基于LabVIEW的船式旋耕埋草机功耗检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国南方主要粮食作物之一。机械收获后残留田间的大量秸秆给后续水田耕整地造成了难以逾越的困难。船式旋耕埋草机作为一种适于我国南方油—稻、麦—稻、稻—稻、肥—稻等多熟制稻作水田的新型耕整机具,自2007年试验示范以来,推广辐射区域由最初仅湖北省内4个县市扩大到2009年的6省34个县(市、区),受益农户累计达3.8万户,创造了良好的社会效益、经济效益和生态效益。该机能一次性完成压秆→旋耕→碎土→埋秆→平田等多道工序,实现水稻播栽前的土壤适度耕整、秸秆埋覆还田机械化联合作业。其后置的左右螺旋刀辊是主要功率消耗部件。目前,针对该新型刀辊的功率配备只是采用了定性试验和类比的方法,因此对其进行定量功耗试验研究,探讨进一步节能降耗途径和产品系列化开发具有重要意义。
     通过测量扭矩来获取功率是功耗测试的主要方法之一。本文基于虚拟仪器和相位差式扭矩测量技术,运用LabVIEW软件进行数据分析,对船式旋耕埋草机田间作业功耗进行了实时测试。主要结论有以下几个方面:
     (1)从软、硬件两方面着手,构建了基于虚拟仪器的功耗、扭矩测试系统。研究了船式旋耕埋草机水田功耗检测需求,根据相位差式检测原理,设计了基于此原理的功耗检测装置,该方法及装置具有非接触、简单适用、灵活性强等特点,适合船式旋耕埋草机田间功耗的实时检测。测试软件在LabVIEW平台上进行开发,快速、灵活、易于操作。
     (2)在功率测试平台上对测试系统进行了标定。经测功机标定,得出基于相关函数法的测试系统测试精度、稳定性和线性等关键指标均要好于傅立叶变换法及过零检测法,其对功耗的测量精度在4.5%以内,另外两种方法精度均大于5%,因此,将确定了基于相关法的测试程序进行田间试验。
     (3)选择了冬闲杂草田、油菜秸秆田、中稻秸秆田等3种作业对象,对船式旋耕埋草机作业功耗进行了实时检测。通过试验,探索出船式旋耕埋草机水田作业较佳模式:实行两遍耕整,刀辊转速310r/min,其中,第一遍作业耕深55mm,其平均作业功耗为7.13kW;第二遍作业耕深达到110mm,其平均作业功耗为7.59kW,两遍耕整后秸秆埋覆率达到95%以上。现有的13kW配套动力满足作业要求。
     (4)经台架标定和田间试验验证,本文构建的基于虚拟仪器技术和相位差测量原理的功耗、扭矩测试系统,可以广泛应用于农业及工业机械功耗的实时检测,具有非接触、测量可靠、系统简单、测量范围大、易于操作等优点。
The multiple rice-cropping systems had existed in southern China for a long time. Such systems include rape-rape-rice rotation, wheat-rice rotation, two-harvest rice and green manure-rice etc. A practical problem is the high stubble-mulch can be hardly overturned by human and animal labor or conventional tillage machines. Boat-rotary tillage and stubble-mulch machine, developed by Huazhong Agricultural University, is very suitable to solve this problem, which could complete prostrate straw, rotary tillage, stubble-mulch, level paddy field simultaneously, and could achieve protective mechanized cultivation. The boat-rotary tillage and stubble-mulch machine had been sold more than 630 sets since this machine began popularization in 2007, and created a very good social, economic and ecological benefit, more than 38 thousand farmers in 34 countries of 6 provinces had benefited for this machine. The left and right spiral roller blade is the main power consume component of the machine. At present, according to the power equip of the new roller, usually adopted qualitative method of experiment and analogy method. So its quantitative power consumption research is very significant.
     This paper based on virtual instrument and phase-difference torque measuring technology, adopted LabVIEW software for data analysis, the main results and conclusions as follows:
     (1) Established a power, torque testing system based on virtual instrument. This paper had analyzed the test needs of boat-rotary tillage and stubble-mulch machine working in paddy fields, adopted phase-difference detection method, which had non-contact, adaptable, flexibility features, and was very suitable for testing power consumption of the boat-rotary tillage and stubble-mulch machine. The software had been developed on the LabVIEW platform.
