高辐照度太阳模拟器光源的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳模拟器是在室内环境中模拟自然太阳光的设备。它具有辐照度稳定,不受时间、季节、气候影响等诸多优点,使得其广泛应用于能源、化工、电子器件、生物医学等领域的检测实验中。目前低辐照度太阳模拟器(1个太阳及附近)已有商用化产品,并有国际标准和中国国家标准。
     聚光光伏电池、太阳能高温热发电、太阳炉等聚光太阳能应用的研究和产业的迅猛发展提出了对高辐照度太阳模拟器的需求。目前国际上尚未见到高辐照度
     太阳模拟器成熟产品,其研究报道也很少,也尚无高辐照度太阳模拟器标准。本论文针对太阳能应用迅猛发展的需求,开展了高辐照度太阳模拟器的初步研究。太阳模拟器最关键的是对光源的选择。太阳模拟器的光源应具有光谱与太阳光谱尽可能接近、发光效率高、功率可调等特性。短弧氙灯辐射能量分布近似于灰体辐射,光色接近日光,因此成为太阳模拟器选用最多的光源。
     对于短弧氙灯光谱特性-尤其是光谱空间分布、其内部温度分布、以及它们与电流密度之间变化关系等性质的研究,将有助于理解氙灯光学原理,为改进氙灯结构和设计高辐照度太阳模拟器光源系统提供依据。
     本文测量了短弧氙灯沿轴向空间光谱分布,并依照标准太阳模拟器光谱分布失配误差进行了评价,利用高压氙等离子体在近红外区域的自反线,采用Bartels方法计算出短弧氙灯等离子体温度分布,并将其与氙灯电流密度变化趋势进行对比。
     基于短弧氙灯的实验结果,本文设计了一种用作高辐照度太阳模拟器光源的磁分散电弧等离子体发生器的实验装置。利用外磁场驱动电弧高速旋转迫使电弧扩张,以获得高辐照度(大功率)均匀稳定的面光源。在一个大气压氩气的模拟环境中测试了光源的基本性能,采用电学参数测量、CCD高速摄影、发射光谱诊断等方法对电弧的电压电流特性、电弧分散过程、等离子体光源发射光谱径向空间分布以及氩等离子体激发温度等参数加以分析。实验结果表明:利用外磁场迫使电弧高速旋转的方法可以有效的促进收缩电弧分散,并最终达到完全分散的状态;分散电弧可以显著提高电流负荷从而得到高的辐射功率;完全分散电弧的CCD图片灰度分析磁分散等离子体光源的辐照不均匀度和不稳定度分别为36.3%和27%,比未分散时的73.7%和69.8%得到了显著降低;电弧电压脉动频率增大,脉动幅度显著降低,间接表明电弧分散有助于光源稳定性的提升;对电弧等离子体光源径向空间光谱分布进行测量,证实了电弧分散后光源的均匀性得到了改善。
     另外,本文利用Tracepro光学软件对加入初步简单设计的透镜后平面光源光路系统的辐照均匀性进行了仿真模拟分析,结果显示最小的辐照不均匀度达到了15.4%。
Solar simulator is the equipment which can simulate indoors natural sunlight. It has stable irradiance and is not affected by time,seasons,climate, so that solar simulator has been used for testing and researching in energy,chemical industry,electronic device,biomedical engineering and so on.Up now,low irradiance solar simulators have been in commodity production,and its national and international standards have been drawn up.
     The application of condensation solar energy,such as CPV cells,solar stove,and etc,bring forward the request of high irradiance solar simulator.This paper give the primary researchments on high irradiance solar simulator.
     The most critical choice of the solar simulator is the light source. Its spectrum should be close to the solar spectrum as possible,as well as it should be of high luminous efficiency,power adjustable,high brightness and etc. Short-arc xenon lamp radiation energy distribution approximates to the grey body radiation distribution, its light color closes to the sunlight, thus it is most used as light source of solar simulator.
     Researching on its spectral characteristic of xenon lamp,especially spatial distribution, which is dependent on the internal temperature distribution and the relationship between those and current density would help us to understand optical principle of xenon lamp and provide reliable reference to improve structure of xenon lamp,so as to design optical system of the high irradiance solar simulators.In this paper, axially spectral distribution of xenon lamp is measured,additionally evaluate spectral mismatching error according to distribution of standard spectrum radiation intensity. Bartels method is utilized for calculating temperature distribution by using self-reversed lines in near-infrared spectrum, and the temperature distribution dependent on current density is analysised.
