:15-18.
    [7]洪森涛,金智慧,李志强,四旋翼飞行器建模及姿态稳定性分析[J],光电系统,2008,2:34-37.
    [8]杨明志,王敏,四旋翼微型飞行器控制系统设计[J],计算机测量与控制,2008,16:485-490.
    [9] M. Achtelik, A. Bachrach, R. He, S. Prentice, Autonomous Navigation and Exploration of aQuadrotor Helicopter in GPS-denied Indoor Environments[C], Proceedings of the IEEE Inter-national Conference on Robotics and Automation, Anchorage, Alaska, USA, December12-14,2010,1096-1097.
    [10] K. Alexis, C. Papachristos, G. Nikolakopoulos, Model Predictive Quadrotor Indoor PositionControl[C], Proceedings of the Mediterranean Conference on Control and Automation, Corfu,Greece, June20-23,2011,1247-1252.
    [11] P. Campoy, P. Garcia, A. Barrientos, An Stereoscopic Vision System Guiding an AutonomousHelicopter for Overhead Power Cable Inspection[J], Lecture Notes in Computer Science,2001,95(3):115-124.
    [12] B. Wang, L. Han, H. Zhang, A Flying Robotic System for Power Line Corridor Inspection[C],Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, China,September8-12,2009,2468-2473.
    [13] H. Eisenbeiss, The Autonomous Mini Helicopter: A Powerful Platform for Mobile Mapping[J],The International Archives of the Photogrammetry, Remote Sensing and Spatial InformationSciences,2008,37(B1):977-981.
    [14] J. Salt, Setup and Tips For Electric Coolective Pitch RC helicopter[M], New York: RChelicopter-fun,2008.
    [15] G. Cai, B. Chen, K. Peng, M. Dong, T. Lee, Design and Implementation of a Nonlinear FlightControl Law for the Yaw Channel of a UAV Helicopter[C], Proceedings of the IEEE Conferenceon Decision and Control, New Orleans, LA, USA, December12-14,2007,1963-1968.
    [16] P. M. Merrow, Modelling the Draganflyer Four-Rotor Helicopter[C], Proceedings of the IEEEInternational Conference on Robotics and Automation, New Orleans, LA, USA, December12-14,2004,3596-3610.
    [17] S. Bouabdallah, M. Becker, R. Siegwart, Autonomous Miniature Flying Robots: ComingSoon[J], IEEE Robotics and Automation Magazine,2007,56(3):2-12.
    [18] B. Erginer, E. Altug, Modeling and PD Control of a Quadrotor VTOL Vehicle[C], Proceedingsof the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, March12-14,2007,894-899.
    [19] S. Niku, Introduction to Robotics[M], New York: John Wiley and Sons,2010.
    [20] S. Bertrand, T. Hamel, H. P. Lahanier, Stabilization of a Small Unmanned Aerial Vehicle Mod-el without Velocity Measurement[C], Proceedings of the IEEE International Conference onRobotics and Automation, Roma, Italy, December12-14,2007,724-729.
    [21] P. Pounds, R. Mahony, P. Corke, Modelling and Control of a Large Quadrotor Robot[J], ControlEngineering Practice,2010,18(5):691–699.
    [22] T. Hamel, R. Mahony, R. Lozano, Dynamic Modelling and Configuration Stabilization for AnX4-Flyer[C], Proceeding of the IFAC Triennial World Congress, Barcelona, Spain, March7-12,2002,220-225.
    [23] T. Hamel, R. Mahony, A. Chriette, Visual Servo Trajectory Tracking for a Four rotor VTOLAerial Vehicle[C], Proceeding of the IEEE Conference on Robotics and Automation, WashingDC, USA, May7-12,2002,2781-2786.
    [24] T. Madani, A. Benallegue, Backstepping Control for a Quadrotor Helicopter[C], Proceedingsof the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,March6-11,2006,3255-3260.
    [25] A. Isidori, L. Marconi, A. Serrani, Robust Nonlinear Motion Control of a Helicopter[J], IEEETransactions on Automatic Control,2003,48(3):413-426.
    [26] R. Xu, U. Ozguner, Sliding Mode Control of a Quadrotor Helicopter[C], Proceedings of theIEEE Conference on Decision and Control, San Diego, CA, USA, May2-9,2006,4957-4962.
