磁旋转直流电弧等离子体炬的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧等离子体由于具有高温、高焓、高化学活性等优点在机械加工领域、材料科学领域、冶金工业领域、环保领域、化工领域以及环保领域等方面获得了广泛的应用。但是由于电弧的分流现象和电流的轴向分量与电弧电流产生的自磁场的周向分量相互作用产生的Lorentz力而引起的弧柱自收缩效应使得电弧发生器通常表现为射流不稳定以及等离子体参数不均匀等特性,从而在一定程度上制约了电弧等离子体技术在现代工业应用中的发展前景。比如,在等离子体喷涂应用中迫切需要解决等离子体炬不稳定性问题,在废物处理方面需要均匀性好、大体积的等离子体发生器。因此,针对不同的应用领域设计不同的发生器,以提高生产效率、改善产品质量,是现阶段一项重要的任务。
     本文一方面根据外部磁场与电弧等离子体的相互作用性设计了磁旋转的直流电弧等离子体炬,实验研究了电弧弧根的旋转频率、电弧的运动形态等随外部磁场的变化;另一方面,本文运用泰克公司的双通道示波器记录了电弧等离子体放电过程中的电弧电压变化,分析了不同实验条件下的电弧电压及其波动与工作参数(电弧电流、工质气体流量、供气方式以及外部磁场等)之间的关系,通过快速傅立叶变换技术,运用FFT算法将电弧电压信号从时域变换到频域,从原始信号中提取出能够反映电弧脉动行为的频率分量;同时,测量了电弧射流的光谱信息,获得了外部磁场对电弧射流中等离子体参数的影响,探讨了外部磁场作用下电弧等离子体局域热力学平衡的判定。最后,本文根据电弧等离子体射流波动的特性,自行设计研制了电弧射流波动诊断系统,并对电弧等离子体射流波动进行了研究,通过对比发现,射流脉动和电弧脉动之间存在密切的关系。
     运用高速摄像技术对电弧通道截面的电弧图像进行捕捉,分析了电弧弧根的旋转频率、电弧的运动形态等随外部磁场的变化。利用电弧图像与电弧电压信号的同步采集,分析了电弧旋转过程中的动态特性,利用经典的信号处理工具,如统计分析、快速傅立叶变换等分析了电弧电压及其波动随电弧电流、工质气体的流量、供气的方式、外部磁场的变化。在无磁场的条件下,电弧电压信号的频域分析结果显示除了300Hz的低频脉动(由整理电源的纹波分量引起),不存在任何高频分量(1-15Kz),而外部磁场的作用改变了电弧脉动的频率,因为外部磁场和等离子体的相互作用产生螺旋不稳定性,甚至产生高频分量,但是在合适的磁场作用下即使产生螺旋不稳定性,数值也很小,可以忽略,而且300Hz的低频脉动也被削弱。
     通过光谱诊断技术对电弧射流中的等离子体参数进行了细致的研究,由于电弧的波动对光谱诊断有重要的影响,因此我们仅对工作在Steady模式和Takeover模式下射流的电子密度和电子激发温度进行了诊断,深入分析了外部磁场对电弧射流的特征谱线的影响,估算出外部磁场对电弧射流中等离子体参数的影响,最后还对外部磁场对LTE的影响进行了分析。
     电弧等离子体射流中的脉动是等离子体射流的典型物理现象之一,并且这些脉动特性直接决定了等离子体工艺过程处理的性能。实验研究表明,电弧分流、整流电源的纹波分量以及等离子体射流的流体动力学过程引起的湍流和射流对环境气体的卷吸是导致射流能量波动的主要原因,而射流能量的波动决定了材料在射流中的加速与加热也是不平衡的,有可能对工艺的质量产生很大的影响。为此,本文针对射流光强信号自行设计制作了专门的射流波动诊断系统,主要是通过光电倍增管实现电弧射流光强转换为电压信号,并通过与电弧电压信号比较得出电弧射流脉动和电弧电压之间的关系。
     基于以上的研究,由于阳极弧根的旋转,电弧等离子体产生了强烈的周向与径向流动,促使电弧等离子体在周向与径向上分散,产生了参数相对均匀的等离子体,但是根据磁场和其他外部条件(供气方式)相互作用的方式不同,我们获得性能不同的电弧等离子体为不同的工业服务。在电弧等离子体的放电通道中,等离子体的传热和流动特别的复杂,特别是添加磁场和旋气以后,要想弄清楚不同工作模式的具体机理,有待进一步的实验研究。
Due to the high temperature, high enthalpy, high chemical activity and other advantages, dc arc plasma torch has been widely applied in the field of mechanical processing, materials science, metallurgy industry, chemical industry and environmental protection, etc. However, the arc column shrinking because of the shunting arc and the Lorentz force which produced by the arc current and self-induced magnetic field, which makes the arc generator always showing the plasma jet unstable, the non-uniform of plasma parameters and other characteristics. And that impede the development prospects of arc plasma technology in modern industrial applications at a certain extent. For example, in the application of plasma spray urgent need to solve the problem of instability of the plasma torch, and in the application of the waste disposal needs a uniformity and large volume plasma generator. Thus, for different applications with different design generator to increase productivity, improve product quality, is an important task at this stage.
