耦合电极的磁分散电弧等离子体的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧等离子体在工业中应用广泛。由于其自收缩效应,使得等离子体具有体积小、能量集中、参数梯度大等特点,给等离子体大规模工业生产带来了困难,如原料注入困难、产品均匀性难以控制等。在同轴电极磁旋转电弧等离子体发生器中,洛伦兹力驱动电弧高速旋转,电弧被分散,产生充满弧室截面的均匀等离子体,这种新颖电弧等离子体源被称之为大面积分散电弧等离子体源(Large Aera Dispersed Arc Plasma Sourece-LADAPS)。
     与收缩电弧等离子体相比,磁分散电弧等离子体的弧柱周向均匀、阳极弧根扩散、阴极弧根呈现出收缩、分裂和扩散等多种形式的特征,且这些阴极弧根位形是动态的和可转化的。对于这些物理现象的试验结果的理论研究尚不够深入,尤其是阴极弧根位形与弧柱等离子体位形之间关系尚未有研究报道,实验研究存在很大困难。对此开展数值模拟研究,有助于加深对磁分散电弧等离子体位形及产生的机理的理解,为磁分散电弧应用提供理论指导。
     本文改进了Lowke一维阴极模型,构建了耦合阴极的磁分散电弧等离子体计算的MHD模型和方程,解决了电极与等离子体耦合计算的问题,编写了相应的Fluent UDF程序。数值模拟计算了不同条件下磁分散电弧等离子体位形,揭示了磁分散等离子体传热与流动规律,探讨了电弧的阴极弧根与弧柱之间的相互作用关系以及其对磁分散电弧等离子体位形的影响。
     在小尺度(弧室直径Φ10)同轴磁旋转电弧等离子体发生器中,采用二维模型数值模拟了完全分散电弧等离子体位形。分别研究了不同锥角的阴极形状、轴向磁场强度、入口气体速度、电弧电流以及阴极材质等对等离子体参数分布及流动状况的影响。计算结果显示:(1)加入轴向磁场后,等离子体的阴极弧根,弧柱及阳极弧根都为扩散型,其电流密度都显著低于自由燃烧弧阴极弧根、弧柱和阳极弧根的电流密度;(2)随着阴极锥角的增大,阴极弧根由阴极前端面中心向阴极侧面移动,扩散性增强,电流密度降低。阴极弧根位形的变化导致等离子体温度,速度,弧压等参数均减小,等离子体位形变化不大;(3)随着轴向磁场强度的增大,阴极弧根由阴极前端面中心向阴极侧面移动,弧根扩散程度增大,电流密度减小,等离子体极值温度降低;阳极弧根在轴向上被压缩,电流密度增大;(4)随着入口气体速度的增大,等离子体阴极弧根被吹到阴极前端,弧根电流密度分布变化很小,电弧被拉长,弧压升高,等离子体轴向厚度增大,温度梯度减小,流动加剧;(5)电弧电流对等离子位形基本无影响,仅影响等离子体温度,速度,弧压的极值;大的电弧电流更容易造成阴极弧根扩散;(6)阴极功函数提高,弧根电流扩散性减弱,弧根电流密度略微增大,对等离子体位形影响较小,仅能略微提高等离子体温度。
     采用二维模型耦合电极计算轴向磁场对针-板电极电弧等离子体位形的影响,得到的结果是:(1)随着轴向磁感应强的增加,阳极弧根电流在轴心分布减小,电流密度极值位置外移,呈现空心趋势;(2)弧柱在在阳极附略有扩张,而在阴极附近收缩,后者与同轴电极磁旋转分散电弧有相反的变化趋势,随着轴向磁场增加,阴极弧根直径减小,弧根电流密度增加;(3)继续增大轴向磁场,等离子体偏离轴线程度增加,在阳极轴线附近形成涡旋。也获得类似等离子体位形实验结果。
     模拟了大尺度(弧室直径Φ70)同轴电极磁旋转分散电弧等离子体的位形,与探针实验相对比有相同的变化趋势。计算的等离子体温度显著低于诊断的电子温度,说明本研究条件下等离子体可能偏离局域热力学平衡状态。
     论文最后还采用三维定常模型模拟了磁分散电弧等离子体的参数分布,初步研究了磁分散电弧的非轴对称性问题,弧柱等离子体位形及阳极弧根显示较好的轴对称,而阴极弧根并非轴对称分布。提出了该研究后续发展方向问题。
     通过对各种不同情况数值模拟结果以及和实验结果对比研究得出以下结论:
     (1)耦合阴极模型数值模拟计算出的阴极弧根位形和近阴极区弧柱位形会显著不同于固定阴极弧根模型;阴极弧根和近阴极区位形及参数相互影响;阴极弧根和近阴极区位形变化影响弧柱等离子体和阳极弧根位形及参数变化。
     (2)大气压电弧等离子体可以形成分散的等离子体,并且可以用外部条件控制电弧等离子体位形;外部条件通过流动来控制等离子体位形。
     (3)同轴电极磁旋转电弧可以产生较好的轴对称扩散电弧等离子体,阳极弧根也是如此,而阴极弧根可以是非轴对称的。
The arc plasma is widely used in industry. Being highly concentrated energy and great parameters gradient, arc plasma is difficult in large scale industry application.