    [27] A. Hably, N. Marchand, Global Stabilization of a Four Rotor Helicopter with Bounded Input-s[C], Proceedings of the IEEE Conference on Intelligent Robots and Systems, San Diego, CA,USA, March20-26,2007,129-134.
    [28]方勇纯,卢桂章,非线性系统理论[M],北京:清华大学出版社,2009.
    [29] I. Fantoni, R. Lozano, Nonlinear Control for Underactuated Mechanical System[M],1st Edition,London: Springer-Verlag,2001.
    [30] F. Bullo, N. Leonard, A. Lewis, Controllability and Motion Algorithms for Underactuated La-grangian Systems on Lie Groups[J], IEEE Transactions on Automatic Control,2000,45(8):1437-1454.
    [31] M. Reyhanoglu, A. Schaft, N. McClamroch, Dynamics and Control of a Class of UnderactuatedMechanical Systems[J], IEEE Transactions on Automatic Control,1999,44(9):1663-1671.
    [32] M. Spong, Underactuated Mechanical Systems[J]. Control Problem in Robotics and Automa-tion,1998,230(5):135-150.
    [33] D. Seto, J. Baillieul, Control Problems in Super-Articulated Mechanical Systems[J], IEEETransactions on Automatic Control,1994,39(12):2442–2453.
    [34] R. Lozano, I. Fantoni, D. J. Block, Stabilization of the Inverted Pendulum Around Its HomoclinicOrbit[J], System and Control Letter,2000,40(3):197–204.
    [35] R. Fierro, F. Lewis, A. Lowe, Hybrid Control for a Class of Underactuated Mechanical Sys-tems[J], IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans,1999,29(6):649–654.
    [36] J. Ghommam, F. Mnif, A. Benali, Asymptotic Backstepping Stabilization of an UnderactuatedSurface Vessel[J], IEEE Transactions on Control Systems Technology,2006,14(6):1150-1157.
    [37] K. Do, Z. Jiang, J. Pan, Robust Adaptive Path Following of Underactuated Ships[J], Automatica,2004,40(8):929–944.
    [38] A. Baviskar, M. Feemster, D. Dawson, Tracking Control Of An Underactuated Unmanned Un-derwater Vehicle[C], Proceedings of the IEEE American Control Conference, Portland, OR,USA, December5-11,2005,4321-4326.
    [39] R. O. Saber, Global Configuration Stabilization for VTOL aircraft with Strong Input Cou-pling[J], IEEE Transactions on Automatic Control,2002,47(11):1949-1952.
    [40] H. Mcclamroch, I. Kolmakovsky, A Hybrid Switched Mode Control for V/STOL Flight Con-trol Problems[C], Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan,December5-12,1996,2648-2653.
    [41] K. D. Do, Z. P. Jiang, J. Pan, Global Output-Feedback Tracking Control of a VTOL Aircraft[C],Proceedings of the IEEE Conference on Decision and Control. Maui, Hawaii, USA, December11-15,2003,4914-4919.
    [42] T. J. Koo, S. Sastry, Output Tracking Control Design of a Helicopter Model Based on Approx-imate Linearization[C], Proceedings of the IEEE Conference on Decision and Control, Tampa,FL, USA, December9-13,1998,3635-3640.
    [43] J. C. Vilchis, B. Brogliato, A. Dzul, R. Lozano, Nonlinear modeling and control of helicopters[J],Automatica,2003,39(23):1583-1596.
    [44] P. Tsiotras, J. Luo, Control of Underactuated Spacecraft with Bounded Inputs[J], Automatica,2000,36(17):1153-1169.
    [45] I. Kolmanovsky, N. H. McClamroch, Developments in Nonholonomic Control Problems[J],IEEE Control Systems Magazine,1995,15(6):20-36.
    [46] B. L. Ma, S. K. Tso, Robust Discontinuous Exponential Regulation of Dynamic NonholonomicWheeled Mobile Robots with Parameter Uncertainties[J], International Journal of Robust andNonlinear Control,2008,18(9):960-974.
