同轴等离子体发生器电弧运动轨迹的数值分析和计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧等离子体因具有高温、能量密度大、环保等优点,在工程中具有广阔的应用前景。但其不足之处是横截面积小,加热面积小且温度不均匀。因此,基于电弧具有良好的导电性,工业上利用外加轴向磁场驱动电弧旋转是一种获得大面积均匀电弧的实用手段。在电弧旋转过程中,高温电弧对电极很强的烧蚀作用,而电极的烧损会影响到等离子体发生器的寿命。磁旋转发生器中电弧旋转速度作为影响电极传热的关键因素,是该类技术或产品的重要指标。因此,对电弧旋转速度的研究具备重要的理论意义和工程价值。
     本文研究了同轴等离子体发生器电弧运动轨迹和旋转速度的数值计算方法。根据电弧的通道模型,计算了电弧的弧柱半径。基于电极产生的电场分布,研究了电弧等离子体的运动轨迹,最后采用电弧的刚体模型分析电弧的旋转运动,根据电弧稳态旋转时电磁力矩和流体阻力力矩相平衡条件,建立了电弧稳态旋转的数学模型,然后采用禁忌搜索算法计算电弧稳态旋转速度。
     数值计算结果表明粒子的空间运行轨迹为近似平面的抛物线以阴极为对称轴旋转形成的空间迹线。此外,实验结果证明了理论工作的有效性和正确性,为工程分析和设计提供了理论依据。
Thermal arc plasma has broad applications due to its advantages, such as high temperature, high energy density, environmental protection, etc. However, the disadvantages associated with the thermal arc plasma are thoses that its heating area is small and the temperature is nonuniform as the result of the small cross-sectional area. Applying external axial magnetic field to drive the arc plasma to rotate is a very practical way of obtaining uniform high-temperature conditions of larger area based on the good conductivity of the arc in industry applications. The high-temperature arc has an ablative effect on the electrode while rotating. And the erosion of the electrode affects the longevity of plasma generator. As the key factor of the heat-transfer process of an electrode, the revolution speed of arc is an important technical specification of such techniques. For this reason, the study of the revolution speed of arc is of important theoretical significance and engineering value.
     This paper proposed a numerical model and method to calculate the revolution locus and speed of arcs inside a coaxial plasma generator. The radius of the arc was decided according to channel model. The revolution locus of plasma arc was studied based on the electric-field distribution generated by the electrode. The revolution speed of the arc was determined form the mathematical model based on the balance of damping and driving electromagnetic torques of a rigid body using a tabu search algorithm.
     Numerical results have demonstrated that the trajectory of the plasma arcs in 3D is formed by the rotation of a 2-D parabola locus. Also, the proposed work is validated by the primary tested results and this provides the theory for engineering analysis.
引文
[1]葛袁静,张广秋,陈强.等离子体科学技术及其在工业中的应用[M].北京:中国轻工业出版社,2011.
    [2]杜百合.大尺度磁旋转电弧等离子体发生器的研究[D].合肥:中国科学技术大学工程科学学院,2005.
    [3]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009.
    [4]弗尔曼.低温等离子体:等离子体的产生、工艺、问题及前景.[M].北京:科学出版社,2011
    [5]布鲁纳.等离子体-电弧及其他热处理技术:应用于持久性有机污染物.[M].北京:中国环境科学出版社,2005
    [6]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    [7]李辉.电弧等离子体中的阴极区模型及辅助加热电弧等离子体发生器的研究[D].合肥:中国科学技术大学工程科学学院,2001
    [8]茹科夫,科罗捷耶夫,乌柳科夫.热等离子体实用动力学[M].北京:科学出版社,1981.
    [9]周鹤凌.大尺度磁旋电弧等离子体的实验研究.[D].合肥:中国科学技术大学工程科学学院,2008.
    [10]Sharakhovsky LI. Experimental investigation of an electric arc motion in annular ventilated gap under the action of electromagnetic force[J]. J. Eng.Phy.,1971, 20:303-318.