     Compared with contractive arc, the magnetically dispersed arc plasma, which is called "Large Area Dispersed Arc Plasma Source-LADAPS", present diffusive arc column and diffusive anode arc root, as well as various forms of cathode arc root, such as shrink, split and diffusive, and these forms are dynamic and transformable.
     In this paper, Lowke's one-dimensional model for the arc plasma coupled with the cathode is developed for computation program compiled with FLUENT. With this program, the arc plasma with axial magnetism in different boundary conditions is simulated. Various plasma configurations, including cathode arc root, arc column and anode arc root, are obtained and discussed. The mechanism of the interaction among cathode arc root, arc column and anode arc root are analyzed.
     The fully dispersed arc plasma in a small scale (Φ10) is simulated with two-dimensional model. The plasma parameter distribution and flow in different conditions such as cathode shape, magnetic field intensity, gas velocity, arc currents, work function of the cathode material and so on, is discussed. The results show that:(1) with axial magnetic field, the cathode arc root, arc column and anode arc root appear to be dispersed (diffusion), and the current density are much smaller than those of free burning arc respectively.(2) As the cathode apex angle increasing, the cathode arc root moves to the side from the center of the front end. The arc root diffusive area increases and the current density decreases, so as that the average and maximum temperature of plasma, the maximum velocity and the arc voltage decrease, but the plasma configuration (location and shape) is essentially same.(3)The cathode arc root moves to the side from the center of the front end as the magnetic field increasing. The arc root diffuses much and the current density decreases. The plasma temperature decrease and plasma region moves upstream. The anode arc root is compress in the axial direction, the current density of the anode arc root increases.(4) As the input gas velocity increasing, the cathode arc root is blown to the tip of the cathode, and the current distribution on the cathode tip has no obvious change, the thickness of the plasma increases, and the arc voltage increases, the gas flow intensifies.(5) The arc current has no effect on the location or the shape of the plasma, but only increases the values of the parameter. The cathode arc root diffuses much easily as arc currents increasing.(6) The work function of the cathode affects current distribution on the arc root. A smaller work function leads cathode arc root diffusing greater.
     A free burning arc configurated of needle-plate electrodes with axial magnetic field is simulated. The results show that:with the axial magnetic field intensity increasing, the anode current density decreases at the axial, and the peak value decreases and transfers in radial direction, the arc column near the anode expends, and the arc column near the cathode shrinks. As axial magnetic field increasing, the cathode arc root gets much contractively, which is contrary to that of the dispersed arc in coaxial electrodes plasma generator. That is resulted from the pinch of gas flow affected by the cathode jet, which is enhanced by Lorentz force as axial magnetic field being increasing. With the axial magnetic field increasing, a vortex appears in the heartland near anode. Those results are proved by experiments.
     The dispersed arc plasma in large scale generator (Φ70) is simulated. The temperature distribution is similar with the experiment result. But the difference of value indicates that the plasma is NLTE.
     Lastly, a three-dimensional model is employed to simulate the dispersed arc plasma in a small scale generator, the result shows that the arc column and the anode arc root appear excellent symmetry, but the cathode arc root is non-axisymmetric.
     According to the numerical simulations and the experimental results, Main conclusions are drawn as follow:
     (1) The configuration of the cathode arc root and of the arc column near cathode region simulated with coupled cathode model are different with un-coupled model. The parameters distribution of the cathode root and of the arc near cathode region affects each other, and they affect the characteristics of the arc column and the anode arc root.
     (2) The arc plasma at atmospheric pressure can be dispersed uniformly; the arc plasma configuration can be affect by the boundary condition by means of flow.
     (3) It is easy to maintain the arc plasma column and the anode arc root uniformly-dispersed in coaxial electrodes magnetically dispersed arc plasma generator, but the cathode arc root may be non-axisymmetric.
引文
[1]Xia, W.D., et al., Dynamics of large-scale magnetically rotating arc plasmas. Applied Physics Letters,2006.88(21).
