基于虚拟仪器的螺旋型旋耕埋草刀辊转矩测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国南方主要粮食作物之一。机械收获后残留田间的大量秸秆给后续水田耕整造成了极大的困难。船式旋耕埋草机作为一种特别适于我国南方油—稻、麦—稻、稻—稻、肥—稻等多熟制稻作水田的新型耕整机具,能一次性完成压秆→旋耕→碎土→埋秆→平田等多道工序,实现水稻播栽前的土壤适度耕整、秸秆埋覆还田机械化联合作业。其后置的左右螺旋旋耕埋草刀辊是其主要的功率消耗部件。目前,针对该新型刀辊的功率配备只是采用了定性试验和类比的方法,其实际功耗也无具体准确数据。这给刀辊的切削机理研究、节能降耗研究和参数优化研究带来很大的困难。因此需要合适的方法与途径测量刀辊功耗。
     土壤机械阻力是土壤的一个重要力学性质,对农作物的生长和农业机械的作业能耗有很大的影响。土壤机械阻力反映在旋耕刀等旋转运动土壤耕作机具上表现为对旋转运动中心的切削阻力矩。传统测量方法主要是用土壤圆锥仪或硬度计测量圆锥指数,这种方法效率低、工作量大,且测量值为散点值,不能准确反映土壤机械阻力空间分布。因此需要连续测量土壤机械阻力的方法,这种连续测量方法可以通过测量刀辊主轴转矩实现。
     基于以上两点原因,本文基于LabVIEW软件设计了螺旋型旋耕埋草刀辊转矩测试系统。并运用该测试系统进行了室内土槽试验,研究了刀辊运动参数对刀辊转矩的影响。
     测试系统由JN338A旋转式传感器、NIPCI-6024E数据采集卡和LabVIEW软件程序组成。能够自动连续测量刀辊转矩、转速和功率,并将采集结果实时显示和存储。该测试系效率高,操作简便,且标定结果表明,该系统具有很高的精度。能够用作刀辊转矩检测工作,为分析刀辊功耗影响因素、探寻刀辊工作机理及分析土壤机械阻力提供数据支撑。
     土槽试验包括刀辊前进速度变化、刀辊转速变化和耕深变化的单因素试验及一次回归正交试验。试验过程中,刀辊前进速度变化范围为0.1m/s-0.5m/s、刀辊转速变化范围为260r/min-340r/min、刀辊耕深变化范围为75mm-100mm。单因素试验结果表明,刀辊转矩随前进速度变大而迅速变大,它们之间呈指数关系增长;随转速的增加呈下降趋势,但趋势较小;随耕深的增加而迅速变大。一次回归正交试验结果表明,刀辊前进速度和耕深对刀辊转矩有显著影响,刀辊转速对其影响不显著。
Rice is one of the main crops in southern China. Residual straws after machinary harvest bring big difficulty for paddy fields tillage. Boat rotary tillage and stubble-mulch machine is a new tillage equipment of mechanized protective cultivation, which is suitable to rice multi-cropping paddy fields. It can complete prostrate straw, rotary tillage, stubble-mulch, level off paddy field simultaneously, and could realize moderate tillage of paddy fields, return stubbles to fields with combined operation of mechanized. The spiral rotary tillage and stubble-mulch roller is the main working parts and the leading power consume parts of the boat machine. At present, only qualitative test and analogy method are used to analysis the power consumption of the new roller, the inaccurate dataes obtained cause great difficulties for study on roller's working mechanism and parameter optimization. Therefore, reasonable method is needed to measure the roller's power consumption.
     Soil mechanical resistance is an important mechanics property of soil. It has a great influence on corp growing and soil tillage. Soil mechanical resistance is shown as cutting torque for rotating tillage equipment. The traditional measurement is mainly use penetrometer to measure cone index, this method is low efficienty and heavy workload. And the result of the measurement is scattered point date, it can't accurately reflect the spatial distribution of soil mechanical resistance. Therefore, continuous measurement which can be realized by measuring the torque of the roller is required to measure soil mechanical resistance.
     A torque testing system based on LabVIEW was designed. The soil-bin experiment with the teting system was carried out to find the relationship between the roller's motion parameters and torque.
     The torque testing system is made up of JN338A torquel sensor, N1 PCI-6024E DAQ card and LabVIEW programs. With this system, the torque, speed and power can be tested automatically and continuously, and the results can be displayed and stored simultaneously. The testing system is in high efficiency and easy to operate. The calibration results show that the the testing is also in high precise. It can be used to test torque of the roller, providing data support for analysis of influencing factors of the roller's power consumption and exploring roller's working mechanism and analysis of soil resistance.
