硬脆非金属材料微结构微细加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬脆非金属材料的微细加工一直是机械加工中的难点。微晶云母陶瓷(Microcrystalline-mica-ceramic,简称MCMC)和聚晶金刚石( Polycrystalline Diamond,简称PCD)是比较典型并有广泛应用前景的硬脆非金属材料。以微晶云母陶瓷为代表的陶瓷材料具有优异的绝缘性、耐高温和低热导率等特性,其热导率不到硅材料的十分之一,如用作微小推力器燃烧室和喷管材料,可极大地降低推力器系统的热损失。以聚晶金刚石为代表的超硬材料具有均匀的高硬度、高耐磨性和强抗腐蚀性等优良特性,非常适用于微孔零件,在航空航天、汽车和电子行业中有广泛应用前景。本文采用微细超声加工(Micro Ultrasonic Machining,简称micro-USM)和微细电火花加工(Micro Electrical Discharge Machining,简称micro-EDM)技术,分别针对微晶云母陶瓷和聚晶金刚石的微细加工展开研究。
     采用块电极电火花磨削(Block Electrode Discharge Grinding,简称BEDG)和刃口电极电火花磨削(Edge Electrode Discharge Grinding,简称EEDG)方法对微细电火花加工和微细超声加工工具的在线制备技术进行研究。在BEDG研究中,提出采用带有斜面的不规则块电极进行反拷式加工的方法,并将此方法作为具有锥形轮廓的回转体粗加工工艺,以提高特殊形貌微细回转体加工速度。在EEDG研究中,采用数控加工技术规划工具进给轨迹,结合工具电极损耗补偿方法,灵活精确地制备出具有不同三维轮廓的回转体。
     以微晶云母陶瓷材料为例,解决微型拉瓦尔喷管加工中的关键技术问题。采用BEDG和EEDG相结合的方法,快速精确地在线制备出微细超声加工工具。采用正交实验方法研究加工工艺参数对微细超声加工中工具体积损耗率的影响,并优化加工工艺参数。通过研究超声加工工作液中磨粒的流动特点,提出在微型拉瓦尔喷管加工过程中优先加工预通孔的必要性,并在微晶云母陶瓷材料上加工出喉部直径为170μm的微型拉法瓦喷管。
     在分析了PCD材料的物理特性对其微细电火花加工性能影响的基础上,进行了PCD材料微细电火花加工的工艺实验研究。实验结果表明由于工具上吸附的附着物的保护作用,采用工件接负极的加工更适用于PCD材料的微细电火花加工。在工件接负极的加工中,只有当工具上吸附有适量的附着物时,附着物的保护作用比较明显,即可有效地提高材料去除率( Material Removal Rate,简称MRR)又可降低工具电极相对损耗率(Relative Tool Wear Ratio,简称TWR)。相反,如果工具电极上吸附有过量的附着物,则会使加工陷入低MRR和高TWR的恶性循环,并会加工出孔径过大的微孔。根据实验结果找出较优的加工参数范围,并采用一组优化的加工参数,成功地加工出直径为145μm且深650μm的微细通孔。
     在PCD材料微细电火花加工工艺研究的基础上,通过在工件上添加超声振动,可进一步提高PCD材料微细电火花加工性能。对工作液空化泡闭合过程以及工作液质点运动过程进行了力学计算。在不同加工参数下进行了PCD材料超声辅助电火花微孔加工实验。实验研究表明超声振动作用改善了加工过程中的放电状态,缩短了拉弧持续时间,提高了放电频率;超声振动会减少工具电极上吸附的附着物,对加工产生正、负两方面影响,因此在PCD超声振动辅助电火花加工中选择合适的超声振幅(2μm) ,可以使适用于PCD材料的微细电火花加工参数范围扩大,并提高加工性能和加工表面质量。
Micro machining of hard and brittle non-metallic material has been a challenging issue in manufacturing areas. Microcrystalline-mica-ceramics (MCMC) and polycrystalline diamond (PCD) are two typical hard and brittle non-metallic materials and have broad application prospects. As a kind of ceramics, MCMC provides excellent insulation, high temperature resistance, low thermal conductivity and other good properties. The thermal conductivity of MCMC is less than one-tenth of that of silicon. The heat loss in a thrust system will be greatly reduced, if MCMC is used as combustion chamber and nozzle materials in a micro-thruster. As a superhard material, polycrystalline diamond (PCD), is of uniform high hardness, superior wear and corrosion resistance and many other excellent properties, and it is an ideal material for micro-hole parts and has wide potential applications in aerospace, automotive and electronics industries. The micromachining performance of MCMC and PCD were studied in this dissertation by using micro ultrasonic machining (micro-USM) and micro electrical discharge machining (micro-EDM), respectively.