     In this paper, on the one hand, through the interaction between the external magnetic field and the arc plasma, we design the rotating magnetic DC arc plasma torch. The arc with the experimental and we study the change of the arc rotational frequency, the arc movement patterns and so on with the external magnetic field. On the other hand, we use the dual-channel oscilloscope to record the change of the arc voltage during the arc plasma discharge, and analyze relationship between arc voltage and its fluctuations under different experimental conditions with the operating parameters of the plasma torch (arc current, refrigerant gas flow, way relationship and supply an external magnetic field, etc). By the technology of the fast Fourier transform (FFT), we use the FFT algorithm to change the arc voltage signal from the time domain to the frequency domain, and we extract the frequency component which can reflect the arc pulsating behavior from the original signal. Meanwhile, we the measure the spectral information of the arc plasma jet, get the plasma parameters in the arc plasma jet effected by the external magnetic field, and discusses the determination of plasma arc local thermodynamic equilibrium under the external magnetic field. Finally, according to the characteristics of arc plasma jet fluctuations, we design and develop the arc jet fluctuations diagnostic system, and study the fluctuations in the arc plasma jet. By comparison, we find that there is a close relationship between the arc jet arc jet fluctuations and the arc arc jet fluctuations.
     We use the high-speed camera technology to capture the arc motion picture in the cross-section of the arc discharge channel, and analyze change of the arc root rotational frequency, the arc of movement patterns and so on with the external magnetic field. We collect Image the arc voltage signals and the arc picture synchronously, and analyze the arc dynamic characteristics during rotation. Using classical signal processing tools, such as statistical analysis, fast Fourier transform analyze the change of the arc voltage and its fluctuation with arc current, the working gas flow rate, the way of gas supply, and the external magnetic field. In the absence of magnetic field, the frequency domain of the arc voltage signal analysis result show that there is no high-frequency components (1-15Kz) in addition to low frequency pulsation of300Hz (caused by the ripple component of the eliminator supply). The external magnetic field changes the frequency of the arc fluctuations, because the interaction between the external magnetic field and the arc plasma cause the helical instability and even high-frequency component. However, a suitable magnetic field which caused helical instability is small and can be ignored, and weaken the low frequency of300Hz.
     By spectroscopic diagnostic techniques, we study the plasma parameters in the plasma jet deeply. Due to the arc fluctuations effect the spectral diagnostics significantly, we only diagnose the electron density and electron temperature working under Steady mode and Takeover mode. We analyze the influence of characteristic spectral line by the external magnetic field, estimate the influence of the plasma parameters in the arc plasma jet by the external magnetic field, and finally analyze the influence of LTE by the external magnetic field.
     Pulsating in the arc plasma jet is one of the typical physical phenomena in the plasma jet, and these pulsating characteristics will determine the performance of the plasma treatment process. Experimental studies have shown that arc shuntting, ripple component of rectifier power supply, and the turbulence caused by fluid dynamic processes of the plasma jet and environment gas entrained from the plasma jet are the main reason leading to the jet energy fluctuations. Fluctuation of the jet energy determines the acceleration and the heating of the material in the plasma jet is also uneven, it is possible to produce a great impact on the quality of the process. therefore, in this paper, contraposing optical intensity signal, we design and produce a special jet fluctuation diagnostic systems, which is primarily to change the optical intensity signal into the voltage signal by a photomultiplier, and obtain the relation between the plasma jet pulsation and the arc voltage fluctuation the by comparison with the arc voltage signal. This diagnostic system is not only simple in structure, convenient operation, but also lower production costs.
     Based on these studies, because of the arc rotation, the arc with rotating anode, the arc plasma produce a strong circumferential and radial flow, prompting the arc plasma dispersed in circumferential and radial, generating relatively uniform plasma parameters. However, depending on the interaction between the magnetic field and other external conditions (the way gas supply), we get different properties plasma torch to services different arc plasma industrial. In the arc plasma discharge channel, the plasma heat transfer and flow particularly complicated, especially after adding vortex gas and external magnetic field, in order to figure out specific mechanisms under different operation modes, pending further experimental studies.
引文
[1]徐学基著.气体放电物理.上海:复旦大学出版社,1996.
    [2]过增元,赵文华著.电弧和热等离子体.北京:科学出版社,1986.
    [3]唐兰.高频等离子体热解处理有机固体废弃物的研究:[博士学位论文].合肥:中国科技大学,2005.
    [4]马腾才,胡希伟,陈银华著,等离子体物理.合肥:中国科技大学出版社,1988.
    [5]屠昕.用于危险废弃物处理的直流等离子体射流特性研究:[博士学位论文].杭州:浙江大学,2007.
    [6]丁恩振,丁家亮著.等离子体弧熔融裂解——危险废弃物处理前沿技术.北京:中国环境科学出版社,2009.