     The soil-bin experiment includes single factor experiment and linear regression orthogonal experiment of different roller's forward speed, rotating speed and ploughing depth. During the experiment, the roller's forward speed range is 0.1m/s-0.5m/s, rotating speed range is 260r/min-340r/min, ploughing depth range is 75mm-100mm. Single factor experiment results show that, the roller's torque has a exponentially relationship with the roller's forward speed, and it decreases when the rotating speed increases, but the trend is smaller, the roller's torque increases rapidly when the ploughing depth become deeper. Regression orthogonal experiment results show that the roller's forward speed and ploughing depth have significant effect on torque, as well as the rotating speed has no significant effect on torque.
引文
1.柏林,王见,秦树人.虚拟仪器及其在机械测试中的应用[M].北京:科学出版社,2007
    2.陈怀琛.数字信号处理教程—MATLAB释义与实现[M].北京:电子工业出版社,2008
    3. 陈磊,徐春广,郝娟,等.基于声表面波谐振器的无源扭矩传感器研究[J].传感器与微系统,2008,27(10):73-75
    4.陈锡辉,张银鸿.LabVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2008
    5.程卫东,董永贵,李源,等.无线无源声表面波扭矩传感器的研究[J].压电与声光,2000,22(1):1-3
    6.董全林,刘彬,杨海马.激光多普勒技术用于大型转轴扭矩测量原理的研究[J].中国激光,2003,30(11):1019-1022
    7. 高爱云,付主木,甄济营.双立轴式玉米秸秆还田装置切碎功耗的试验研究[J].农机化研究,2006,5:141-143
    8.高长银,孙宝元,钱敏.基于压电石英晶片扭转效应的扭矩传感器原理与研制[J].大连理工大学学报,2005,45(4):557-561
    9.葛维晶,王伟生.激光多普勒技术用于内燃机等旋转轴系扭振测量的研究[J].小型内燃机,1994,23(2):53-57
    10.龚丽农,高焕文,蒋金琳.免耕播种机玉米根茬处理装置作业功耗试验研究[J].农业工程学报,2008,24(7):124-127
    11.郭杰.基于虚拟仪器的切削振动监测与分析系统的研究[D].[硕士学位论文].南京:南京航空航天大学,2006
    12.郭沛飞,贾振元,杨兴,等.压磁效应及其在传感器中的应用[J].压电与声光,2001,23(1):26-29
    13.胡宾,刘伟,蒋明涌,等.动力装置轴系动态扭矩直接测试方法研究[J].柴油机,2005,27(2):31-33
    14.黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社,2006
    15.黄震,刘彬,董全林.基于激光多普勒技术扭振测量的研究[J].光学学报,2006,26(3):299-302
    16.贾洪雷,汲文峰,韩伟峰,等.旋耕-碎茬通用刀片结构参数优化试验[J].农业机械学报,2009,40(7):45-50
    17.蒋爱华.基于虚拟仪的发动机功率检测与故障诊断的研究[D].[硕士学位论 文].武汉:华中农业大学,2006
    18.李范哲,朴今淑.评价土壤工作部件工作阻力的数学模型[J].延边农学院学报,1996,18(3):159-162
    19.李敏,孟臣,文凯.数字式高精度转矩转速测量仪的研制[J].电工技术杂志,2004,1:80-82
    20.林君,谢宣松.虚拟仪器原理及应用[M].北京:科学出版社,2006
    21.刘朋.基于LabVIEW的旋转机械在线监测系统研究[D].[硕士学位论文].大连:大连理工大学,2006
    22.龙华伟,翟超,胡冬青,等.基于LabVIEW的步进电动机扭矩测试系统[J].计量学报,2008,29(1):60-64
    23.罗锡文,陈爱新.计算机控制的土壤圆锥仪[J].华南农业大学学报,1995,3(17):1-6
    24.马学知.基于虚拟仪器的齿轮故障检测系统[D].[硕士学位论文].长沙:湖南大学,2007
    25.孟臣,李敏.JN338智能数字式转矩转速传感器及其应用[J].国外电子元器件,2003,11:56-58
    26.闵永军,张为公,周木子,等.基于车轮扭矩传感器的轮胎滚动阻力测试系统开发[J].汽车技术,2006,7:28-31
    27.祁春.基于虚拟仪器技术的抽油机测试系统研究与开发[D].[硕士学位论文].武汉:武汉理工大学,2009
    28.荣长发,孙光明,吴华.土壤切削力学[J].农业与技术,1997,2:3-7
    29.山琦二郎.日本应用磁学会志,1986,10(2):375-378.