    [47] C. Wang, Semiglobal Practical Stabilization of Nonholonomic Wheeled Mobile Robots withSaturated Inputs[J], Automatica,2008,44(3):816-822.
    [48] A. R. Teel, R. M. Murray, G. C. Walsh, Nonholonomic Control Systems: From Steering toStabilization with Sinusoids[J], International Journal of Control,1995,60(4):849-870.
    [49] Y. P. Tian, S. H. Li, Exponential Stabilization of Nonholonomic Dynamic Systems by SmoothTime-Varying Control[J], Automatica,2002,38(7):1139-1146.
    [50] M. W. Spong, R. Lozano, R. Mahony, An Almost Linear Biped[C], Proceedings of the IEEEConference on Decision and Control, Sydney, Australia, December9-13,2000,4803-4808.
    [51] A. Crespi, A. Badertscher, A. Guiqnard, A. J. Ijspeert, AmphiBot I: an Amphibious Snake-LikeRobot[J], Robotics and Autonomous Systems,2005,50(3):163-175.
    [52]孙宁,方勇纯,一类欠驱动系统的控制方法综述[J],智能系统学报,2011,31(6):751-764.
    [53] N. Sun, Y. Fang, Y. Zhang, B. Ma, A Novel Kinematic Coupling-Based Trajectory PlanningMethod for Overhead Cranes[J], IEEE/ASME Transactions on Mechatronics,2012,17(1):166-173.
    [54] N. Sun, Y. Fang, X. Zhang, Y. Yuan, Transportation Task-Oriented Trajectory Planning for Un-deractuated Overhead Cranes Using Geometric Analysis[J], IET Control Theory and Applica-tions,2012,6(10):1410-1423.
    [55] N. Sun, Y. Fang, X. Zhang, Y. Yuan, Phase Plane Analysis Based Motion Planning for Underac-tuated Overhead Cranes[C], Proceedings of the IEEE International Conference on Robotics andAutomation, Shanghai, China, May5-9,2011,3483-3488.
    [56] W. Singhose, D. Kim, M. Kenison, Input Shaping Control of Double Pendulum Bridge CraneOscillations[J], ASME Journal of Dynamic Systems, Measurement, and Control,2008,130(3):101-107.
    [57] K. Hekman, W. Singhose, J. Lawrence, Input Shaping with Coulomb Friction Compensationon a Solder Cell Machine[C], Proceedings of the American Control Conference, Boston, Mas-sachusetts, USA, March9-13,2004,728-733.
    [58] Y. Fang, W. E. Dixon, D. M. Dawson, E. Zergeroglu, Nonlinear Coupling Control Laws for anUnderactuated Overhead Crane System[J], IEEE/ASME Transactions on Mechatronics,2003,8(3):418-423.
    [59] N. Sun, Y. Fang, New Energy Analytical Results for the Regulation of Underactuated OverheadCranes: An End-Effector Motion-Based Approach[J], IEEE Transactions on Industrial Electron-ics,2012,59(12):4723-4734.
    [60] D. Liu, J. Yi, D. Zhao, W. Wang, Adaptive Sliding Mode Fuzzy Control for a Two-DimensionalOverhead Crane[J], Mechatronics,2005,15(5):505-522.
    [61] D. Chwa, Nonlinear Tracking Control of3-D Overhead Cranes Against the Initial Swing An-gle and the Variation of Payload Weight[J], IEEE Transactions on Control System Technology,2009,17(4):876–883.
    [62] N. Sun, Y. Fang, X. Zhang, An Increased Coupling-Based Control Method for UnderactuatedCrane Systems: Theoretical Design and Experimental Implementation[J], Nonlinear Dynamics,2012,70(2):1135-1146.
    [63] C. Chang, T. Chiang, Overhead Cranes Fuzzy Control Design with Deadzone Compensation[J],Neural Computing Application,2009,18(7):749–757.
    [64] W. Yu, M. A. Moreno-Armendariz, F. O. Rodriguez, Stable Adaptive Compensation with FuzzyCMAC for an Overhead Crane[J], Information Sciences,2011,181(21):4895-4907.
    [65]高丙团,陈宏均,张晓华,欠驱动机械系统控制设计综述[J],电机与控制学报,2006,10(5):541-546.
