基于DSP对光纤电流传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计了一种基于法拉第效应的光纤电流传感器。传感头使用块状重火石玻璃ZF6制成。为了补偿偏振光在传感头中反射产生的相位差,传感头被设计成具有相位补偿功能的几何行状。设计的光纤电流传感器使用了TMS320VC5402DSP芯片完成信号处理工作,使得系统的精度和实时性得到极大提高;使用单片机作为上位机控制DSP处理数据和液晶显示屏显示测量结果,可以同时显示电流的瞬时值、有效值和频谱特性。
     设计了光纤电流传感器的光路系统,建立了传感头能够进行几何相位补偿的数学模型,并推导出了用双光路检测法进行温度补偿的数学模型。
     其次,设计了具有温度补偿功能的光源驱动电路、放大滤波电流和信号处理电路,并编制了系统驱动程序。
     最后,设计和建立了实验系统,对实验数据进行分析计算得出了光纤电流传感器的各项性能参数,结果表明各项性能均达到了设计要求。对光纤电流传感器的温度特性进行了实验,得出了温度补偿公式,通过软件对测量结果进行了补偿,使系统具有了良好的温度稳定特性。
     本文所设计的光纤电流传感器的量程为0~1000安培,精度达到了0.3%,非线性≤0.3%,响应时间小于2微秒,灵敏度为0.9992。
A optical fiber current sensor (OCS) has been developed in this thesis. The sensing head is made of a block of flint glass ZF6, and it has been designed into a particular shape in order to reduce the phasic difference generated by refraction in the sensing head. This OCS uses a TMS320VC5402 digital signal processor (DSP) to process digital signal, it makes the OCS can get a real-time measure result. A singlechip was used to control the DSP and a liquid crystal display screen;the screen can display the current's instantaneous value, effective value and spectral parameters.At the beginning of the thesis, the opticator of OCS was designed. And the phase-compensation mathematic model of geometric approach has been deduced. The mathematic model of temperature compensation of the two-luminous-beam measuring method was also deduced.Secondly, the amplification-filter circuit, the signal processing circuit and the illuminant drive which can compensate the fluctuation of temperature are designed. And the system drivers have programmed.Finally, the experimental system has been designed and set up. The performance parameters of OCS have been calculated from the test data. The performance parameters meet the requirements of design. Temperature characteristic of OCS has been tested, and the temperature compensation function is founded. And the measure results of OCS have been corrected by software, so the OCS had good stableness of temperature.The performance parameters of the OCS:Range ability: O-1O0OA;Accuracy: 0.3%;Non-linearity: <0.3%;Response time: <2us;Sensitivity: 0.9992
引文
[1] 赵渭忠等.光纤电流传感器及其法拉第磁光材料研究进展[J].现代科学仪器,1996,4
    [2] 谷内哲夫等.Fiber-optic Current and Voltage Meters[J]. National Technical Report, 1938, 29(5)
    [3] T. Yoshino, et al. Design and Application of Fiber-optic Electric and Magnetic Field Sensors for High Voltage Electric System [J]. International Conference on Optical Fiber Sensors(OFS)84. 55
    [4] Holm et al. Measurement system for magnetopic sensor materials Phys. E., 1984, vol. 17: 885,
    [5] A. H. Rose, G. W. Day. Fast, Sensitive Magnetic-field Sensors Based on the Faraday Effect in YIG[J]. Lightwave Technology, 1990, 8(12): 1838
    [6] A. H. Rose, G. W. Day,. Submieroampere-per-root-hertz current sensor based on the Faraday effedt in Ga: YIG[J]. Optical Letters. 1993, 18(17): 1471-1473
    [7] 刘晔等.光纤电流传感器传感头的结构与原理[J].仪表技术与传感器,2002(11)
    [8] KANOI M, TAKAHASHI G, SATOT, et al. Optic voltage and current measuring system for electric power systems[J]. IEEE Transactions on Power Delivery, 1986, PWRD-1(1): 91-97
    [9] 陈锡坤等.光纤电流传感器[J].半导体光电,1992,13(4)
    [10] BEN-KISH A, TUR M, SHAFIR E. Geomerical separation between the binefringence components in Faraday-rotation fiber-optic current sensors[J]. Optics Letter, 1991, 16(9): 687-689
    [11] 黄惠智等.光纤传感器的发展及其在电力系统中的应用[J].电工电能新技术,1990,(4):27~33.