    [2]Shimada. K., M. Iwabuchi, and N. Matsuda, Thermohydrodynamic characteristics of the cascaded arc plasma generator with a large ratio of radius and pipe length. Physics of Plasmas,2001.8(5):p.1722-1728.
    [3]Vintizenko. L.G.. et al., An arc generator of a broad plasma stream. Instruments and Experimental Techniques,2000.43(3):p.375-377.
    [4]Vizir, A.V., et al., Plasma Generator Based on a Stationary Contracted Arc-Discharge for Plasma Sources of Charged-Particles. Instruments and Experimental Techniques, 1993.36(3):p.434-436.
    [5]Smirnov, A.R., et al., Neoclassical thermal conductivity in ICP plasma at low pressure. Journal of Plasma Physics,2008.74:p.353-360.
    [6]Tanaka, Y. and T. Sakuta, Investigation on plasma-quenching efficiency of various gases using the inductively coupled thermal plasma technique:effect of various gas injection onAr thermal ICP. Journal of Physics D-Applied Physics,2002.35(17):p.2149-2158.
    [7]Reed, T.B., Induction-Coupled Plasma Torch. Journal of Applied Physics,1961.32(5):p. 821-&.
    [8]Kameyama, T., et al., Highly Efficient and Stable Radiofrequency Thermal Plasma System for the Production of Ultrafine and Ultrapure Beta-Sic Powder. Journal of Materials Science,1990.25(2A):p.1058-1065.
    [9]Vandenbroek, J., M. Labrot, and D. Pineau, Arc Plasma Torches and Their Industrial Applications. Revue Generate De Thermique,1987.26(310):p.527-533.
    [10]Korotkov, G.I. and V.N. Kurilov, Industrial Application of Avpr-lm Equipment for Plasma-Arc Cutting. Welding Production,1972.19(3):p.71-&.
    [11]陈熙,热等离子体传热与流动.2009.
    [12]张润田,各种直流电弧炉的比较 冶金丛刊,1997(5):p.7.
    [13]刘哲,直流电弧炉技术的发展与应用.天津冶金,1995(3):p.4.
    [14]Bhat, G.K., New Developments in Plasma Arc Melting. Journal of Vacuum Science& Technology,1972.9(6):p.1344-&.
    [15]Aksenov, O.F., et al., Melting Stainless Steels of Different Types in Plasma-Arc Furnaces. Stal in English-Ussr,1969(7):p.661-&.
    [16]Nel, J.T., et al., The manufacturing of nanoparticles with a plasma process. Journal of the South African Institute of Mining and Metallurgy,2010.110(5):p.231-234.
    [17]Snyders, E., J.H. Potgieter, and J.T. Nel, The effect of milling and percentage dissociation of plasma dissociated zircon on the colour of Pr-yellow and V-blue zircon pigments. Journal of the European Ceramic Society,2006.26(9):p.1599-1603.
    [18]Iwao, T., et al., Heating efficiency of twin torch plasma arc. Isij International,2005. 45(8):p.1084-1087.
    [19]Coudert, J.F. and V. Rat, Influence of configuration and operating conditions on the electric arc instabilities of a plasma spray torch:role of acoustic resonance. Journal of Physics D-Applied Physics,2008.41(20).
    [20]Chazelas, C, J.F. Coudert, and R. Fauchais, Arc root behavior in plasma spray torch. Ieee Transactions on Plasma Science,2005.33(2):p.416-417.
    [21]Mauer, G., R. Vassen, and D. Stover, Plasma and Particle Temperature Measurements in Thermal Spray:Approaches and Applications. Journal of Thermal Spray Technology, 2011.20(3):p.391-406.
    [22]Chen, Q., et al., Characteristics research on an arc plasma torch for igniting coal powder. Journal Of University Of Science and Technology,2010.40(12).
    [23]von Niessen, K. and M. Gindrat, Plasma Spray-PVD:A New Thermal Spray Process to Deposit Out of the Vapor Phase. Journal of Thermal Spray Technology,2011.20(4):p. 736-743.
    [24]Gindrat, M., et al., Plasma Spray-CVD:A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors. Journal of Thermal Spray Technology,2011. 20(4):p.882-887.
    [25]Long, N.P., Y. Tanaka, and Y. Uesugi, Numerical Investigation of the Swirl Gas Angle and Arc Current Dependence on Evaporation of Hafnium Cathode in a Plasma Cutting Arc. Ieee Transactions on Plasma Science,2012.40(2):p.497-504.
    [26]Flanders, P., New Materials and Torch Shapes Increase Range of Plasma Cutting Applications. Welding Journal,2011.90(10):p.22-23.