    [66] J. G. Leishman, The Breguet-Richet Quad-Rotor Helicopter of1907[M], New York: AHS Inter-national Directory,2001,1-4.
    [67] D. Stipanovica, G. Inalhan, R. Teo, Decentralized Overlapping Control of a Formation of Un-manned Aerial Vehicles[J], Automatica,2004,40(3):1285-1296.
    [68] G. Hoffmann, H. Huang, S. Waslander, Precision Flight Control for Amulti-Vehicle QuadrotorHelicopter Testbed[J], Control Engineering Practice,2011,19(15):1023-1036.
    [69] J. Gillula, H. Huang, M. Vitusy, Design of Guaranteed Safe Maneuvers Using Reachable Sets:Autonomous Quadrotor Aerobatics in Theory and Practice[C], Proceedings of the IEEE Inter-national Conference on Robotics and Automation, Anchorage, Alaska, USA, March9-13,2010,1649-1654.
    [70] J. P. How, B. Bethke, A. Frank, Real-Time Indoor Autonomous Vehicle Test Environment[J],IEEE Control Systems Magazine,2008,45(7):51-64.
    [71] B. Bethke, J. How, J. Vian, Multi-UAV Persistent Surveillance With Communication Constraintsand Health Management[C], Proceedings of the AIAA Guidance, Navigation, and Control Con-ference, Chicago, Illinois, USA, March19-23,2009: AIAA2009-5654.
    [72] S. Bouabdallah, R. Siegwart, Towards Intelligent Miniature Flying Robots[J], Field and ServiceRobotics,2006,25(12):429-440.
    [73] O. Bourquardez, R. Mahony, N. Guenard, Image-Based Visual Servo Control of the TranslationKinematics of a Quadrotor Aerial Vehicle[J], IEEE Transactions on Robotics,2009,25(3):743-749.
    [74] N. Guenard, T. Hamel, R. Mahony, A Practical Visual Servo Control for an Unmanned AerialVehicle[J], IEEE Transactions on Robotics,2008,24(2):331-340.
    [75] N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, The GRASP Multiple Micro-UAV Testbed[J],IEEE Robotics and Automation Magazine,2010,17(3):56-65.
    [76] D. Mellinger, N. Michael, V. Kumar, Trajectory Generation and Control for Precise AggressiveManeuvers with Quadrotors[J], International Journal of Robotics Research,2012,35(5):664-674.
    [77] D. Mellinger, V. Kumar, Minimum Snap Trajectory Generation and Control for Quadrotors[C],Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, Chi-na, May9-13,2011,2520-2525.
    [78] F. Kendoul, I. Fantoni, R. Lozano, Asymptotic Stability of Hierarchical Inner-Outer Loop-BasedFlight Controllers[C], Proceedings of the World Congress The International Federation of Au-tomatic Control, Seoul, Korea, July6-11,2008,1741-1746.
    [79] F. Kendoul, D. Lara, I. Fantoni-Coichot, R. Lozano, Real-Time Nonlinear Embedded Control foran Autonomous Quadrotor Helicopter[J], Journal of Guidance, Control, and Dynamics,2007,30(4):1049-1061.
    [80] F. Kendoul, K. Nonami, I. Fantoni, An Adaptive Vision-Based Autopilot for Mini Flying Ma-chines Guidance, Navigation and Control[J], Autonomous Robots,2009,27(3):165-188.
    [81] F. Kendoul, I. Fantoni, K. Nonami, Optic Flow-based Vision System for Autonomous3D Lo-calization and Control of Small Aerial Vehicles[J], Robotics and Autonomous Systems,2009,57(10):591-602.
    [82] F. Kendoul, Z. Yu, K. Nonami, Guidance and Nonlinear Control System for Autonomous Flightof Minirotorcraft Unmanned Aerial Vehicles[J], Journal of Field Robotics,2009,27(3):311-335.
    [83] R. F. Zhang, X. H. Wang, K. Y. Cai, Quadrotor Aircraft Control without Velocity Measure-ments[C], Proceedings of the IEEE Conference on Decision and Control, Shanghai, P.R. China,March4-9,2009,5213-5218.