    30.桑正中,王长兵.逆转旋耕过程中土壤切削的研究[J].农业工程学报,1996,12(4):123-126
    31.石博强,赵德永,李畅,等.LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2002
    32.孙颖,陈柯行,柴继新,等.旋转扭矩传感器无线传输技术[J].电子产品世界,2005,9:86-89
    33.王荣,蔡德源.一种逆磁致伸缩扭矩传感器.现代科学仪器,1992,2:44-45
    34.王万钧.农业机械设计手册[M].北京:机械工业出版社,1988
    35.文西芹,张永忠,宁晓明.逆磁致伸缩效应扭矩传感器的历史、现状、趋势[J].传感器世界,2002,1(2): 1-7
    36.文西芹,赵明光.基于非晶薄带逆磁致伸缩特性的非接触扭矩传感器[J].淮海工学院学报(自然科学版),2006,15(2):11-14
    37.翁桂荣,岳强.微型遥测扭矩仪[J].电子技术应用,1994,(5):19-20
    38.夏俊芳,张国忠,许绮川,等.多熟制稻作区水田旋耕埋草机的结构与性能[J].华中农业大学学报,2008,27(2):331-334
    39.夏拥军.土壤机械阻力连续测定及初步应用的研究[D].[硕士学位论文].南京:南京农业大学,2004
    40.夏拥军,丁为民.土壤机械阻力的测定及其应用[J].农机化研究,2006,10:190-196
    41.胥芳,张立斌,周国君.新型机电一体静载土壤承压仪的研究[J].浙江工业大学学报,1997,25(2):210-223
    42.许绮川, 夏俊芳, 张国忠. 船式旋耕埋草机[P]. 中国ZL200520099738.4[P].2007-05-09
    43.许述财.基于虚拟技术的联合整地机动力特性研究[D].[博士学位论文].长春:吉林大学,2007
    44.杨建成.基于虚拟仪器的农机测试系统的研究及其应用[D].[硕士学位论文].北京:中国农业大学,2000
    45.杨俊.基于LabVIEW的电机噪声振动测试分析系统[D].[硕士学位论文].杭州:浙江大学,2007
    46.余成波,张莲,陈学军,等.螺管形差动变压器的非接触式扭矩传感器研究[J].仪器仪表学报,2006,27(8):881-884
    47.喻洪麟,王远干,刘旭飞,等.一种基于光栅扭矩传感器的扭矩测量系统设计[J].光学精密工程,2004,12(3):119-123
    48.于家明,何礼高.基于虚拟仪器的电机转矩转速测试系统[J].电机与控制应用,2008,35(1):36-42
    49.张超凡,师清翔,李济顺,等.虚拟转速转矩功率测试系统[J].传感器与微系统,2006,25(2):47-52
    50.张超凡,师清翔,李济顺,等.遥测系统在玉米秸秆粉碎功耗田间测试中的应用[J].农业工程学报,2007,23(2):112-116
    51.张国忠,许绮川,夏俊芳,等.1GMC-70型船式旋耕埋草机的设计[J].农业机械学报,2008,39(10):214-217
    52.张利民,罗锡文.差分GPS定位技术在土壤耕作阻力测量中的应用[J].农业工程学报,1999,15(4):35-39
    53.张小虹,黄忠虎,邱正伦.数字信号处理[M].北京:机械工业出版社,2008
    54.张在平.旋耕埋秆技术研究与试验[D].[硕士学位论文].武汉:华中农业大学,2005
    55.张志刚.基于虚拟仪器转矩—功率测试仪的研制[D].[硕士学位论文].重庆:重庆大学,2006
    56.赵新,罗锡文,L G Wells.土壤阻力连续测试设备研制[J].农业工程学报,2009,25(2):67-71
    57.周明.基于有限元法的螺旋型旋耕埋秆刀辊横刀工作机理研究[硕士学位论文].武汉:华中农业大学,2009
    58. Adamchuk V I, Morgan M T, Sumali H. Application of a Strain Gauge Array to Estimate Soil Mechanical Impedance On-the-go[J]. Transactions of ASAE,2001a, 44(6):1377-1383
    59. Adamchuk V I, Morgan M T, Sumali H. Mapping of Spatial and Vertical Variation of Soil Mechanical ResistanceUsing a Linear Pressure Model[J]. Paper No.01-1019. ASAE, St.Joseph, Michigan, USA.2001b
    60. Adamchuk V I, Hummel J W, Morgan M T, Upadhyaya S K. On-the-go soil sensors for precision agriculture[J]. Comput.Electron. Agr,2004,44(1):71-91
    61. Adamchuk V I, Christenson P T. Development of an instrumented blade system for mapping soil mechanical resistance represented as a second-order polynomial J]. Soil & Tillage Research,2007,95:76-83
    62. Alihamsyah T, Humphries E G, Bowers C G. A Technique for Horizontal Measurement of Soil Mechanical Impedance[J]. Transactions of ASAE,1990,33(1): 73-77
    63. Andrade P, Upadhyaya S K, Jenkins B M, et al. Field Evaluation of the Improved Version of the UC DavisCompaction Profile Sensor (UCD-CPS) [J]. Paper No. 04-1037. ASAE, St.Joseph, Michigan, USA.2004