     Based on the characteristics of the short-arc xenon, a novel magnetically dispersed arc plasma generator used as light source of solar simulator is designed in this paper. Experiments are carried under ambient argon gas. The characteristics of arc current and voltage,arc plasma dispersed process and radially spectral distribution are analysised by electrical parameter measurement,emission spectroscopy and CCD photography. Experimental observations shows that: magnetic field can effectively forces arc to high-speed rotate and the arc is fully dispersed ultimately. CCD images show that irradiance unevenness and instability are respectively 36.3% and 27% for fully dispersed arc,compared with 73.7% and 69.8% for the undispersed arc. Arc voltage ripple frequency increases, pulse amplitude significantly reduces, arc voltage almost keep constant,which indicate that increasing magnetic field strength leads to improve stability of dispersed arc plasma light source. Spectral distributions of radial plane confirm that radial intensity tends to be homogeneity. In addition,irradiation uniformity of the light source is analysed by Tracepro,it shows that the minimum irradiance nonuniformity reaches 15.4%。
引文
[1] http://baike.baidu.com/view/53645.htm.
    [2]王长贵,崔容强,周篁. 2003.新能源发电技术[M].北京:中国电力出版社,22~24.
    [3]崔容强,沈辉,杨德仁等.光伏发电在中国能源结构中战略地位的思考.2008年第四届中国太阳能级硅及光伏发电研讨会论文集.上海交通大学,2008:21~29.
    [4]赵玉文,王斯成,王文静等.中国光伏产业发展研究报告(2006-2007).中国可再生能源发展项目办公室. 2008.5:1~3.
    [5]李俊峰,王斯成,张敏吉等.中国光伏发展报告(2007).北京:中国环境科学出版社. 2008: 11~12.
    [6]刘锋. 2008.太阳能模拟器对光伏测试的影响与最优化光学设计[D]: [硕士].上海:上海交通大学,6.
    [7] ASTM standard G 159: Standard tables for references solar spectral irradiance at airmass 1.5: direct normal and hemispherical for a 37℃tilted surface. ASTM Annual Book of Standards, Vol. 14.04, ASTM International, West Conshohocken, PA, 2002.
    [8] IEC standard 60904-3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. Photovoltaic Devices, International Electro-technical Commission, Geneva, Switzerland, 1998.
    [9]柯受全等.卫星环境工程和模拟试验[M].北京:宇航出版社,1993.
    [10]高雁,刘洪波等.太阳模拟技术[J].中国光学与应用光学,2010,3(2).
    [11]黄本诚. 1994.空间模拟器设计[M].北京:宇航出版社.
    [12] Eddy K Design and consa'uction of JPL SSL5B solarsimulator[R].JPL internal document,1968-01
    [13]杨林华,李弦松.国外大型太阳模拟器研制技术概述[J].航天器环境工程,2009,26(2).
    [14] Naukamura Y,Tomita T,et al.13-m diameter space simulation facility[C].ESA SP-304,1990,9:107-112.
    [15]吴大军.2006.太阳模拟器辐照度控制技术研究[D]: [硕士].长沙:国防科学技术大学
    [16]张容,李弦松等. KFTA太阳模拟器研制[J].航天器环境工程,2009,26(6).
    [17]庞贺伟,黄本诚等. KM6太阳模拟器设计概述[J].航天器环境工程,2006,23(3)
    [18]罗青青. 2009.宽光谱太阳模拟器的理论分析和整体设计[D]: [硕士].天津:天津大学,14-15.
    [19] J. Fernández-Reche, I. Ca?adas, M. Sánchez, J. Ballestrín, L. Yebra, R. Monterreal, J. Rodrígueza, G. García, M. Alonso and F. Chenlo. PSA Solar furnace: A facility for testingPV cells under concentrated solar radiation, Solar Energy Materials & Solar Cells, 2006, 90: 2480–2488
    [20] Petrasch J., Coray P., Meier A., Brack M., Haeberling P., Wuillemin D., Steinfeld A., A 50-kW 11,000-suns novel high-flux solar simulator based on an array of Xenon arc lamps, ASME Journal of Solar Energy Engineering, 2007, 129 (4): 405-411
    [21] http://www.spectrolab.com/DataSheets/T-HIPSS/T-HIPSS.pdf
    [22] PHOTON International(M), Market Survey on IV Cell Testers and Cell Sorters , 2007-10,P142-161.