    [84] J. Ahmed, S. Bernstein, Globally Convergent Adaptive Control of Spacecraft Angular VelocityWithout Inertia Modeling[C], Proceedings of the American Control Conference, San Diego, CA,USA, May8-12,1999,1540-1544.
    [85] J. Colrado, A. Barrientos, A. Martinez, Mini-Quadrotor Attitude Control Based on Hybrid Back-stepping and Frenet-Serret Theory[C], Proceedings of the IEEE International Conference onRobotics and Automation, Anchorage, AK, USA, Mar9-13,2010,1617-1622.
    [86] C. Tony, W. Mackunisy, Robust Attitude Tracking Control of a Quadrotor Helicopter in the P-resence of Uncertainty[C], Proceedings of the IEEE Conference on Decision and Control, Maui,Hawaii, Mar3-7,2012,937-942.
    [87] N. Chaturvedi, A. Sanyal, N. McClamroch, Rigid-Body Attitude Control Using Rotation Matri-ces for Continuous, Singularity-Free Control Laws[J], IEEE Control Systems Magazine,2011,23(1):30-51.
    [88] R. Zhang, Q. Quan, k. Cai, Attitude Control of a Quadrotor Aircraft Subject to a Class of Time-Varying Disturbances[J], IET Control Theory and Application,2011,5(9):113-120.
    [89] J. Guerrero-Castellanos, N. Marchand, Bounded Attitude Control of Rigid Bodies: Real-TimeExperimentation to a Quadrotor Minihelicopter[J], Control Engineering Practice,2011,19(8):790-797.
    [90] S. Li, S. Ding, Global Set Stabilization of the Spacecraft Attitude Control Problem Based onQuaternion[J], International Journal of Robust and Nonlinear Control,2008,20(1):84-105.
    [91] L. Cheng, Z. Hou, Adaptive Neural Network Tracking Control of Manipulators Using Quater-nion Feedback[C], Proceedings of the IEEE International Conference on Robotics and Automa-tion, San Diego, CA, USA, March5-9,2008,3371-3376.
    [92] T. Fernando, J. Chandiramani, Robust Adaptive Geometric Tracking Controls on SO(3) withan Application to the Attitude Dynamics of a Quadrotor UAV[C], Proceedings of the IEEEConference on Decision and Control and European Control Conference, San Diego, CA, USA,May5-9,2010,7380-7385.
    [93] R. Schlanbusch, A. Loria, PD plus Based Output Feedback Attitude Control of Rigid Bodies[J],IEEE Transactions on Automatic Control,2012,57(8):2146-2152.
    [94] A. Zou, K. Kumar, Quaternion-Based Adaptive Output Feedback Attitude Control of SpacecraftUsing Chebyshev Neural Networks[J], IEEE Transactions on Neural Networks,2010,21(9):1457-1471.
    [95] D. Mellinger, N. Michael, M. Shomin, Recent Advances in Quadrotor Capabilities[C], Pro-ceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China,December12-15,2011,2964-2965.
    [96] J. Fink, N. Michael, S. Kim, Planning and Control for Cooperative Manipulation and Trans-portation with Aerial Robots[J], The International Journal of Robotics Research,2011,30(3):324-334.
    [97] L. Muratet, S. Doncieux, Y. Briere, A Contribution to Vision-Based Autonomous HelicopterFlight in Urban Environments[J], Robotics and Autonomous Systems,2005,50(4):195-209.
    [98] E. Johnson, A. Caliset, Y. Watanabe, Real-Time Vision-Based Relative Aircraft Navigation,Journal of Aerospace Computing[J], Information and Communication,2007,4(21):707-738.
    [99] S. Grzonka, G. Grisetti, W. Burgard, A Fully Autonomous Indoor Quadrotor[J], IEEE Transac-tions on Robotics,2012,28(1):90-100.
    [100] M. Blosch, S. Weiss, D. Scaramuzza, Vision Based MAV Navigation in Unknown and Unstruc-tured Environments[C], Proceedings of the IEEE International Conference on Robotics and Au-tomation, Anchorage, Alaska, USA, December9-13,2010,21-28.
    [101] S. Weiss, D. Scaramuzza, R. Siegwart, Monocular SLAM Based Navigation for AutonomousMicro Helicopters in GPS Denied Environments[J], Journal of Field Robotics,2011,28(6):854-874.
