一种新型高速双向光纤旋转连接数据传输链路的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在雷达、导航、舰艇等系统中常需要将信号或能量从一个旋转平台传输到另一静止平台。早期,旋转平台间的信号传输与控制采用电滑动环旋转传输电信号来实现。但是随着现代信息控制与处理对信号传输容量和带宽提出了更高的要求,电滑动环不能满足使用要求。因此,以光信号传输为基础,综合电光转换及数据处理的光纤旋转连接传输技术逐渐取代电滑动环的旋转连接技术。随着光通信技术的不断发展,新型光通信器件不断涌现,光纤旋转连接信号传输技术以其具有大传输容量、宽带宽、良好电磁兼容、体积小和重量轻等诸多优点,越来越受到研究重视。
     在本文中,一种以光纤旋转连接技术为核心,结合光/电信号转换与处理技术的光纤旋转连接高速双向数据传输系统设计方案被提出和实现。系统包括光/电收发模块、线路编码解码模块和双向光纤旋转连接信道三部分。通过对系统的光/电收发模块、双向传输光纤信道及高速数据传输性能的测试与分析,结果表明系统具有2.5Gbps的单路传输速率,低旋转损耗变化和插损,体积小,良好电磁兼容特性。采用光环行器结构的双向传输技术具有光路结构简单,信道隔离高,插损小和可靠性高的优点。
     通过对光纤旋转连接技术的分析,考虑其与WDM技术相结合的发展趋势,一种新型光纤旋转连接器的设计结构被提出和分析。该设计以光子晶体光纤为基础,采用直接耦合的方法实现低损耗的光纤旋转连接。耦合损耗理论分析结果表明,该设计方案能降低光纤旋转连接器的机械加工和装配精度,具有低插入损耗和简单的光路结构的优点,在目前国内现有条件下能实际生产。以光子晶体光纤作为光信号传输通道,能有效抑止WDM传输中产生的非线性效应,因而该光纤旋转连接器能更有效的与WDM技术相结合,大大提高信号传输容量。
Signals and energy often need to be transmitted from stationary platform to rotary platform in many fields, e.g. radar system, navigation system and naval vessels, etc. In the past, signal between stationary platform and rotary platform transmitted by electronic slip ring in order to realize remote control. As transmission capacity and band width of signal are increasing, performance of electronic slip ring could not meet the requirement of applied system. A kind of fiber optic rotary transmission technology, which is based on optic fiber signal transmission, is proposed and replace electronic slip ring. Researchers more and more focus on this kind of technology because of its properties of optic signal transmission, e.g. high transmission capacity, broad band-width, electromagnetic compatibility, low insertion loss, etc.
    In this paper, a kind of fiber optic rotary connection system with high signal transmission rate is presented and realized, which is based on fiber optic rotary connection and composed of optic-electronic transceiver modular, line code modular and bi-directional channel of fiber optic rotary. The results of measurement and analysis indicates that system possess maximum transmission rate of 2.5Gbps, low variation of insertion loss and total insertion loss, excellent EMC, etc. The method of bi-directional transmission is designed by using optic calculator, isolation degree, insertion loss and reliability of system by this way are better than other methods.
    A new type of fiber optic rotary joint is also proposed in the paper. Low loss connection of fiber optic rotary is realized by direct coupling of fiber, which is photon crystal fiber (PCF). The results of analysis of coupling theory indicates that the method of direct coupling of PCF decrease obviously accuracy of machining and assembly. The PCF joint posses low insertion loss of 0.5dB. It could be manufactured depend on the machining condition in domestic. The PCF joint could effectively suppress non-linear effect of S_1O_2 fiber. Therefore
引文
[1] W. E. Fromm, E. G. Fubini, H. S. Keen. A new microwave rotary joint[C]. Proceedings of IEEE, 1958-03.
    [2] E. D. Evans. An analysis of coupled-ring rotary joint design[J]. IEEE transactions on microwave theory and techniques, 1992, 40(3): 577-581.
    [3] SNOW J W. An overview of fiber optic rotary joint technology and recent advances[C]. Proceedings of the IFAC workshop on space robotics. IFAC Space Robotics, St-Hubert, Quebec, Canada: Elsevier Science, 1998. 77-82.
    [4] 孙强,周虚.光纤通信系统及其应用[M].北京:清华大学出版社,北方交通大学出版社,2004:72-74.
    [5] 刘琨,井文才,等.有旋转连接的双层光互连网络设计与分析[J].光电子激光,2005,16(6):694-697.
    [6] 张军峰,张三喜,等.分布式光电经纬仪测量系统信息传输设计[J].飞行器测控学报,2005,24(2):78-82.
    [7] Robert Rickenbach, Gilbert F. Perleberg, etal. Optical rotary joint for single and multimode fibers[P]. US Patent: 5633963, 1997-05-27.
    [8] Gregory H. Ames, Roger L. Morency, etal. Passive multi-channel fiber optic rotary joint assembly[P]. US Patent: 5371814, 1994-12-06.
    [9] Wei J Y. Advances in the management and control of optical internet. Proceedings of IEEE, 2002, 20: 768-785.