    [7]Qianhong Zhou, Hui Li, Xu Xu, Feng Liu., et.al. Comparative study of turbulence models on highly constricted plasma cutting arc. J. Phys. D:Appl. Phys.Vol.42.2009:015210
    [8]V Colombo, A Concetti, E Ghedini, S Dallavalle and M Vancini, High-speed imaging in plasma arc cutting:a review and new developments. Plasma Sources Sci. Technol. Vol.18. 2010:023001
    [9]S. S. Samotugin, V. I. Lavrinenko, E. V. Kudinova, Yu. S. Samotugina. The influence of plasma surface modification process on the structure and phase composition of cutting-tools hardmetals. Journal of Superhard Materials. Vol.33,2011:200-207
    [10]V. Colombo, A. Concetti, E. Ghedini, F. Rotundo, et.al. Advances in Plasma Arc Cutting Technology:The Experimental Part of an Integrated Approach. Plasma Chemistry and Plasma Processing. Vol.32,2012:411-426
    [11]Noriaki Ikenaga, Yoichi Kishi, Zenjiro Yajima, Noriyuki Sakudo. Improving mechanical characteristics of an aluminum cutting tool by depositing multilayer amorphous. Nuclear instruments & methods in physics research section B-Beam interactions with material and atoms. Vol.271,2012:361-364
    [12]C Martin, V A Nemchinsky and W S Severance, Measurements of power of oxidation reaction during plasma arc cutting of steel with an oxygen plasma. J. Phys. D:Appl. Vol.46. 2013:224014-3
    [13]S. S. Samotugin, V. I. Lavrinenko, E V. Kudinova, et al. The study of fracture toughness and failure mechanisms of cutting-tool hardmetals with plasma-modified surface. Journal of superhard materials. Vol.35,2013:242-250
    [14]M. Tanaka, H. Terasaki, M. Ushio, J. J. Lowke. A unified numerical modeling of stationary Tungsten -Inert-Gas welding process. Metall.&Mater. Trans. A,Vol.33A,2002:2043-52
    [15]M. Tanaka, M. Ushio, and J. J. Lowke. Numerical analysis for weld formation using a free burning helium arc at atmospheric pressure. JSME Int. J, VOI. 48,2005:397-04
    [16]E. G. Lu, X. H. Tang, H. L.Yu and S. Yao. Numerical simulation on interaction between TIG welding arc and weld pool. Comput. Mater. Sci., VOI. 35,2006:458-465
    [17]J. Hu and H. L. Tsai. Effects of current on droplet generation and are plasma in gas metal arc welding. J. Appl. Phys., Vol.100,2006:053304
    [18]J. Hu and H. L. Tsai. Metal transfer and arc plasma in gas metal arc welding. J. Heat. Transf., VOI. 129,2007:1025-1035
    [19]Y. Kawahito; N. Matsumoto; M. Mizutani; S. Katayama. Characterisation of plasma induced during high power fibre laser welding of stainless steel. Science and Technology of Welding and Joining. Vol.13,2008:744-748
    [20]K. Migiakis, G. D. Papadimitriou. Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels. Journal of Materials Science. Vol.44,2009:6372-6383
    [21]F. Valensi, S. Pellerin, A. Boutaghane, et. al. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy. J. Phys. D:Appl. Phys. Vol.43,2010:434002
    [22]Liming Liu, Minghua Chen. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy. Optics and Lasers in Engineering. Vol.49,2011: 1224-1231
    [23]Tanju Teker, Niyazi Ozdemir. Weldability and joining characteristics of AISI 430/AISI 1040 steels using keyhole plasma arc welding. The International Journal of Advanced Manufacturing Technology. Vol.63,2012:117-128
    [24]Guokai Zhang, Chuan Song Wu, Zuming Liu. Experimental observation of both keyhole and its surrounding thermal field in plasma arc welding. International Journal of Heat and Mass Transfer. Vol.70,2014:439448
    [25]P. Freton, J. J. Gonzalez, A. Gleizes, F. C. Peyret, G. Caillibotte, M. Delzenne. Numerical and experimental study of a plasma cutting torch. J. Phys. D:Appl. Phys., Vol.35,2002:3102-3107
    [26]H. Kelly, B. Maneinelli, L. Prevosto, F.O. Minotti, and A. Marquez. Experimental characterization of a low current cutting torch. Braz. J. Phys., Vol.34,2004:1515-152
    [27]A. A. Syeda, A. Denoirjeana, B. Hannoyerb, et.al. Influence of substrate surface conditions on the plasma sprayed ceramic and metallic particles flattening. Surface and Coatings Technology. Vol.200,2005:2317-2331
    [28]Kate Mcleoda, Sunil Kumara, Roger St.C. Smartb, et.al. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science. Vol.253.2006:2644-2651
    [29]Isabelle Choquet, Stefan Bjorklund, Jimmy Johansson, Jan Wigren. Clogging and Lump Formation During Atmospheric Plasma Spraying with Powder Injection Downstream the Plasma Gun. Journal of Thermal Spray Technology. Vol.16,2007:512-523