    [27]Nemchinsky, V.A. and W.S. Severance, Plasma arc cutting:speed and cut quality. Journal of Physics D-Applied Physics,2009.42(19).
    [28]Hussary, N. and T. Renault, Electrode life:A measure of system performance in plasma cutting. Welding Journal,2008.87(4):p.30-32.
    [29]Schella, A., et al., Melting scenarios for three-dimensional dusty plasma clusters. Physical Review E,2011.84(5).
    [30]Lybacki, W., Induction-plasma melting of cast iron. Czechoslovak Journal of Physics, 2004.54:p. C1022-C1026.
    [31]吴承康,我国等离子体工艺研究进展.物理,1999.28(7):p.6.
    [32]Wang, Q., et al., Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel,2009.88(5):p.955-958.
    [33]Chen, M.Z., et al., DC Arc Plasma Furnace Melting of Waste Incinerator Fly Ash. Plasma Science & Technology,2009.11(1):p.62-65.
    [34]Liu, B., et al., Dual torch plasma arc furnace for medical waste treatment. Plasma Science & Technology,2007.9(6):p.709-712.
    [35]35. Min, B.Y., et al., Study on the vitrification of mixed radioactive waste by plasma arc melting. Journal of Industrial and Engineering Chemistry,2007.13(1):p.57-64.
    [36]Kaldas, A., et al., Plasma Arc Waste Destruction System (PAWDS) a novel approach to waste elimination aboard ships. Naval Engineers Journal,2006.118(3):p.139-150.
    [37]Snyder. S.C., G.D. Lassahn, and L.D. Reynolds, Direct Evidence of Departure from Local Thermodynamic-Equilibrium in a Free-Burning Arc-Discharge Plasma. Physical Review E,1993.48(5):p.4124-4127.
    [38]Tanaka, M. and M. Ushio, Plasma state in free-burning argon arc and its effect on anode heat transfer. Journal of Physics D-Applied Physics,1999.32(10):p.1153-1162.
    [39]39. Grutzmacher, K., Wall-stabilized arc-plasma source for radiometric applications in the range 200 nm to 10 mu m. Metrologia,2000.37(5):p.465-468.
    [40]Eid, M.A., et al., Application of a wall-stabilized argon plasma arc for the determination of some volatile hydride-forming elements. Spectrochimica Acta Part B-Atomic Spectroscopy,2006.61(4):p.450-453.
    [41]Emmons, H.W., Arc Measurement of High-Temperature Gas Transport Properties. Physics of Fluids,1967.10(6):p.1125-&.
    [42]Chen, Q., M.H. Liu, and W.D. Xia, Study on coal plasma ignition and combustion in a primary combustor.2009.
    [43]夏维东,et al.,一种非转移弧等离子体炬的阳极及等离子体矩.2009.
    [44]Xia, W.D., et al., Evolution of cathodic arc roots in a large-scale magnetically rotating arc plasma. Ieee Transactions on Plasma Science,2008.36(4):p.1048-1049.
    [45]Nielsen, C.E., Experiments on Rf-Heating of Magnetically Confined Arc Plasma. Bulletin of the American Physical Society,1972.17(7):p.770-&.
    [46]Wei, F.I., et al., A Study of the Magnetic-control Arc Sensor for Seam-tracking. Mechanical Science and Technology forAerospace Engineering,2008.27(12):p.5.
    [47]华爱兵,et al.,磁控电弧焊接工艺在非熔化极气体保护焊中的应用.焊接,2007(2).
    [48]宦鸿信,et al.,同轴旋转封闭场电弧离子镀的的研究Vacuum Techno lo gy and M aterial,1997.1(2):p.3.
    [49]Zhou, H.L., et al., Investigation of a novel large area dispersed arc plasma source with time-resolved ICCD Imaging. Ieee Transactions on Plasma Science,2008.36(4):p. 1082-1083.
    [50]Zhou, H.L., et al., ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. Ieee Transactions on Plasma Science,2008.36(4):p. 1084-1085.
    [51]Li, H., et al., Imaging of behavior of multiarc roots of cathode in a dc arc discharge. Ieee Transactions on Plasma Science,2005.33(2):p.404-405.
    [52]李和平,直流店弧等离子体发生器与射流中传热与流动的研究.2001.
    [53]Baeva, M. and D. Uhrlandt, Non-equilibrium simulation of the spatial and temporal behavior of a magnetically rotating arc in argon. Plasma Sources Science & Technology, 2011.20(3).
    [54]Ciardi, A., et al.,3D MHD simulations of laboratory plasma jets. Astrophysics and Space Science,2007.307(1-3):p.17-22.