    64. Chi L, Kushwaha R L. A non-linear 3-D finite element analysis of soil failure with tillage tools[J]. Terramech,1990,27(4):343-366
    65. Chung S O, Sudduth K A, Hummel J W. Design and validation of an on-the-go soil strength profile sensor[J]. Transactions of ASABE,2006,49(1):5-14
    66. Chung S O, Sudduth K A. Soil failure models for vertically operating and horizontally operating strength sensors[J]. Transactions of ASABE,2006,49(4): 851-863
    67. Clemer B, Stomerbaugh T. Continuously-measuring soil compactionsensor development[C]. Presentation (paper no.001041) at the 2000 ASAE Annual International Meeting. Midwest Express Center, Milwaukee, Wisconsin, U.S.A., 2000
    68. Glancey J L, Upadhyaya S K, Chancellor W J, et al. An instrumented chisel for the study of soil tillage dynamics[J]. Soil & Tillage Research,1989,14:1-24
    69. Godwin R J, Spoor G, Soil failure with narrow tines[J]. Agric. Eng. Res.,1977,22(4): 213-228
    70. Hemmat A, Adamchuk V I, Jasa P. Use of an instrumented disc coulter for mapping soil mechanical resistance[J]. Soil & Tillage Research,2008,98:150-163
    71. Hettiaratchi D R P, Reece A R. The calculation of passive soil resistance[J]. Geotechnique,1974,24(3):45-67
    72. Kushwaha R L, Chi L, Shen J. Models for soil forces on narrow tillage tools[J]. Can. Agric, Eng.,1993,35(3):183-193
    73. McKyes E, Ali O S. The cutting of soil by a narrow blade[J]. Terramech,1977,14(2): 43-58
    74. McKyes E, Desir F L. Prediction and field measurements of tillage tool draft forces and efficiency in cohesive soils[J]. Soil & Tillage Research,1984,4(5):459-470
    75. Perumpral J V, Grisso R D, Desai C S. A soil-tool model based on limit equilibrium analysis[J]. Transactions of ASAE,1983,26(4):991-995
    76. Perumpral J V. Cone Penetrometer Applications-A Review[J].Transactions of ASAE, 1987,30(4):939-944
    77. Reece A R, The fundamental equation of earth-moving mechanics, Symp. on Earth-Moving Machinery,Proc. Inst. Mech. Eng,1965,179(3f):16-22
    78. Siefken R J, Adamchuk V I, Eisenhauer D E, Bashford L L. Mapping soil mechanical resistance with a multiple blade system[J]. Appl. Eng. Agr,2005,21(1):15-23
    79. Sirjacobs D, Hanquet B, Lebeau F, Destain M F.On-line Soil Mechanical Resistance Mapping and Correlation with Soil Physical Properties for Precision Agriculture[J]. Soil & Tillage Research,2002,64:231-242
    80. Sun Y, Ma D, Lammers P S, Schmittmann O, et al. On-the-go measurement of soil water content and mechanical resistance by a combined horizontal penetrometer[J]. Soil & Tillage Research,2006,86:209-217
    81. Tollner E W, Simonton W. A Cone Penetrometer System for Measuring Cone Index and Stress Relaxation[J]. Transactions of ASAE,1989,32(1):58-63
    82. Zhang J, Kushwaha R L. A modified model to predict soil cutting resistance [J]. Soil & Tillage Research,1995, (34):157-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700