    [102] G. Hoffmann, C. Tomlin, Mobile Sensor Network Control Using Mutual Information Methodsand Particle Filters[J], IEEE Transactions on Automatic Control,2010,55(1):32-47.
    [103] S. Bouabdallah, A. Noth, R. Siegwan, PID vs LQ Control Techniques Applied to an Weight Aug-mentation High Energy Conruniption Indoor Micro Quadrotor[C], Proceedings of the IEEE/RSJInternationel Conference On Intelligent Robots and Systems, Sendal, Japan, July5-8,2004,2451-2456.
    [104] A. Benallegue, A. Belaidi, A. Mokhtari, Polynomial Linear Quadratic Gaussian and SlidingMode Observer for a Quadrotor Unmanned Aerial Vehicle[J], Journal of Robotics and Mecha-tronics,2006,17(3):483–495.
    [105] M. Chen, M. Huzmezan, A Combined Mbpc/2Dof H-infinity Controller for a Quad RotorUAV[C], Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit,Portland, Oregon, June9-13,2003,1716-1721.
    [106] C. Luo, R. Liu, C. Yang. Helicopter H-infinity Control Design With Robust Flying Quality[J].Aerospace Sciense Technology,2003,7(2):159–169.
    [107] E. B. Nice, Design and Control of a Four-rotor Autonomous Flying Vehicle[C], Proceedings ofthe AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, Oregon, June9-13,2004,1196-1201.
    [108] P. Pounds, R. Mahony, P. Hynes, J. Roberts, Design of a Four Rotor Aerial Robot[C], Pro-ceedings of the Australasian Conference on Robotics and Automation, Aukland, New Zealand,November27-29,2002,145-150.
    [109] T. Madani, A. Benallegue, Backstepping Control with Exact2-Sliding Mode Estimation for aQuadrotor Unmanned Aerial Vehicle[C], Proceedings of the IEEE/RSJ International Conferenceon Intelligent Robots and Systems, San Diego, CA, USA, October29-November2,2007,141-146.
    [110] A. Das, F. Lewis, K. Subbarao, Backstepping Approach for Controlling a Quadrotor Using La-grange Form Dynamics[J], Journal of Intelligent Robot System,2009,56(3):127–151.
    [111] M. O. Efe, Robust Low Altitude Behavior Control of a Quadrotor Rotorcraft Through SlidingModes[C], Proceedings of the Mediterranean Conference on Control and Automation, Athens,Greece, July27-29,2007, T23-035.
    [112] M. Civita, G. Papageorgiou, W. Messner, T. Kanade, Design and Flight Testing of a Gain-Scheduled H-infinity Loop Shaping Controller for Wide-Envelope Flight of a Robotic Heli-copter[C], Proceedings of the American Control Conference, Pasadena, CA, USA, June4-6,2003,4195-4200.
    [113] H. S. Ramirez, M. Zribi, S. Ahmad, Dynamical Sliding Mode Control Approach for VerticalFlight Regulation in Helicopters[J], Control Theory and Application,1994,141(1):19-24.
    [114] D. Lee, H. J. Kim, S. Sastry, Feedback Linearization vs. Adaptive Sliding Mode Control for aQuadrotor Helicopter[J], International Journal of Control, Automation, and Systems,2009,7(3):419-428.
    [115] C. Diao, B. Xian, Q. Yin, W. Zeng, H. Li, Y. Yang, A Nonlinear Adaptive Control Approach forQuadrotor UAVs[C], Proceedings of the Asian Control Conference, Kaohsiung, Taiwan, May15-18,2011,223-228.
    [116] I. Sadeghzadeh, A. Mehta, Y. Zhang, Fault/Damage Tolerant Control of a Quadrotor HelicopterUAV using Model Reference Adaptive Control and Gain-Scheduled PID[C], Proceedings of theAIAA Guidance, Navigation, and Control Conference, Portland, Oregon, August8-11,2011,AIAA2011-6716.
    [117] R. Rysdyk, R. Agarwal, Nonlinear Adaptive Flight Path and Speed Control Using Energy Prin-ciples[C], Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit,Monterey, California, August5-8,2002, AIAA2002-4440.