    [55]Kondoh, K. and M. Ugai, Study of three dimensional structure of the fast convection flow in the plasma sheet by MHD simulations on the basis of spontaneous fast reconnection model. Advances in Space Research,2007.39(9):p.1378-1381.
    [56]Ichiguchi, K. and B.A. Carreras, Multi-scale approach to the solution of nonlinear MHD evolution of heliotron plasma. Journal of Plasma Physics,2006.72:p.1117-1121.
    [57]Popov, A.M., Nonlinear 3D MHD code NFTC for simulations of plasma instabilities. Journal of Plasma Physics,2006.72:p.1101-1104.
    [58]Hayosh, M., J. Safrankova, and Z. Nemecek, MHD-modelling of the magnetosheath ion plasma flow and magnetic field and their comparison with experiments. Boundary Layers, Waves and Non-Linear Dynamical Processes,2006.37(3):p.507-514.
    [59]Benilov, M.S., Understanding and modelling plasma-electrode interaction in high-pressure arc discharges:a review. Journal of Physics D-Applied Physics,2008. 41(14).
    [60]Lebouvier, A., et al.,3D MHD modelling of low current-high voltage dc plasma torch under restrike mode. Journal of Physics D-Applied Physics,2012.45(2).
    [61]Lebouvier, A., et al., Three-Dimensional Unsteady MHD Modeling of a Low-Current High-Voltage Nontransferred DC Plasma Torch Operating With Air. Ieee Transactions on Plasma Science,2011.39(9):p.1889-1899.
    [62]Tang, K.M., et al., Three-dimensional modelling of a dc arc plasma in a twin-torch system. Journal of Physics D-Applied Physics,2010.43(34).
    [63]Colombo, V., A. Conceal, and E. Ghedini, Three-dimensional time-dependent modeling of a DC transferred arc twin-torch system. Ieee Transactions on Plasma Science,2008. 36(4):p.1038-1039.
    [64]Wang, H.X., X. Chen, and W.X. Pan, Modelling Study on the Plasma Flow and Heat Transfer in a Laminar Arc Plasma Torch Operating at Atmospheric and Reduced Pressure. Plasma Science & Technology,2009.11(2):p.163-170.
    [65]Wang, H.X., X. Chen, and W.X. Pan, Effects of the length of a cylindrical solid shield on the entrainment of ambient air into turbulent and Laminar impinging argon plasma jets. Plasma Chemistry and Plasma Processing,2008.28(1):p.85-105.
    [66]Wang, H.X., X. Chen, and W.X. Pan, Modeling study on the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Plasma Chemistry and Plasma Processing,2007.27(2):p.141-162.
    [67]Trelles, J.P., et al., Arc Plasma Torch Modeling. Journal of Thermal Spray Technology, 2009.18(5-6):p.728-752.
    [68]Tashiro, S., et al., Non-equilibrium plasma modeling of Gas Tungsten Arc in middle current range. Transactions of the Materials Research Society of Japan, Vol 33, No 3, 2008.33(3):p.695-698.
    [69]Benilov, M.S., Stability of direct current transfer to thermionic cathodes:I. Analytical theory. Journal of Physics D-Applied Physics,2007.40(5):p.1376-1393.
    [70]Benilov, M.S., Method of matched asymptotic expansions versus intuitive approaches: Calculation of arc cathode spots. Ieee Transactions on Plasma Science,2004,32(1):p. 249-255.
    [71]Benilov, M.S., Theory and modelling of arc cathodes. Plasma Sources Science & Technology,2002.11 (3A):p. A49-A54.
    [72]Benilov, M.S., Theory of nonlinear surface heating. Physica Scripta,2000. T84:p. 22-26.
    [73]Li, H.P. and M.S. Benilov, Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. Journal of Physics D-Applied Physics,2007.40(7):p. 2010-2017.
    [74]Li, H.P. and E. Pfender, Three-dimensional effects inside a dc arc plasma torch. Ieee Transactions on Plasma Science,2005.33(2):p.400-401.
    [75]Li, H.P. and E. Pfender, Three dimensional modeling of the plasma spray process. Journal of Thermal Spray Technology,2007.16(2):p.245-260.
    [76]Li, L.C., et al., Axial magnetic-field effects on an argon arc between pin and plate electrodes at atmospheric pressure. Ieee Transactions on Plasma Science,2008.36(4):p. 1078-1079.
    [77]Li, L.C. and W.D. Xia, Time-dependent 2D modeling of magnetron plasma torch in turbulent flow. Plasma Science & Technology,2008.10(3):p.328-335.
    [78]Li, L.C. and W.D. Xia, Effect of an axial magnetic field on a DC argon arc. Chinese Physics B,2008.17(2):p.649-654.