    [30]T. Patterson, A. Leon, B. Jayaraj, et al. Thermal cyclic lifetime and oxidation behavior of air plasma sprayed CoNiCrAlY bond coats for therma barrier coatings. Surface and Coatings Technology. Vol.203,2008:437-441
    [31]M. A. Helminiak, N. M. Yanara, F.S. Pettit, et. al. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings. Surface and Coatings Technology. Vol.204, 2009:793-796
    [32]K. Jafarzadeh, Z. Valefi, B. Ghavidel. The effect of plasma spray parameters on the cavitation erosion of Al2O3-TiO2 coatings. Surface and Coatings Technology. Vol.205,2010: 1850-1855
    [33]A. F. Kanta, M. P. Planche, G. Montavon. Electrochemical Characterisations of Al2O3-13%TiO2 Coated by Atmospheric Plasma Spray. Plasma Chemistry and Plasma Processing. Vol.31,2011:867-877
    [34]G. Bertolissi, C. Chazelas, G. Bolelli, et. al. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings. Journal of Thermal Spray Technology. Vol.21,2012: 1148-1162
    [35]Barbara Cortese, Daniela Caschera, Tilde de Caro, et. al. Micro-chemical and -morphological features of heat treated plasma sprayed zirconia-based thermal barrier coatings. Thin Solid Films. Vol.549,2013:321-329
    [36]Mirela A. Dragan, Peter Strutt, Radenka Maric. Crystallization and microstructure of metastable water quenched nanostructured 8 mol% yttria-stabili zed zirconia using the solution precursor plasma spray method. Journal of Materials Science. Vol.49,2014:3215-3224
    [37]G. Shanmugavelyutham and V. Selvarajan. Plasma spheroidization of nickel powders in a plasma reactor. Bull. Mater. Sci., Vol.27,2004:453-457
    [38]M. Iwata, K. Adachi, S. Furukawa, and T. Amakawa. Synthesis of Purified AIN nano powder by transferred type arc plasma. J. Phys. D:Appl. Phys., Vol.37,2004:1041-1047
    [39]Roman Jaworski, Christel Pierlot, Lech Pawlowski, et. al. Synthesis and Preliminary Tests of Suspension Plasma Spraying of Fine Hydroxyapatite Powder. Journal of Thermal Spray Technology. Vol.17,2008:679-684
    [40]Meijun Yang, Lianmeng Zhang, Qiang Shen. Synthesis and sintering of Mg2Si thermoelectric generator by spark plasma sintering. Journal of Wuhan University of Technology-Mater. Sci. Ed. Vol.23,2008:870-873
    [41]Ji Sung Park, Dong Wha Park. Synthesis of zinc oxide nano-particles using carbon dioxide by DC plasma jet. Surface and Coatings Technology. Vol.205,2010:s79-s83
    [42]Tong Liu, Yarong Zhu, Xuanzhou Zhang, et. al. Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Materials Letters. Vol.64, 2010:2575-2577
    [43]Yoshiaki Hattori, Shinobu Mukasa, Hiromichi Toyot, et. al. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water. Materials Chemistry and Physics. Vol.131,2011:425-430
    [44]Vikram Varadaraajan, B.C. Satishkumar, Jagjit Nanda, and Pravansu Mohanty. Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. Journal of Power Sources. Vol.196,2011:10704-10711
    [45]Davide Mariotti, Jenish Patel, Vladimir Svrcek and Paul Maguir. Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Processes and Polymers. Vol.9,2012:1074-1085
    [46]A. Melean. The science and technology of steel making-measurements, models, and manufacturing. Metall. & Mater. Trans.B,Vol.37B,2006:319-332
    [47]E. H. Wang, Z. J. Jin, and Z. S. Zhu. Fluid flow modeling of arc plasma and bath circulation in DC electric arc furnace. J. Iron & Steel ReS. Int., Vol.13,2006:7-13
    [48]王丰华.电弧炉建模研究及其应用:[博士学位论文).上海:上海交通大学,2006
    [49]V. S. Cherednichenko, B. I. Yudin. Thermophysical processes in vacuum plasma electric furnaces for heating powdered materials. Russian Metallurgy (Metally). Vol.2008,2008: 583-587
    [50]J. Piekoszewski, W. Kempinski, M. Barlak, et. al. Superconductivity of Mg-B layers prepared by a multi-energy implantation of boron into magnesium and magnesium into boron bulk substrates followed by the furnace and pulsed plasma annealing. Surface and Coatings Technology. Vol.203,2009,2694-2699
    [51]P. Zhao, G. H. Ni, Y. M. Jiang, et. al. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials. Vol.181, 2010:580-585
    [52]I. Kourti, D. Amutha Rani, A. R. Boccaccini, and C. R. Cheeseman. Geopolymers from DC Plasma-Treated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering. Vol.23,2011:735-740
    [53]S. Kima, H. Sekiguchia, Y. Dobab. Development of ultra-high temperature SHS furnace using atmospheric-pressure microwave steam plasma. Applied Thermal Engineering. Vol.52,2013: 1-7
    [54]K. T. A. L. Burm. Examination of aluminium and zinc plasmas from an inductive furnace by spectroscopy. Journal of Plasma Physics. Vol.79,2013:25-31