    [11]Essiptchouk AM, Sharakhovsky LI, Marotta A. A new formula for the rotational velocity of magnetically driven arcs[J]. J. Phys. D:Appl. Phys.,2000, 33:2590-2599.
    [12]D.C.C.Chen, J.Lawton. Trans.Inst.Chem.Engr.,N.10,T270(1968).
    [13]杜百合,黎林村,马强,等.磁驱动旋转电弧运动图像及弧电压脉动的实验研究[J].核技术,2005,28(10):746-748.
    [14]郭锐,何俊佳,赵纯,等.中国电机工程学会高压专委会2007年学术年会论文集[C].深圳:[出版者不详],2007.
    [15]Horinouchi K, Nakayama Y, Hidaka M, et al. A method for simulating magnetically driven arcs in a gas[J]. IEEE Trans.Power Delivery,1997, 12(1):213-218.
    [16]Tanaka S, Sunabe K. Study on simple simulation model for DC free arc behaviour in long gap[J]. Proceedings of the XIV international conference on gas discharge and their applications, Liverpool,2002:119-122.
    [17]张晋,陈德桂,等.低压断路器灭弧室中磁旋电弧的数学模型[J].中国电机工程学报,1999,19(10):22-27.
    [18]倪光正,杨仕友,邱捷,等.工程电磁场数值计算[M].北京:机械工业出版社,2010:124-136.
    [19]陈世元.交流电机磁场的有限元分析[M].哈尔滨:哈尔滨工程大学出版社,1998:43-54.
    [20]张慧.电磁场逆问题分析计算的快速全局优化算法的研究.[D].杭州:浙江大学电气工程学院,2007.
    [21]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007:24-42
    [22]Patankar S V, Spalding D B.A Calcuation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Int. J. Heat Mass Transfer,1972(15):1787-1806.
    [23]李德元,赵文珍,董晓强.等离子体技术在材料加工中的应用[M].北京:机械工业出版社,2005:17-41.
    [24]王伟明,张义顺,李德元.等离子枪体流场形态仿真分析[J].沈阳工业大学学报,2004(2):137-139.
    [25]叶超,宁兆元,江美福,等.低气压低温等离子体诊断原理与技术[M].北京:科学出版社,2010:1-5.
    [26]I.M.Cohen, A.M.Whitman. [J]. J.Appl.Phys.1973,44(4):1557.
    [27]Francis F.Chen等离子体物理学导论[M].林光海,译.人民教育出版社,1980.
    [28]郑春开.等离子体物理[M].北京:北京大学出版社,2009.
    [29]邵福球.等离子体粒子模拟[M].北京:科学出版社,2002.
    [30]朱士尧.等离子体物理基础[M].北京:科学出版社,1983.
    [31]孙杏凡.等离子体及其应用[M].北京:高等教育出版社,1983.
    [32]谢德馨,杨仕友.工工程电磁场数值分析和综合[M].北京:机械工业出版社,2009.
    [33]石瑞民.数值计算[M].北京:高等教育出版社,2004.
    [34]韩丹夫,吴庆标.数值计算方法[M].杭州:浙江大学出版社,2006.
    [35]朱立明,柯葵.流体力学[M].上海:同济大学出版社,2009.
    [36]倪光正.工程电磁场原理[M].北京:高等教育出版社,2002.
    [37]实用智能优化方法[M].大连:大连理工大学出版社,2009
    [38]吕永康,庞先勇,谢克昌.煤的等离子体转化[M].北京:化学工业出版社,2011
    [39]Y.S.Touloukian. THERMAL CONDUCTIVITY:Nonmetallic Liquids and Gases[M]. IFI/Plenum,1970:64-75.
    [40]N.B.Vargaftik. TABLES on the THERMOPHSICAL PROPERTIES of LIQUIDS and GASES:In Normal and Dissociated States[M]. Hemisphere Pub. Corp, 1975.
    [41]杨宪章.工程电磁场.[M].北京:中国电力出版社,2007
    [42]王泽忠.简明电磁场数值计算.[M].北京:机械工业出版社,2011
    [43]史峰,陈靖,刘衍琦等.MATLAB数值计算案例分析.[M].北京:北京航空航天大学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700