    [79]Li, L.C. and W.D. Xia, Modeling of magnetron argon plasma issuing into ambient air. Japanese Journal of Applied Physics,2008.47(1):p.273-279.
    [80]Li, L.C, et al., Three-dimensional modelling of a DC arc in cross-flow. Plasma Science & Technology,2007.9(5):p.564-569.
    [81]Park, J.M., et al., Three-dimensional modeling of arc root rotation by external magnetic field in nontransferred thermal plasma torches. Ieee Transactions on Plasma Science, 2004.32(2):p.479-487.
    [82]Benilov, M.S., Near-cathode phenomena in HID lamps. Ieee Transactions on Industry Applications,2001.37(4):p.986-993.
    [83]Benilov, M.S., Method of matched asymptotic expansions versus intuitive approaches: Calculation of space-charge sheaths. Ieee Transactions on Plasma Science,2003.31(4): p.678-690.
    [84]Hsu, K.C. and E. Pfender, Analysis of the Cathode Region of a Free-Burning High-Intensity Argon Arc. Journal of Applied Physics,1983.54(7):p.3818-3824.
    [85]85. Hsu, K.C. and E. Pfender,2-Temperature Modeling of the Free-Burning, High-Intensity Arc. Journal of Applied Physics,1983.54(8):p.4359-4366.
    [86]Chapman, C. and T.G. Cowling, The Mathematical Theory ofNon-Uniform Gases.1970.
    [87]Hoffert, M.I. and H. Lien, Quasi-1-Dimensional Nonequilibrium Gas Dynamics of Partially Ionized 2-Temperature Argon. Physics of Fluids,1967.10(8):p.1769-&.
    [88]Cram, L.E., A Model of the Cathode of a Thermionic Arc. Journal of Physics D-Applied Physics,1983.16(9):p.1643-1650.
    [89]Nottingham and B. Wayne, Thermionic emission.1956.
    [90]Zhu, P.Y., J. J. Lowke, and R. Morrow, A Unified Theory of Free Burning Arcs, Cathode Sheaths and Cathodes. Journal of Physics D-Applied Physics,1992.25(8):p. 1221-1230.
    [91]Lowke, J.J., R. Morrow, and J. Haidar, A simplified unified theory of arcs and their electrodes. Journal of Physics D-Applied Physics,1997.30(14):p.2033-2042.
    [92]Morrow, R. and J.J. Lowke, A One-Dimensional Theory for the Electrode Sheaths of Electric-Arcs. Journal of Physics D-Applied Physics,1993.26(4):p.634-642.
    [93]Lowke, J.J. and M. Tanaka,'LTE-diffusion approximation'for arc calculations. Journal of Physics D-Applied Physics,2006.39(16):p.3634-3643.
    [94]Lowke, J.J., J.H. Parker, and C.A. Hall, Effect of Absorbing Boundaries on Distribution Function for Electrons in a Uniform Electric-Field in a Gas. Bulletin of the American Physical Society,1976.21(2):p.172-172.
    [95]Lowke. J.J. and J.H. Parker, Theory of Electron Diffusion Parallel to Electric Fields.2. Application to Real Gases. Physical Review,1969.181(1):p.302-&.
    [96]Lowke, J.J., et al., Prediction of gas tungsten arc welding properties in mixtures of argon and hydrogen. Ieee Transactions on Plasma Science,1997.25(5):p.925-930.
    [97]Lowke, J.J. and R. Morrow, Theory of Chemical-Processing Using Pulsed Precipitators. Australian Journal of Physics,1995.48(3):p.403-409.
    [98]Lowke, J.J. and R. Morrow, Theoretical-Analysis of Removal of Oxides of Sulfur and Nitrogen in Pulsed Operation of Electrostatic Precipitators. Ieee Transactions on Plasma Science,1995.23(4):p.661-671.
    [99]Lowke, J.J. and R. Morrow, Theory of Electric-Corona Including the Role-of Plasma Chemistry. Pure and Applied Chemistry,1994.66(6):p.1287-1294.
    [100]Murphy, A.B., et al.. Modelling of thermal plasmas for arc welding:the role of the shielding gas properties and of metal vapour. Journal of Physics D-Applied Physics, 2009.42(19).
    [101]Murphy, A.B., et al., Modelling of arc welding The importance of including the arc plasma in the computational domain. Vacuum,2010.85(5):p.579-584.
    [102]Murphy, A.B., et al., A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. Journal of Physics D-Applied Physics,2009. 42(11).
    [103]Murphy, A.B., A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding. Journal of Physics D-Applied Physics,2011.44(19).