    [55]夏维东,万树德,王海,朱培伦,1999.钢包在线等离子体加热实现钢水低热度恒温连铸的方法.中国,97119787
    [56]P. G. Rutheg. Some plasma environmental technologies developed in Russia. Plasma Source Sci. Technol., VOI. 11,2002:A159-A165
    [57]J. Heberlein and A. B. Murphy. Thermal Plasma waste treament. J. Phys. D:Appl. Phys., Vol. 41,2008:053001
    [58]A. L.Mosse, G. E. Savchenko, and V. V. Savchin. A mobile plasma unit for destruction of toxic waste. High temperature material processes. Vol.16,2012:179-188
    [59]A. L. Mosse, A. V. Lozhechnik, G. E. Savchenko, and V. V. Savchin. Mobile plasma plant for destruction of toxic wastes. Journal of Engineering Physics and Thermophysics. Vol.85,2012: 845-850
    [60]G. K. Youbi, K. Poizota, F. Lemonta. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal:Chloroform destruction in oxidative conditions. Journal of Hazardous Materials. Vol.244-245,2013:171-179
    [61]田原宇,黄伟,鲍为仁,谢克昌.煤等离子体热解制乙炔工艺的工程探讨.现代化工,Vol.22,2002:7-10
    [62]关有俊,庞先勇,吕永康.氧对等离子体热解煤中乙炔收率的影响.煤炭转化,Vol.26,2003:36-39
    [63]郭伟,鲍卫仁,曹青,吕永康,谢克昌.等离子体热解煤制乙炔工程化过程中的关键问题.煤化工,Vol.34,2006:25-28
    [64]K. C.Xie,Y. L. Lv, Y. J. Tian, and D. Z.Wang. Study of coal conversion in arc plasma jet. Energy Sources, Vol.24,2002:1093-1098
    [65]X. J. He, T. C. Ma, J. S. Qiu, T. J. Sun, Z. B. Zhao, Y. Zhou, and J. L. Zhang. Mechanism of coal gasification in a steam medium under arc plasma conditions. Plasma Sources Sci. & Technol., Vol.13,2004:446-453
    [66]戴波.氢等离子体裂解煤制乙炔的研究:[博士学位论文]..北京:清华大学,2000
    [67]L. C. Lin, W. D. Xia. Modeling of a magnetron argon plasma issuing into ambient air. Japanese Journal of Applied Physics. Vol.47,2008:273-279
    [68]X. Tu, J. Yan, L. Yu, K. Cen, and B. Cheron, The nature of fluctuation in a double arc argon-nitrogen plasma jet. Appl. Phys. Lett. Vol.91,2007:131501
    [69]H. C. Chen, J. Heberlein, R. Henne. Integrated fabrication process for solid oxide fuel cells in a triple torch plasma reactor. Journal of Thermal Spray Technology. Vol.9,2000:348-353
    [70]K. Ramachandran and H. Nishiyama. Structural analysis of converging jets in a triple torch plasma system. Journal of Physics D:Applied Physics. Vol.36,2003:1198-1203
    [71]T. IwaO, H. Takizawa, T.Inaba, and M. Yumoto. Heating efficiency of twin torch plasma arc. ISIJ Int., Vol.45,2005:1084-1087
    [72]B. Liu, M. Kikuehi, H. P. Li, T. Iwao, and T.Inaba. Dual torch plasma arc furnace for medical waste treatment. Plasma Sci. & Technol., Vol.9,2007:709-712
    [73]B. Liu, M. Kikuchi, H. P. Li, T. Iwao and T. Inaba. Dual Torch Plasma Arc Furnace for Medical Waste Treatment. Plasma Science and Technology. Vol.9,2007:709-712
    [74]A. M. Bonanos, J. A. Schetz, W. F. O'Brien, et. al. Dual-mode combustion experiments with an integrated aeroramp-injector/plasma-torch igniter. Journal of propulsion and power. Vol. 24,2008:267-273
    [75]W. D. Xia, F. Laurent, G. A. Jose, H. Li, and M. G. Thomas. Characterization of a 3-Phase AC free burning arc plasma. Plasma Sci. & Technol., Vol.8,2006:156-163
    [76]V. B. Kovshechnikov, G. G. Antonov, A. A. Ufimtsev. Surface Modification Process of Contact Lens Using Three-Phase AC Excited Nonequilibrium Atmospheric Pressure Ar Plasma. Japanese Journal of Applied Physics. Vol.80,2007:1124-1129
    [77]M. Iwasaki, H. Inui, H. Kano, et. al. Surface Modification Process of Contact Lens Using Three-Phase AC Excited Nonequilibrium Atmospheric Pressure Ar Plasma. Japanese Journal of Applied Physics. Vol.47,2008:3625-3629
    [78]黎林村.磁分散电弧等离子体的实验研究和数值模拟:[博士学位论文].合肥:中国科技大学,2006
    [79]S. W. Chau, K. L. Hsu, D. L. Lin, and C. C. Tzeng. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air. J. Phys. D:Appl. Phys., Vol,40,2007: 1944-1952
    [80]S. Potocky, N. Saito, O. Takai. Needle electrode erosion in water plasma discharge. Thin solid films. Vol.518,2009:918-923
    [81]Y. Yamaguchi, K. Yoshida, Y. Uesugi. Experimental Study of Erosion of Hafnium Electrodes for Oxygen Plasma Arc Cutting. Quarterly Journal of the Japan Welding Society. Vol.28, 2010:51-58
    [82]P. D. Starchyk, P. V. Porytskyy. On the influence of electrode erosion on properties of non-ideal plasma of underway discharges. Problems of atomic sicence and technology. Vol.6, 2012:214-216
    [83]D. K. Panda. Parametric study of relative erosion of cathode and anode of SAE L7 low alloy tool steel in EDM using grey relational concept in L9 orthogonal array. International Journal of Machining and Machinability of Materials. Vol.7,2010:208-229