     (2) Calibrated the testing system on engine test bench. Using the correlation method, FFT method and zero-crossing method of data processing methods to compile program, then the system has been calibrated on the engine test bench. The results showed that:the system based on the correlation method had the best accuracy, stability, and linearity, it's accuracy was lower than 4.5%, and the other two methods were greater than 5%.
     (3) Operated real-time detection of power consumption to boat-rotary tillage and stubble-mulch machine in winter fallow field, rape field and mid-season rice field. And found the best model for paddy field operations:tillage for twice, of which the first tillage depth 55mm, the second tillage depth 110mm, roller blade speed of 310r/min, and the forward speed is 1.7m/s, its power consumption is less than 9kW, so the existing 13kW power can meet the operational requirements.
     (4) The calibration and field test had showed that, the power, torque testing system based on virtual instrument and phase-difference technology can be widely used in agricultural and industrial machinery's real-time power detection.
引文
1. 安英博,卢博友,孟彩茹等.基于无线传输的旋耕机扭矩测量系统设计.农机化研究,2009,(3):95-97
    2. 白鹏.基于虚拟仪器的相位测量算法研究.电测与仪表,2002,(6):20-22
    3. 陈锡辉,张银鸿.LabVIEW 8.20程序设计从入门到精通.清华大学出版社,2007
    4. 董全林,刘彬等.一种利用激光多普勒技术测量扭矩的原理研究.计量学报,2004,(1):47-49
    5. 龚丽农,高焕文,蒋金琳.免耕播种机玉米根茬处理装置作业功耗试验研究.农业工程学报,2008,24(7):124-127
    6. 谷金清.扭矩传感器的无线数据采集系统的设计.河北工业大学硕士学位论文,2005
    7. 韩洋,侯文.高精度低频正弦信号相位差测量.研究与开发,2008,27(2):41-43
    8. 贺天柱,孙喻.虚拟仪器技术及其编程语言LabVIEW.现代电子技术,2005,15(206):61-63
    9. 姜阔胜,梁应选,杨明亮.虚拟仪器在机械传动试验台扭矩测量中的应用.陕西理工学院学报(自然科学版),2008,24(4):1-5
    10.陆招兰,施文康.相位差检测分析与仿真计算.武汉工业学院学报,2009,28(1):45-48
    11.李娜娜,吴伯农.基于谱分析法求转轴扭矩的原理研究.微型机与应用,2009,(22):53-56
    12.龙华伟,顾永刚.LabVIEW 8.2.1与DAQ数据采集.北京:清华大学出版社,2008,8:8-25
    13.路艳洁,席志红,王姜铂.FFT法与数字相关法在相位测量上的比较.信息技术,2007,12:105-108
    14.李霞明.磁电式扭矩测量仪的设计与误差分析.江苏大学硕士学位论文,2007
    15.刘朋.基于LabVIEW的旋转机械在线监测系统研究.大连理工大学硕士学位论文,2006
    16.罗锡文,朱立学.关于南方农业机械化发展战略的思考.中国农业工程学会学术年会论文集,2005:4-8
    17.雷冬梅.光栅扭矩传感器动态测量系统的数据采集与处理研究.重庆大学硕士学位论文,2005
    18.雷雨,陶永红.数字化相位差测量算法的研究.四川工业学院学报,2004,23(S1):110-112
    19.刘海鸥,陈慧岩,郑慕侨.履带车辆随车扭矩测试系统的研究.农业机械学报,2003,(5):29-31
    20.刘灿涛,赵伟,袁俊.基于数字相关原理的相位差测量新方法.计量学报,2002,23(3):219-223
    21.刘孝民,尤玉锴,周晓艳.旋耕机运动参数优化问题的讨论.农业机械学报,1996,27(2):137-140
    22.孟宗,刘彬.回转机械扭矩实时检测系统的研究.仪器仪表学报,2005,26(8):38-39
    23.欧大生,张剑平,秦建文.磁电相位差式转矩测量技术研究.电子测量技术,2007,(4):100-103
    24.彭三河.旋耕机功率利用系数的试验研究.长江大学学报(自然版),2005,2(8):88-91
    25.祁春.基于虚拟仪器技术的抽油机测试系统研究与开发.武汉理工大学硕士学位论文,2009