    [104]Murphy, A.B., Metal vapour in atmospheric-pressure arcs. Journal of Physics D-Applied Physics,2010.43(43).
    [105]Murphy, A.B., The effects of metal vapour in arc welding. Journal of Physics D-Applied Physics,2010.43(43).
    [106]Lowke, J.J., M. Tanaka, and A.B. Murphy, Metal Vapour in Mig Arcs Can Cause (1) Minima in Central Arc Temperatures-and (2) Increased Are Voltages. Welding in the World,2010.54(9-10):p. R292-R297.
    [107]Yamamoto, K., et al., Numerical simulation of metal vapor behavior in arc plasma. Surface & Coatings Technology,2008.202(22-23):p.5302-5305.
    [108].-Yamamoto, K., et al., Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining,2008.13(6):p. 566-572.
    [109]Yamamoto, K., et al., Numerical Simulation of Diffusion of Multiple Metal Vapours in a Tig Arc Plasma for Welding of Stainless Steel. Welding in the World,2009.53(7-8):p. R166-R170.
    [110]Yamamoto, K., et al., Metal Vapor Behavior in GTA Welding of a Stainless Steel Considering the Marangoni Effect. Ieej Transactions on Electrical and Electronic Engineering,2009.4(4):p.497-503.
    [111]Tanaka, M., et al., Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. Journal of Physics D-Applied .Physics,2010.43(43).
    [112]Tanaka, M., et al., Influence of shielding gas composition on arc properties in TIG welding. Science and Technology of Welding and Joining,2008.13(3):p.225-231.
    [113]Ushio, M. and K. Takeda, Progress and Future Aspect of New Materials and New Processes-Thermal Plasma Processing of Materials. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,1995.81(4):p.497-500.
    [114]Ushio, M. and J. Szekely, The Modeling of Heat-Flow and Fluid-Flow in Plasma Studies. Journal of Metals,1980.32(12):p.36-36.
    [115]Ushio, M., Plasma Application in the Steel-Industry in Japan. Pure and Applied Chemistry,1992.64(5):p.677-683.
    [116]Haidar, J., Predictions of metal droplet formation in gas metal arc welding. II. Journal of Applied Physics,1998.84(7):p.3530-3540.
    [117]Haidar, J. and J.J. Lowke, Predictions of metal droplet formation in arc welding. Journal of Physics D-Applied Physics,1996.29(12):p.2951-2960.
    [118]Winters, H.F., et al., Energy-Transfer from Rare-Gases to Surfaces-Collisions with Gold and Platinum in the Range 1-4000 Ev. Physical Review B,1990.41(10):p. 6240-6256.
    [119]Gudeman, C.S. and R.J. Saykally, Velocity Modulation Infrared-Laser Spectroscopy of Molecular-Ions. Annual Review of Physical Chemistry,1984.35:p.387-418.
    [120]Devoto, R.S., Simplified Expressions for Transport Properties of Ionized Monatomic Gases. Physics of Fluids,1967.10(10):p.2105-&.
    [121]Devoto, R.S., Transport Coefficients of Partially Ionized Argon. Physics of Fluids,1967. 10(2):p.354-&.
    [122]White, W.B., S.M. Johnson, and G.B. Dantzig, Chemical Equilibrium in Complex Mixtures. Journal of Chemical Physics,1958.28(5):p.751-755.
    [123]Devoto, R.S., Transport Coefficients of Ionized Argon. Physics of Fluids,1973.16(5):p. 616-623.
    [124]Andre, P., Partition-Functions and Concentrations in Plasmas out of Thermal-Equilibrium, leee Transactions on Plasma Science,1995.23(3):p.453-458.
    [125]Morro, A. and M. Romeo, The Law of Mass-Action for Fluid Mixtures with Several Temperatures and Velocities. Journal of Non-Equilibrium Thermodynamics,1988.13(4): p.339-353.
    [126]Hirschfelder, J.O., C.F. Curtis, and R.B. Bird, Molecular Theory of Gases and Liquids. 1964.
    [127]Chapman, S. and T.G. Cowling, The Mathematical Theory ofNon-Uniform Gases.1970.
    [128]Devoto, R.S.,1965.
    [129]Devoto, R.S., Transport Coefficients of Partially Ionized Hydrogen. Journal of Plasma Physics,1968.2:p.617-&.
    [130]Murphy, A.B., Transport-Coefficients of Air, Argon-Air, Nitrogen-Air, and Oxygen-Air Plasmas. Plasma Chemistry and Plasma Processing,1995.15(2):p.279-307.
    [131]Murphy, A.B., Transport coefficients of helium and argon-helium plasmas, leee Transactions on Plasma Science,1997.25(5):p.809-814.