    [118] R. Akmeliawati, I. Mareels, Nonlinear Energy-Based Control Method for Aircraft AutomaticLanding Systems[J], IEEE Transactions on Control Systems Technology,2010,18(4):871-884.
    [119] Z. Zuo, Trajectory Tracking Control Design with Command-Fltered Compensation for aQuadrotor[J], IET Control Theory and Applications,2010,4(1):2343–2355.
    [120] M. Efe, Neural Network Assisted Computationally Simple PIλDμControl of a QuadrotorUAV[J], IEEE Transactions on Industrial Informatics,2011,7(2):354-361.
    [121] A. Das, F. Lewis, Dynamic Neural Network based Robust Backstepping Control Approach forQuadrotors[C], Proceedings of the AIAA Guidance, Navigation and Control Conference andExhibit, Honolulu, Hawali, August18-21,2008, AIAA2008-6780.
    [122] C. Coza, C. Coza, C. J. B. Macnab, A. Ramirez-Serrano, Adaptive Fuzzy Control for a QuadrotorHelicopter Robust to Wind Buffeting[J], Journal of Intelligent and Fuzzy Systems,2011,22(5):267-283.
    [123] B. Erginer, E. Altug, Design and Implementation of a Hybrid Fuzzy Logic Controller for aQuadrotor VTOL Vehicle[J], International Journal of Control Automation and Systems,2012,10(1):61-67.
    [124] T. Hamel, R. Mahony, A. Chriette, Visual Servo Trajectory Tracking for a Four rotor VTOLAerial Vehicle[C], Proceedings of the IEEE Conference on Robotics and Automation, WashingDC, USA, December10-14,2002,2781-2786.
    [125] Y. Morel, A. Leonessa, Direct Adaptive Tracking Control of Quadrotor Aerial Vehicles[C], Pro-ceedings of the Florida Conference on Recent Advances in Robotics, Miami, FL, USA, Novem-ber10-13,2006,1-6.
    [126] H. Khalil, Nonlinear Systems[M],3rd Edition. New York: Prentice Hall,2002.
    [127] M. de Queiroz, D. Dawson, S. Nagarkatti, Lyapunov-Based Control of Mechanical System[M],Cambridge: Birkhauser,2000.
    [128] X. Zhang, D. Dawson, M. de Queiroz, Adaptive Control for a Class of MIMO Nonlinear Systemswith Non-Symmetric Input Matrix[C], Proceedings of the IEEE International Conference onControl Applications, Taipei, Taiwan, October9-13,2004,1324-1329.
    [129] M. Krsitic, I. Kanllakopoulus, P. Kokotovic, Nonlinear and Adaptive Control Design[M], NewYork: Jon Wiley and Sons,1995.
    [130]熊洪允,曾绍标,毛云英,应用数学基础[M],第四版,天津:天津大学出版社,2004.
    [131] P. C. Hughes, Spacecraft Attitude Dynamics[M], New York: John Wiley and Sons,1994.
    [132] M. W. Spong, M. Vidyasagar, Robot Dynamics and Control[M], New York: John Wiley andSons,1989.
    [133] F. L. Lewis, C. T. Abdallah, D. M. Dawson, Control of Robot Manipulators[M], New York:MacMillan Publishing Co.,1993.
    [134] P. M. Patre, W. MacKunis, K. Kaiser, W. E. Dixon, Asymptotic Tracking for Uncertain Dynam-ic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Struc-ture[J], IEEE Transactions on Automatic Control,2008,53(9):2180-2185.
    [135] P. M. Patre, S. Bhasin, Z. D. Wilcox, W, E. Dixon, Composite Adaptation for Neural Network-Based Controllers[J], IEEE Transactions on Automatic Control,2010,55(4):994-950.
    [136] J. Chen, A. Behal, D. M. Dawson, Robust Feedback Control for a Class of Uncertain MIMONonlinear Systems[J], IEEE Transactions on Automatic Control,2008,53(2):591-596.
    [137] X. D. Li, B. Xian, C. Diao, Y. P. Yu, K. Y. Yang, Y. Zhang, Output Feedback Control of Hyper-sonic Vehicles Based on Neural Network and High Gain Observer[J], Science China InformationSciences,2011,54(3):429–447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700