    [23] IEC standard 60904-9: Solar simulator performance requirements. Photovoltaic Devices. International Electro-technical Commission, Switzerland, 2007.
    [24] http://www.wacom-ele.co.jp/Solar/ENGsolar2.htm
    [25]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986,158-167.
    [26]周鹤凌. 2008.大尺度磁旋电弧等离子体的实验研究[D]: [硕士].合肥:中国科学技术大学.
    [27]黎林村.2008.磁分散等离子体的实验研究与数值模拟[D]: [博士].合肥:中国科学技术大学
    [28]杜百合.2005.大尺度磁旋转电弧等离子体发生器研究[D]: [硕士].合肥:中国科学技术大学.
    [30] David S and Richard S. 1990. Structure and dynamics of a magnetron DC arc plasma[J].Appl.Spectro.44:76-83
    [31] David S and Richard S. 1990. A magnetron DC arc plasma for aerosol analysis[J]. Appl.Spectro.44:83-90.
    [32] Lin L, Sun Z, Wang BY, and Wu CK. 1995. A thermionic cathode with diffused arc roots for plasma generators[C]. Proc 12th Int. Symp. Plasma Chem,Minneapolis,USA.
    [33] Lin L, Sun Z, Wang BY, and Wu CK. 1996. The efforts of magnetic field on arc roots behavior and arc characteristics[C]. Proc 3rd Asia-Pacific Conf. Plasma Sci. Technol.,Tokyo,Japan
    [34]姚涵春.等离子体光源及其应用[J].演绎科技,2010,2.
    [35]刘玉蓉,石志远.氙灯光源辐射对水稻产量的影响[J].江西农业大学学报,2001,23(1).
    [36]李朝阳,陈强,张广秋.射频无电极氮气等离子体光源研究[J].真空科学与技术学报,2007,27(4).
    [37]张林华,王元.全光谱太阳模拟器光源选择的实验研究[J].山东建筑大学学报, 2007,22(6).
    [38]中华人民共和国国家标准GB/T17683.1-1999太阳能在地面不同接收条件下的太阳光谱辐照度标准第一部分(大气质量1.5的法向直接日射辐照度和半球向日射辐照度)[S].北京:中国标准出版社,1999.
    [39]中华人民共和国国家标准GB/T12637-1990太阳模拟器通用规范[S].北京:中国标准出版社,1990.
    [40]中华人民共和国军用标准GJB3489-98.太阳模拟器光学参数测量方法[S].1998
    [41]陈大华编著.现代光源基础[M].上海:学林出版社,1987.
    [42]尉敏. 2004.太阳辐射全光谱模拟人工光源的实验研究[D]: [硕士].西安:西安建筑科技大学
    [43]周卫华,周汉昌. LED太阳模拟器的研究[J].红外,2009,(3).
    [44]丁有生,郑继雨编.电光源原理概论[M].上海科学技术文献出版社,1994,445-450.
    [45]彭小静.2008.太阳模拟器的辐射光谱研究.[D]: [硕士].上海:上海交通大学
    [46]潘林,张北宁.短弧氙灯的设计和应用[J].光电技术应用,2006,21(2).
    [47]杨林华,史瑞良.积分球太阳辐照模拟源研制. 2003年度航天第十信息网学术交流会
    [48] H. Schneidenbach, St. Franke. Journal of Physics[J]. Applied Physics,2008,41(14):144016.
    [49] John Wiley,H. Zwiker. Plasma Diagnostics[M]. New York: W.Lochte-Holtgreven, 1968:214–240.
    [50] I. B. Gornushkin, N. Omenetto. Determination of the Maximum Temperature at the Center of an Optically Thick Laser-Induced Plasma Using Self-Reversed Spectral Lines[J]. Applied Spectroscopy,2004,58(9):1023-1031.
    [51] Dorier Jean-Luc,Gindrat Malko,Hollenstein Christoph. Time-Resolved Imaging of Anodlic Arc Root Behavior During Fluctuations of a DC Plasma Spraying Torch[J]. IEEE Transactions on Plasma Science,2001,29(3).
    [52] [美]J.R.罗思. 1998.工业等离子工程(第一卷)[M].北京:科学出版社
    [53] Griem H R.1964. Plasma Spectroscopy. New York:Mc Graw Hill
    [54] Griem H R.1974. Spectral Line Broadening by Plasma. New York:Academic

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700