    [132]Murphy, A.B., Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chemistry and Plasma Processing,2000.20(3):p.279-297.
    [133]Murphy, A.B. and C.J. Arundell, Transport-Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas. Plasma Chemistry and Plasma Processing, 1994.14(4):p.451-490.
    [134]Owano, T.G., M.H. Gordon, and C.H. Kruger, Measurements of the Radiation Source Strength in Argon at Temperatures between 5000-K and 10000-K. Physics of Fluids B-Plasma Physics,1990.2(12):p.3184-3190.
    [135]Wang, W.Z., et al., Thermophysical properties of carbon-argon and carbon-helium plasmas. Journal of Physics D-Applied Physics,2011.44(35).
    [136]Comstoc, G.F., Microstructure of iron deposited by electric arc welding. Transactions of the American Institute of Mining and Metallurgical Engineers,1920.62:p.555-562.
    [137]1Bonnefoi,C.,1983.
    [138]Colombo, V., E. Ghedini, and P. Sanibondi, Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Progress in Nuclear Energy,2008.50(8):p.921-933.
    [139]Colombo, V., E. Ghedini, and P. Sanibondi, Two-temperature thermodynamic and transport properties of carbon-oxygen plasmas. Plasma Sources Science & Technology, 2011.20(3).
    [140]Colombo, V., et al., Design oriented simulation for plasma arc cutting consumables and experimental validation of results. Plasma Sources Science & Technology,2011.20(3).
    [141]Colombo, V., et al.,2-D and 3-D fluidynamic and plasma characterization of DC transferred arc plasma torches for metal cutting. High Temperature Material Processes, 2006.10(3):p.379-391.
    [142]Freton, P., et al., Numerical and experimental study of a plasma cutting torch. Journal of Physics D-Applied Physics,2002.35(2):p.115-131.
    [143]Freton, P., J.J. Gonzalez, and A. Gleizes, Comparison between a two-and a three-dimensional arc plasma configuration. Journal of Physics D-Applied Physics, 2000.33(19):p.2442-2452.
    [144]Freton, P., et al., Plasma characteristics in a cutting plasma torch. High Temperature Material Processes,2003.7(2):p.247-252.
    [145]Bolot, R., et al., Optimization of a rotating twin wire-arc spray gun. Journal of Thermal Spray Technology,2007.16(5-6):p.783-790.
    [146]Bolot, R., et al., Modeling of the Plasma Flow and Anode Region Inside a Direct Current Plasma Gun. Journal of Thermal Spray Technology,2011.20(1-2):p.21-27.
    [147]Patankar, S.V. and D.B. Spalding, Calculation Procedure for Heat, Mass and Momentum-Transfer in 3-Dimensional Parabolic Flows. International Journal of Heat and Mass Transfer,1972.15(10):p.1787-&.
    [148]Haddad, G.N. and A.J.D. Farmer, Temperature Determinations in a Free-Burning Arc.1. Experimental-Techniques and Results in Argon. Journal of Physics D-Applied Physics, 1984.17(6):p.1189-1196.
    [149]Colombo, V., et al.,3D static and time-dependent modelling of a dc transferred arc twin torch system. Journal of Physics D-Applied Physics,2011.44(19).
    [150]Scott, D.A., P. Kovitya, and G.N. Haddad, Temperatures in the Plume of a Dc Plasma Torch. Journal of Applied Physics,1989.66(11):p.5232-5239.
    [151]Yamane, S., Y. Yamamoto, and K. Oshima, Numerical Simulation and Measurement of Magnetic Field in Arc Welding. Welding in the World,2012.56(1-2):p.48-53.
    [152]Wang, Z.J., Y.M. Zhang, and L. Wu. Adaptive interval model control of weld pool surface in pulsed gas metal arc welding. Automatica,2012.48(1):p.233-238.
    [153]Wang, J.Y., et al., A Swing Arc System for Narrow Gap GMA Welding. Isij International, 2012.52(1):p.110-114.
    [154]Yang, L.Q., et al., Solid waste plasma disposal plant. Journal of Electrostatics,2011. 69(5):p.411-413.
    [155]Tavares, J.R., et al., Large-Scale Plasma Waste Gasification. Ieee Transactions on Plasma Science,2011.39(11):p.2908-2909.
    [156]Li, L.C.,磁分散电弧等离子体的实验研究与数值模拟.博士毕业论文,2008.中国科学技术大学合肥.
    [157]张冠宇,et al.,外加磁场对镁合金TIG焊电弧形态及焊缝质量的影响.金属铸锻焊技术,2009.38(11):p.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700