     For generating the tools for micro-EDM and micro-USM, block electrode discharge grinding (BEDG) and edge electrode discharge grinding (EEDG) methods were investigated. In the study of BEDG, an irregular shaped block with a slope was used as a sacrificial electrode that copied its shape onto the workpiece. This method was used in rough machining of conical electrode to improve the machining efficiency. The flexibility of EEDG process was investigated using different tool paths designed for CNC. Different methods of tool electrode wear compensation for fabricating micro electrodes were carried out for forming various electrode shapes.
     MCMC was chosen as a case study to resolve the major problems of micro Laval-nozzle machining techniques. Micro-USM tools were prepared online quickly and accurately by a method combined with BEDG and EEDG. The experiments designed by orthogonal-experiment method were adopted to investigate the influences of machining conditions on tool wear ratio in the micro-USM of MCMC. Base on the experiments, a group of optimized micro-USM parameters were chosen. The behavior of abrasives in micro-USM slurry flow was analyzed. The necessity of pre-drilled hole was emphasized in the machining of micro Laval-nozzle. Furthermore, a micro Laval-nozzle was made on a MCMC piece with a throat diameter of 170μm.
     Base on the analysis of the relationship between physical properties of a PCD and micro-EDM performance, a series of experiments were carried out to investigate the micro-hole micro-EDM machining performance of PCD. Experimental results indicate that positive polarity machining, in which the workpiece is connected to the cathode, is suitable for micro-EDM of PCD because of the protection brought over by the adhesion on the electrode. In positive polarity machining, an appropriate volume of material adhesion onto the tool electrode can help to increase the material removal rate (MRR) and reduce the relative tool wear ratio (TWR). In contrast, an excessive volume of material adhesion can lead the machining into a vicious circle in which MRR is low, TWR is high and micro-holes are drilled with oversized diameters. An optimal machining conditions were chosen, and a through-hole with a diameter of 145μm and a depth of 650μm on PCD machined under the chosen optimal machining conditions shows satisfactory machining results.
     On the basis of the investigation into the micro-hole machining performance of PCD by micro-EDM, an approach of micro-EDM combined with ultrasonic vibration act upon workpiece was proposed to improve micro-hole machining performances of PCD. Mechanical calculation of the cavitation bubble collapsing process and the particle motion in the dielectric fluid was carried out. The drop-off effect of diamond particles caused by ultrasonic vibration was analysed with the consideration of the special allographic structure of PCD. Under different machining conditions, a series of experiments were carried out to investigate the micro-hole machining performance of PCD by using ultrasonic enhanced micro-EDM. The experimental result indicates that the discharge status is improved,the arcing duration is reduced and the discharge frequency is increased by the effect of ultrasonic vibration. The adhesion onto the electrode is reduced due to the ultrasonic vibration act upon workpiece, which brings both positive and negative impacts in the machining performance. Therefore, in ultrasonic enhanced micro-EDM, the optimal amplitude chosen as 2μm can expand the optimal ranges of EDM machining conditions, hence improving both machining performance and surface quality.
引文
[1] Schroers, J., Nguyen, T., Keeffe, S. O'., Desai, A., Thermoplastic forming of bulk metallic glass--Applications for MEMS and microstructure fabrication Materials Science and Engineering: A, 2007, (449-451), 898-902.
    [2]岑继文,新型高效微推进技术研究, [博士],合肥,中国科学技术大学, 2008.