    [84]F. F. Wu, J. X. Deng, P. Yan. Effects of Substrate Bias Voltages on the Erosion Wear Resistance of TiN Coatings Deposited by Pulse Filtered Vacuum Cathode Arc Deposition. Key Engineering Materials. Vol.443,2010:481-486
    [85]P. Zhang, T. W. L Ngai, H. Xie, and Y. Y. Li. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc. Journal of Physics D:Applied Physics. Vol.46,2013:395202
    [86]V. Nemchinsky. Cathode Erosion due to Evaporation in Plasma Arc Cutting Systems. Plasma Chemistry and Plasma Processing. Vol.33,2013:517-526
    [87]李和平.直流电弧等离子体发生器与射流中传热与流动的研究:[博士学位论文].北京:清华大学,2001
    [88]李辉.电弧等离子体中的阴极区模型及辅助加热电弧等离子休发生器的研究:[博士学 位论文].合肥:中国科学技术大学,2001
    [89]H. Li, Q. Ma, L. C. Li, and W. D. Xia. Imaging of behavior of multiarc roots of cathode in a DC arc discharge. IEEE Trans. Plasma Sci.,Vol.33,2006:404-405
    [90]D. C. C. Chen and J. Lawton, Trans. Inst. Chem. Engr., N. Vol.10,1968:T270
    [91]L. I. Sharakhovsky. Experimental investigation of an electric arc motion in annular ventilated gap under the action of electromagnetic force. J. Eng. Phys. Vol.20,1971:306-313
    [92]A. M. Essiptchouk, L. I. Sharakhovsky, and A. Marotta. A new formula for the rotational velocity of magnetically driven arcs. J. Phys. D:Appl. Phys. Vol.33,2000:2591-2597
    [93]周鹤凌.大尺度磁旋电弧等离子体的实验研究:[硕士学位论文].合肥:中国科学技术大学,2008
    [94]M..茹科夫,A.C.科罗捷耶夫,B.A.乌柳科夫.热等离子体实用动力学,赵文华,周力行译.北京:科学出版社,1981
    [95]V. M. Adams. The influence of gas streams and magnetic fields on electric discharges, Part Ⅱ. The shape of an arc rotating round an annular gap. Tech. Note, No. Aero 2915. Brit. R. A. E., 1963
    [96]J. Lawton. Arc motion in magnetic fields in presence of gas flow. J. Phys. D:Appl. Phys.,Vol. 4,1971:1946-1958
    [97]H. Minoo, A. Arsaoui, A. Bouvier. An analysis of the cathode region of a vortex stabilized arc plasma generator. J. Phys. D:Appl. Phys., Vol.28,1995:1630-1648
    [98]S. David and S. Richard. Structure and dynamics of a magnetron DC arc plasm. Appl. Spectro. Vol.44,1990:76-83
    [99]S. David and S. Richard. A magnetron DC arc plasma for aerosol analysis. Appl.Spectro. Vol. 44,1990:83-90
    [100]S. David and S. Richard. Excitation temperatures and electron densities in a magnetron rotating DC arc plasma. Appl.Spectro.Vol.45,1991:148-154
    [101]Weidong Xia, Lincun Li, Yuhua Zhao, Qiang Ma, Baide Du. Dynamics of large-scale magnetic roating arc plasmas, Appl. Phys. Lett. Vol.88,2006:211501
    [102]Keun Su Kim. Influence of a transverse magnetic field on arc root movements in a dc plasma torch:Diamagnetic effect of arc column. Appl. Phys. Lett. Vol.94,2009:121501
    [103]W. X. Pan, F. X. Lu, W. Z. Tang, G. F. Zhong, Z. Jiang, and C. K. Wu, Carbon transition efficiency and process cost in high-rate,large-area deposition of diamond films by DC arc plasma jet. Diamond Relat. Mater. Vol.9,2000:1682-1686
    [104]Z. Duan, and J. Heberlein, Arc instabilities in a plasma spray torch. J. Thermal Spray Technol. Vol.11,2002:44-51
    [105]C. Moreau; J. F.Bisson, R. S. Lima, and B. R. Marple, Diagnostics for advanced materials processing by plasma spraying. Pure Appl. Chem. Vol.2005:443-462
    [106]R. Etchart-Salas, V. Rat, J. F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre, Influence of plasma instabilities in ceramic suspension plasma spraying. J. Thermal Spray Technol. Vol.16,2007:857-865
    [107]E. Nogues, M. Vardelle, P. Fauchais, and P. Granger, Arc voltage fluctuations:comparison between two plasma torch trpes. Surf. Coat. Technol. Vol.202,2007:4387-4393
    [108]E. Nogues, P. Fauchais, M. Vardelle, and P. Granger, Relation between the arc root fluctuation, the cold boundary layer thickness and the particle thermal treatment. J. Thermal Spray Technol. Vol.16,2007:919-926
    [109]J. F. Coudert, V. Rat, and D. Digot, Influence of Helmholtz oscillations on arc voltage fluctuations in a dc plasma spraying torch. J. Phys. D:Appl. Phys. Vol.40,2007:7357-7366
    [110]S. Ghorui, M. Vysohlid, J. Heberlein, and E. Pfender, Probing instabilities in arc plasma devices using binary gas mixtures. Physical Review E Vol.76,2007:016404-13
    [111]Z. Duan, Investigations of plasma instabilities in a spray torch, Ph. D thesis, University of Minnesota,2000.
    [112]R. Etchart-Salas, V. Rat, and J. F. Coudert, Influence of arc instabilities on the injection in suspension plasma spraying. High Temperature Material Processes. Vol.10,2006:407-418
    [113]J. F. Coudert, and P. Fauchais, Transient Phenomena in dc plasma spray torches. Annals of the New Your Academy of Sciences. Vol.891,1999:382-390.