    [12] A. H. Rose, et al. Twisting and Annealing Optical Fiber for Current Sensors[J]. Journal of lightwave technology, 1996, 14(11): 2492~2498
    [13] W. Chu, et al. Current sensing by mode coupling in fibre via the faraday effect[J], electronics letters, 1991, 27(3): 207~208
    [14] A. H. Rose, et al. Verdet Constant Dispersion in Annealed Optical Fiber Current Sensors[J]. Journal of lightwave teuhnology, 1997, 15(5): 803-807
    [15] Allen H. Rose. Optical fiber current sensors in high electric field environments[J]. Journal of lightwave technology, 1999, 17(6): 1042~1048
    [16] 崔三烈.光纤传感原理与应用技术[M].哈尔滨:哈尔滨工程大学出版社,1995,4
    [17] 徐时清等.全光纤电流传感器研究新进展[J].激光与光电子学进展,2004,41(4):41~45
    [18] 黄海,卜胜利.磁光玻璃磁致旋光效应的研究[J].应用光学,2004,25(4):14~17
    [19] 廖彦彪.偏振光学[M].北京:科学出版社,2003
    [20] 魏光辉等.矩阵光学[M].北京:兵器工业出版社,1995.8
    [21] Leung C K Y. Fiber optic in concrete: the future[J]. NDT&E International, 2001, 34: 85-96
    [22] 竺庆春等译.矩阵光学导论[M].上海:上海科学技术文献出版社,1991,10
    [23] 赵渭忠.YbBi··YIG磁光电流传感器性能研究[J].红外与毫米波学报,2001,20(4)
    [24] 赵渭忠等.高灵敏度温度稳定BiGd:YIG磁光光纤电流传感器性能及其品体生长研究[J].光电子·激光,1999年12月
    [25] 赵渭忠等.光纤电流传感器及其法拉第磁光材料研究进展[J].现代科学仪器,1996,4:36~38
    [26] 杨中民等.光纤传感器用磁光玻璃的研究进展[J].功能材料与器件学报,2003,9(2):227~232
    [27] 金恩培,张立彬.由ZF-6玻璃片构成的磁光旋转器[J].哈尔滨工程大学学报,1994,26(6):140~143
    [28] 杨中民等.全光纤传感用磁光玻璃的研究进展[J].中国稀土学报,2003,21(2):115~122
    [29] 卜胜利等.磁光玻璃费尔德常数的波长依赖性和磁光玻璃光纤电流传感器中存在的问题[J].磁性材料及器件,2003,34(1):14~16
    [30] 董小鹏等.可补偿偏置漂移的扭转光纤电流传感器[J].光学学报,1999,19(7):981~987
    [31] 苏立国.光纤电流传感器实用化研究[D].厦门:厦门大学,2002,5
    [32] 黄海.全光纤电流传感器中的信号检测方案与处理方法及光纤中双折射 效应的影响[J].安徽教育学院学报,2005,23(30):31~34
    [33] 焦斌亮等.用于消除振动影响的光纤电流传感器结构[J].中国激光,2004,31(4):470~472
    [34] 马天兵.基于DSP对光纤电压传感器的研制[D].淮南:安徽理工大学,2005,4
    [35] 潘英俊等.光电子技术[M].重庆:重庆大学出版社,2000.7
    [36] 赵家贵等主编.新编传感器电路设计手册[M].北京-中国计量出版社,2002.9
    [37] 杨永才等编著.光电信息技术[M].上海-东华大学出版社,2002
    [38] 高光天主编.传感器与信号调理器件应用技术[M].北京-科学出版社2002.7
    [39] 张福学编著.现代实用传感器电路[M].北京-中国计量出版社 1997.12
    [40] 江月松主编.光电技术与实验[M].北京-北京理工大学出版社 2000.9
    [41] (英)Andrew Bateman,(英)Iain Paterson-Stephens著.DSP算法、应用与设计[M].北京-机械工业出版社 2003
    [42] 朱铭锆等著.DSP应用系统设计[M].北京-电子工业出版社2002
    [43] 扈宏杰编著.DSP控制系统的设计与实现[M].北京-机械工业出版社 2004
    [44] 苏涛等.DSP接口电路设计与编程[M].西安-西安电子科技大学出版社,2003
    [45] 周生国.机械工程测试技术[M].北京:北京理工大学出版社,1998
    [46] 郑小平等.温度对光纤电压传感器测量精度影响的研究[J].光学学报,1997,10
    [47] 徐雁等.电光式光纤电压传感器温度影响及其补偿方法的研究.高压电器,2001,2
    [48] 李红斌等.光学电流传感器数据处理方法的研究[J].武汉城市建设学院学报,1996,11
    [49] 易本顺等.光学电流传感器的一种间接补偿方法[J].传感技术学报,1996,3(1):11~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700