    26.乔晓艳,贾莲凤.基于虚拟仪器的相位差软件测量算法研究.计算机测量与控制,2003,11(6):415-417
    27.王莉,杨鹏.基于LabVIEW的数字式相位差测量仪的设计.仪表技术,2009,(11):45-48
    28.王永高,薛冬新,宋希庚.基于LabVIEW的相位差法测量发动机轴功率.微计算机信息,2007,23(1):76-77
    29.文西芹,张永忠,刘成文.基于磁弹性效应的磁头型扭矩传感器.化工矿物与加工,2003(8):17-20
    30.王志刚,郭书彪等.旋转动力机械的扭矩测试技术研究.车辆与动力技术,2001,(3):11-15
    31.肖华.船舶动力装置轴功率测量方法研究.武汉理工大学硕士学位论文,2009
    32.夏俊芳,张国忠,许绮川.多熟制稻作区水田旋耕埋草机的结构与性能.华中农业大学学报,2008,27(2):331-334
    33.熊诗波,黄长艺.机械工程测试技术基础.机械工业出版社,2006:161-167
    34.肖经文.用汽车拖拉机综合测试仪测试旋耕机功耗.拖拉机与农用运输车,1998,(3):43-45
    35.徐顺达.旋耕机功率消耗测定技术.农机与食品机械,1996,(2):9-10
    36.杨俊锋.基于虚拟仪器的动态扭矩实验测试系统的研究.燕山大学硕士学位论文,2007
    37.臧英,罗锡文,周志艳.南方水稻种植和收获机械化的发展策略.农业机械学报,2008,39(1):60-63
    38.张超凡,黄宏伟,汤志军.无线局域网络技术在田间秸秆粉碎功耗测试中的应用.农业工程学报,2008,39(4):125-127
    39.张国忠,许绮川,夏俊芳等.1 GMC-70型船式旋耕埋草机的设计.农业机械学报,2008,39(10):214-217
    40.张志刚.基于虚拟仪器转矩-功率测试仪的研制.重庆大学硕士学位论文,2006
    41.张在平.旋耕埋秆技术研究与试验.华中农业大学硕士学位论文,2005
    42.张家生,刘扬.相位检测方法研究.仪器仪表学报,2003,24(4):307-309
    43.张金龙.内燃机实时测功装置传感器的研究.农业机械学报,2002,33(1):16-18
    44. Asad M. Madni, et al. A Differential Capacitive Torque Sensorwith Optimal Kinematic Linearity. IEEE Sensors Journal,2007,7(5):800-807
    45. Changting Wang, Robert Gao. A Virtual Instrumentation System for Integrated Bearing Condition Monitoring. Instrumentation and Measurement,2000,49(2):38-42
    46. D. Son, S. J.. Lim, C. S. Kim. Non-contact Torque Sensor Using the Difference of Maximum Induction of Amorphous Cores. IEEE Transactions on Magnetics,1992,28(5):2205-2207
    47. F. Mauer, R. J. Watts. On-line Cylinder Diagnostics On Combusition Engines by Nontact Torque and Speed Measurement. SAE paper 890485. Vo98,925-932
    48. Ivan J. Garshelis, Christopher A. Jones. Miniaturized Magneto-elastic Torque Transducers. IEEE Transactions on Magnetics,1999,35(5):3649-3651
    49. I. Sasada, S. Uramoto, k. Harada. Noncontact Torque Sensors Using Magnetic Heads and a Magnetostrictive Layer on the Shaft Surface. IEEE Transactions on Magnetics,1986,22(5): 406-408
    50. J. D. Turner. The development of a thick-film non-contact shaft torque sensor for automotive application, in phys. E, SCI. Instrum,1989(22),82-88
    51. Kunio Miyashita, et al. Non-contact Torque Sensor. IEEE Transactions on Magnetics,1990, 26(5):1560-1562
    52. Reinoud F. Wolffenbuttel, Jens A. Foerste. Noncontact Capacitive Torque Sensor For Use on a Rotating Axle, IEEE Trans. lnstr. Meas,1990(39).6,1008-1013
    53. Y. Nonomura, J. Sugiyama, K. Tsokada. Measurements of Engine Torque with the Intra-Bearing Torque Sensor, SAE paper. NO.870472, Vo196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700