    [10] N Lewis, M Miller, J Ravita, etal. A four channel bidirectional data link using wave length division multiplexing. Proceedings of SPIE, 574: 47-54.
    [11] 微型光纤旋转接头(光滑环和电滑环)(MicroJx系列),普林光电技术有限公司.http://www.princetel.com.cn/forj_mjx.asp.
    [12] 贾大功,张红霞,等.无源对称光学结构双通道光纤旋转连接器[J].光电工程,2004,31(6).
    [13] 贾大功,张尹馨,等.双通道红外耦合旋转连接器[J].光电子激光,2003,14(12).
    [14] 贾大功,张以漠,等.无源多路光纤旋转器的设计[J].天津大学学报,2004,37(5).
    [15] 张以漠,井文才,贾大功,周革.多路光纤双向传输旋转连接器[P].中国专利:02116907.1,2002-04.
    [1] 孙学康,张金菊,等.光纤通信技术[M].北京:北京邮电大学出版社,2001:101-103.
    [2] 张宝富,等.光纤通信系统原理与实验教程[M].北京:电子工业出版社,2004:75-76.
    [3] 刘增基,等.光纤通信[M].西安:西安电子科技大学出版社,2001:96.
    [4] Albert X. Widmer, Peter A. Franaszek. A DC-Balanced, Partitioned-Block, 8B/10B Transmission Code[J]. IBM Journal of Research an Development, 1983, 27(5): 440.
    [5] Del Hanson. Comparison of Alternatives to Implement 10GbE Optical Links. http://www.ieee802.org/3/10G_study/public/march99/index.html, 1999-03-05.
    [6] Schelto Van Doorn. 10 Gig status and technology. http://www.ieee802.org/3/10G_study/public/march99/index.html, 1999-03-08.
    [1] 彭为国.光纤通信中的光收发合—模块设计及其应用研究[D].武汉:武汉大学,2004:8-11.
    [2] 李天培,FELLOW.IEEE.光纤通信长波长半导体激光器的最新进展[J].电子器件,1993(03).
    [3] 赵梓森,等.光纤通信工程(修订本)[M].北京:人民邮电出版社,2003:366-373.
    [4] Maxim/Dallas 应用笔记. HFDN-23.0: Choosing the APC Loop Capacitors Used with MAX3735/MAX3735A SFP Module Designs.http://www.maxim-ic.com.cn/appnotes.cfm/appnote_number/1747, 2002-09-26.
    [5] Maxim/Dallas应用笔记.HFDN-26.2:MAX3735A激光驱动器输出配置,第3部分:差分驱动.http://www.maxim-ic.com.cn/appnotes.cfm/appnote_number/2703, 2003-09-12.
    [6] 带RSSI的2.7Gbps SFP互阻放大器(MAX3744/MAX3745).http://www.dzisw.com/icdl/m/MAX3744Z.pdf, 2003-08.
    [7] 紧凑的、155Mbps至3.2Gbps限幅放大器(MAX3748/MAX3748A).http://www.dzjsw.com/jcdl/m/MAX3748Z.pdf, 2003-07.
    [8] Small Form-Factor Pluggable (SFP) Transceiver Multisource Agreement. http://www.schelto.com/SFP/.
    [1] Harry T. Jensen, Milford, Conn. Full-circle electrical slip-ring brush[P], U. S patent: 3998511, 1976-12-21.
    [2] Burns Richard F. Slip ring assemblies for ocean use[J]. Sea Technology, 1993, 34(4): 37-38, 40-41.
    [3] James W Snow. An overview of fiber optic rotary joint technology and recent advances. Proceedings of the IFAC workshop on space robotics, 1998-10: 77-81.
    [4] G. F. Dorsey. Fiber optic rotary joints-a review[J]. Proc. IEEE 5, 37—41 (1982).
    [5] James S. DeMarco, Jr, Waterford, Conn. Single in-line Fiber- optic rotary joint[P]. US patent: 5553176,1996-09-03.
    [6] Norris Earl Lewis, Anthory Lee Bowman, etal. Fiber optic rotary joint[P]. US patent: 6104849, 2000-08-15.
    [7] Gerogy S. Svechnikov, Vladimir N. Shapar. Optical rotary connector for transfer of data signals from fiber optic sensors plasing on rotary objects[J]. Proceedings of SPIE, Vol. 1589, 1991: 24-31.
    [8] Tyner C R, Paton B. Versatile slip rings for ROV applications. 1984.
    [9] Michael B. Miller, Blacksburg Va. Alignable single chanle fiber optic rotary joint[P]. US Patent: 4815812, 1989-03-28.
    [10] James W. Snow, Graham A, J. Smith, etal. Fiber optic single mode rotary joint[P]. US Patent: 5039193, 1991-08-13.
    [11] Guoda Xu, John Bartha, Scan Zhang, etal. An Electro-Optic Hybrid Rotary Joint Technology for Air Force Tracker System Power and Signal Transmission Applications. Proceeding of SPIE, Vol. 4025, 2000: 123-133.