    [114]J. P. Trelles, E. Pfender, and J. Heberlein, Modelling of the arc reattachment process in plasma torches. J. Phys. D:Appl. Phys. Vol.40,2007:5635-5648
    [115]S. Janisson, A. Vardelle, J. F. Coudert, P. Fauchais, and E. Meillot, Analysis of the stability of dc plasma gun operating with Ar-He-H2 gas mixtures. Annals of the New Your Academy of Sciences. Vol.891,1999:407-416
    [116]E. Nogues, M. Vardelle, P. Fauchais, and P. Granger, Influence of voltage fluctuations related to plasma torch working conditions on zirconia partical thermal treatment. High Temperature Material Processes. Vol.11,2007:161-174
    [117]J. F. Coudert, and V. Rat, The role of torch instabilities in the suspension plasma spraying process. Surf. Coat. Technol. Vol.205,2010:949-953
    [118]V. Rat, and J. F. Coudert, Pressure and arc voltage coupling in dc plasma torches: identification and extraction of oscillation modes. J.Appl. Phys. Vol.108,2010:043304-9
    [119]V. Rat, and J. F. Coudert, Acoustic stabilization of electric arc instabilities in non-transferred plasma torches. Applied Physics Letters 96,2010:101503-3
    [120]J. F. Brilhac, B. Pateyron, G. Delluc, J. F. Coudert, and P. Fauchais, Study of the dynamic and static behavior of dc vortex plasma torches:part 1:button type cathode. Plasma Chem. Plasma Process. Vol.15,1995:231-255
    [121]P. Mohanty, Jovan Stanisic, Jelena Stanisic, A. George, and Y. Wang, A study on arc instability phenomena of an axial injection cathode plasma torch. J. Thermal Spray Technol. Vol.19,2010:465-475
    [122]W. H. Zhao, K. Tian, D. Liu, and G. Z. Zhang, Fluctuation phenomenon analysis of an arc plasma spraying. Chin. Phys. Lett.18,2001:1092-1904
    [123]J. F. Coudert, M. P. Planche, and P. Fauchais, Velocity measurement of dc plasma jets based on arc root fluctuations. Plasma Chem. Plasma Process. Vol.15,1995:47-70
    [124]L.Delair, X. Tu, A. Bultel, and B. G. Cheron, Helmholtz behavior of a nitrogen plasma arc chamber. High Temperature Material Processes 9,2005:583-597
    [125]J. F. Coudert, and V. Rat, Influence of configuration and operating conditions on the electric arc instabilities of a plasma spray torch:role of acoustic resonance. J. Phys. D:Appl. Phys. Vol.41,2008:205208-10
    [126]X. Tu, B. G. Cheron, J. H. Yan, L. Yu, and K. F. Cen, Characterization of an atmospheric double arc argon-nitrogen plasma source. Physics of Plasmas. Vol.15,2008:053504-10
    [127]H. J. Huang,W. X. Pan, Z. Y. Guo, and C. K. Wu, J. Phys. Instabilities in a non-transferred direct current plasma torch operated at reduced pressure. D:Appl. Phys. Vol.43,2010: 085202-6
    [128]X. Tu, B. G. Cheron, J. H. Yan, and K. F. Cen, Dynamic behavior of dc double anode plasma torch at atmospheric pressure. J. Phys. D:Appl. Phys. Vol.40,2007:3972-3979
    [129]X. Tu, B. G. Cheron, J. H. Yan, and K. F. Cen, Electrical spectroscopic diagnostic of an atmospheric double arc argon plasma jet. Plasma Sources Sci.Technol. Vol.16,2007: 803-812
    [130]W. X. Pan, Z. Y. Guo, X. Meng, H. J. Huang, and C. K. Wu, Fluctuation characteristics of arc voltage and jet flow in a non-transferred dc plasma generated at reduced pressure. Plasma Sources Sci. Technol. Vol.18,2009:045032-8
    [131]W. H. Zhao, K. Tian, H. Z. Tang, D. Liu, and G. Z. Zhang, Experimental studies on the unsteadiness of atmospheric pressure plasma jet. J. Phys. D:Appl. Phys. Vol.35,2002: 2815-2822
    [132]S. Russ, E. Pfender, and P. J. Strykowski, Unsteadiness and mixing in thermal plasma jets. Plasma Chem. Plasma Process. Vol.14,1994:425-436
    [133]W. X. Pan, W. H. Zhang, W. Ma, and C. K. Wu, Characteristics of argon laminar dc plasma jet at atmospheric pressure. Plasma Chem. Plasma Process. Vol.22,2002:271-283
    [134]W. X. Pan, X. Meng, X. Chen, and C. K. Wu, Experimental study on the thermal argon plasma generation and jet length change characteristics at atmospheric pressure. Plasma Chem. Plasma Process. Vol.26,2006:335-345
    [135]H. J. Huang, W. X. Pan, and C. K. Wu, Arc root motions in an argon-hydrogen direct-current plasma torch at reduced pressure. Chin. Phys. Lett. Vol.25,2008:4058-4060
    [136]E.Pfender.热等离子体技术:现状及发展方向.力学进展.Vol.29,1999:251-267
    [137]高飞.二路进气热等离子体喷枪用于垃圾焚烧飞灰处置的研究:[硕士学位论文].杭州:浙江大学,2010
    [138]J. L. Dorrier, M.Gindrat, C. Hollenstein, Time-resolved imaging of anodic arc root behavior during fluctuations of a dc plasma spraying torch. IEEE transactions on plasma science. Vol. 29,2001:494-501
    [139]杜百合.大尺度磁旋转电弧等离子体发生器研究:[硕士学位论文].合肥:中国科学技术大学,2005
    [140]P. J. Gaede, Rotating helical H2-arc. Z. Phys. Vol.255,1972:40-&
    [141]J. Mentel. Study on helical instability on a wall-stabilized hydrogen arc. Z. Naturforsch. Vol. A 26,1971:526-&
    [142]K. Dzierzgga, W. Zawadzki, B. Pokrzywka, and S. Pellerin. Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics. Phys. Rev. E. Vol.74,2006:026404
    [143]D. Jaroslaw, K. Grzegorz, and S. H. Danuta. Spectroscopic diagnostic of non-thermal plasma generated in gliding arc discharge plasma reactor. Przeglad elektrotechniczny. Vol.84, 2008:309-311
    [144]J. Hlina, F. Chvala, J. Sonsky, and J. Gruber. Multi-directional optical diagnostics of thermal plasma jets. Measurement Science and Technology. Vol.19,2008:015407
    [145]C. E. Nwankire, V. J. Law, A. Nindrayog, et. al. Electrical, Thermal and Optical Diagnostics of an Atmospheric Plasma Jet System. Plasma Chemistry and Plasma Processing. Vol.30, 2010:537-552
    [146]M. Thiyagarajan, A. Sarani, and C. Nicula. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications. Journal of Applied Physics. Vol.113,2013:233302
    [147]Griem. H.R plasma spectroscopy [M]. New York. Mc Graw-Hill.1964
    [148]R. Wilsom. Qwant. Spectry, Radiative Transfer. Vol.2,1962:477-481
    [149]I.R.Grant. Mon. Not. Roy. Asoron.Soc, Vol.118,1958:241-249
    [150]W. L. T. Chen, J. Heberlein, and E. Pfender. Diagnostics of a thermal plasma jet by optical emission spectroscopy and enthalpy probe measurements. Plasma Chem and Plasma Processing. Vol.14,1994:317-332
    [151]N. Renevier, T. Czerwiec, P. Collignon, H. Michel. Diagnostic of arc discharges for plasma nitriding by optical emission spectroscopy. Surface and Coatings Technology. Vol.98,1998: 1400-1405
    [152]R. F. Boivin, J. L. Kline, and E. E. Scime. Electron temperature measurement by a helium line intensity ratio method in helicon plasmas. Physics of Plasma. Vol.8,2001:5303-5314
    [153]Mahmoud Rajabian, Denis V. Gravelle, and Serge Vacquie. Measurements of temperatures and electron number density in an Argon-Nitrogen plasma jet generated by a dc torch operation close to supersonic threshold. Plasma Chem and Plasma Processing. Vol.24,2004: 261-284
    [154]S. Forster, C. Mohr, W. Viol. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surface & Coatings Technol. Vol.200,2005:827-830
    [155]S. Zielinska, K. Musiol, K. Dzierzega, S. Pellerin, F. Valensi, Ch de Izarra, and F. Briand. Investigations of GMAW plasma by optical emission spectroscopy. Vol.16,2007:832-838
    [156]X. Tu, B. G. Cheron, J. H. Yan, L. Yu, and K. F. Cen. Characterization of an atmospheric double arc argon-nitrogen plasma source. Physics of Plasma. Vol.15,2008:053504-1
    [157]Abdollah Sarani, Anton Yu. Nikiforov, and Christophe Leys. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures:Optical emission spectroscopy and temperature measurements. Physics of Physic. Vol.17,2010:063504-1
    [158]Guohua Ni, Peng Zhao, Cheng Cheng, Ye Song, Hirotaka Toyoda and Yuedong Meng. Characterization of a steam plasma jet at atmospheric pressure. Plasma Sources Sci. Technol. Vol.21,2012:015009-1
    [159]赵文华,田阔,刘笛,唐皇哉,电弧等离子体射流核脉动及射流形貌.清华大学学报(自然科学版).Vol.42,2002:442-445
    [160]Mitchner M, Kruger C H Jr. Partially Ionized Gases. New York:Wiley,1973
    [170]陈熙著.热等离子体传热与流动,北京:科学出版社,2009
    [171]吴蓉.半导体桥等离子体温度的光谱法诊断研究:[硕士学位论文].南京:南京理工大学,2007
    [172]林烈,吴承康.大气压非平衡等离子体中非平衡度的探讨.核聚变与等离子体物理.Vo1.18,1998:57-60
    [173]安连彤.高电压低电流等离子体喷涂的特性研究:[博士学位论文].大连:大连海事大学,2007
    [174]丁芳.高气压直流辉光等离子体放电物理及技术应用研究:[博士学位论文].合肥:中国科技大学,2010
    [175]H. Minoo, A. Arsaoui, A. Bouvier. An analysis of the cathode region of a vortex stabilized arc plasma generator. J. Phys. D:Appl. Phys.,Vol.28,1995:1630-1648
    [176]N. Desaulniers-Soucy, J. L. Meunier. A study of magnetically rotating arc stability using fluctuations in voltage, velocity and emission line lintensity. J. Phys. D:Appl. Phys., Vol.28, 1995:2505-2513
    [177]A. M. Essiptchouk, L.I.Sharakhovsky, and A. Marotta. A new formula for the rotational velocity of magnetically driven arcs. J. Phys. D:Appl. Phys., Vol.33,2000:2591-2597
    [178]M. Hu, S.D.Wan, Y.Y.Xia, Z.C.Ren, and H. Wang. Effect of an external magnetic field on plasma torch discharge fluctuation. Europhysics Letters., Vol.102,2013:55002-p5
    [179]Y. P. Chyou, E. Pfender. Modeling of plasma jets with superimposed vortex flow.Plasma Chem. Plasma process. Vol.9,1989:291-328
    [180]武兴建吴金宏.光电倍增管原理、特性与应用.国外电子元器件.Vol.8,2001:13-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700