    [12] Gregory H. Ames, Liales Ferry, Conn. Method providing optimum optical trains alignment in a passive multi-channel fiber optic rotary joint [P]. US Patent: 5271076, 1993-12-14.
    [13] Mitchel J. Keil, Mattawan, MI(US). Multi-channel fiber-optic rotary joint[P]. US Patent: 6301405 B1, 2001-10-09.
    [14] Gregory H. Ames, Gales Ferry, Conn. Fiber-optic rotary joint with bundle collimator assemblies[P]. US Patent: 5442721, 1995-08-15.
    [15] John Oliver, John Purdy, Graham Smith. Fibers optic rotational interfaces[C]. Proceedings of IEEE, 1987-09: 418-423.
    [16] Martin J. Oosterhuis, Jerry T. Perdue, etal. Fiber optic rotary joint and associated alignment method[P]. US Patent: 2005/0036735 A1, 2005-02-17.
    [17] Wencai Jing, Dagong Jia, etal. Design and implementation of a broadband optical rotary joint using C-lenses[J]. Optics Express, 2004, 12(17).
    [18] Thibaut Mercey, Jacques Sabater. Rotating Optical Joint[P]. US Patent: 2003/0210859 A1, 2003-11-13.
    [19] 贾大功,张红霞,等.无源对称光学结构双通道光纤旋转连接器[J].光电工程,2004,31(6).
    [20] Mathias Johansson, Sverker Hard. Design, fabrication, and evaluation of a multichannel diffractive optic rotary joint[J]. Applied Optics, 1999, 38(8): 1302-1310.
    [21] William W. Spencer, John B. Oliver. Multiple pass optical-rotary joint[P]. US Patent: 4725116, 1988-02-16.
    [22] Shane H. Woodside, Lower Sackville. In-line, Two-pass, Fiber optic rotary joint[P]. US Patent: 5588077, 1996-12-24.
    [23] Norris Earl Lewis, Anthony Lee Bowman, etal. Fiber optic rotary joint[P]. US Patent: 6104849, 2000-8-15.
    [24] Wei J Y. Advances in the management and control of optical internet[J]. Proceedings of IEEE, 2002, 20: 768-785.
    [25] 贾大功,张以谟,等.无源多路光纤旋转连接器的设计[J],天津大学学报,2004,37(5).
    [26] T. A. Birks, J. C. Knight, P. St. J. Russeil. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett, 1997, 22(13).
    [27] J. C. Knigh. Anomalous dispersion in photonic crystal fiber[J]. Photonics Technology Letters, 2000, 12(8): 807-809.
    [28] 付圣贵,王志,等.光子晶体光纤的基本特性与应用[J].光通信技术,2004 年第3期.
    [29] 陈波,杨广强,等.光子晶体光纤与普通单模光纤之间耦合损耗的理论分析[J].光通信技术,2005年第5期.
    [30] 任国斌,王智,等.应用等效折射率模型研究光子晶体光纤[J].中国激光,2004,31(6).
    [31] T. A. Birks, D. Mogilevtsev, J. C. Knight, etal. The analogy between photonic crystal fibres and step index fibres[C]. OFC1999, FG4-1—FG4-3.
    [32] 李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002:241-243.
    [33] Warren H. Lewis, Michael B. Miller. Single mode fiber optic rotary joint for aircraft applications[J]. Proceedings of SPIE, Vol. 1369, 1990: 79-86.
    [34] Masayoshi, Yamaguchi. Application of fiber optics for deep-sea exploration systems[J]. IEEE Journal of oceanic engineering, 1990, 15(3): 238-243.
    [35] 朱洪涛,楼祺洪,等.空心光子晶体光纤[J].光学与光电技术,2004,2(5).
    [36] Jesper Laegsgaard, Anders Bjarklev. Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study[C]. Optics Communications 2004, 237: 431-435.
    [37] S. G. Leon-Saval, T. A. Briks, N. Y. Joly, etal. Splice-free interfacing of photonic crystal fibers[J]. Opt. Lett, 2005, 30(13).
    [1] 孙学康,张金菊,等.光纤通信技术[M].北京:北京邮电大学出版社,2001:150-154.
    [2] 彭承柱,彭明宇,等.光通信抖动和漂摆的工程计算与测量[M].北京:人民邮电出版社,2003:33.
    [3] 原荣.光纤通信[M].北京:电子工业出版社,2002:147-148.
    [4] 贾大功,张尹馨,等.双通道红外耦合旋转连接器[J].光电子激光,2003,14(12).
    [5] 邓玉秀,周革,等.对称光学结构的双光信道旋转连接装置[J].光电子激光,2001,12(8).
    [6] 双通道光纤旋转接头(光滑环和电滑环),普林光电技术有限公司.http://www.princetel.com.cn/forj_mj2.asp.
    [7] 贾大功,张以谟,等.应用WDM技术设计多路光纤旋转连接器[C].张以谟.光电子技术与系统文选.北京:电子工业出版社,2005:386-390.
    [8] 张宝富,谭笑,等.光纤通信系统原理与实验教程[M].北京:电子工业出版社,2004:152-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700