    [3] Fernández-Pradas, J.M., Serrano, D., Bosch, S., Morenza, J.L., Serra, P. , 3D features of modified photostructurable glass–ceramic with infrared femtosecond laser pulses, Applied Surface Science, 2011, 257(12), 5219-5222.
    [4] Schmidt, M., Zinober, S., Müller-Fiedler, R., Müller, C., Reinecke, H. , Gas diffusion barrier layers for transparent polymer packages for optical MEMS, Procedia Chemistry, 2009, 1(1), 1523-1526.
    [5] Lilienthal, K., Fischer, M., Stubenrauch, M., Schober, A., Self-organized nanostructures in silicon and glass for MEMS, MOEMS and BioMEMS Materials Science and Engineering: B, 2010, 169(1-3), 78-84.
    [6] Zhang, F., Duan, J., Zeng, X. Y., Cao, Y., UV laser microprocessing and post chemical etching on ultrathin Al2O3 ceramic substrate, Journal of the European Ceramic Society, 2011, 31(9), 1631-1639.
    [7] Visvanathan, K., Tao Li, Gianchandani, Y.B. , 3D-soule: a fabrication process for large scale integration and micromachining of spherical structures, in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems 2011: Cancun, Mexico.
    [8] Cui, Y., Liu, J., Ren, Y., Shi, Y., Wang, H., Xue, C., YangG, L., Zhang, W., Aluminum-based stacked high over-load piezoelectric driver for use in e.g. highly over loading abominable environment field, has ceramics layers whose outer surface is coupled to electrode, and foil pedestal designed as pole of electrode. 2010: CN2899119-Y.
    [9] Huang, J., Ceramic heat sink - quickly dissipate the waste heat produced from the heat generating elements. 2011: TW201013377-A.
    [10] Bellucci, D., Cannillo, V., Sola, A., Chiellini, F., Gazzarri, M., Migone, C., Macroporous Bioglass?-derived scaffolds for bone tissue regeneration, Ceramics International, 2011, 37(5), 1575-1585.
    [11] Goldenberg, B.G., Pindyurin, V.F., Ancharova, U.V., Eliseev, V.S., Petrova, E.V., Korolkov, V.P., Nasyrov, R.K., Nikanorov, N.Y., Fabrication of microstructured optical elements for visible light by means of LIGA-technology, Nuclear Instrumentsand Methodsin Physics Research,A, 2009, (603), 157-159.
    [12] López-Montesinos, P.O., Yossakda, N., Schmidt, A., Brushett, F. R., Pelton, W. E., Kenis, P. J. A. , Design, fabrication, and characterization of a planar,
    silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section, Journal of Power Sources, 2011, 196(10), 4638-4645.
    [13] Casquel, R., Holgado, M., Garci a-Ballesteros, J.J., Zinoviev, K., Fe rnandez-Sa nchez, C., Sanza, F.J., Molpeceres, C., Laguna, M.F., Llobera, A., Ocana, J.L., Domi nguez, C. , UV laser-induced high resolution cleaving of Si wafers for micro-nano devices and polymeric waveguide characterization, Applied Surface Science, 2011, 257(12), 5424-5428.
    [14] Kam, D.H., Shah, L., Mazumder, J., Femtosecond laser machining of multi-depth microchannel networks onto silicon, Journal of micromechanics and microengineering, 2011, 21(4), 1-8.
    [15] Dunare, C., Parkes, W., Stevenson, T., Michette, A., Pfauntsch, S., Shand, M., Button, T., Rodriguez Sanmartin, D., Zhang, D., Feldman, C., Willingale, R., Doel, P., Wang, H., Smith, A., James, A. , Micromachining optical arrays, in 2010 International Semiconductor Conference 2010: Sinaia, Romania.
    [16]陈默,基于MEMS的4×4微推进阵列制备及性能研究, [硕士],南京,南京理工大学, 2010.
    [17] Lee, J., Kim, K., Kwon, S., Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer, Sensors and Actuators A: Physical, 2010, 157(1), 126-134.
    [18] Li, X., Wang, J., Li, W., Current state and prospect of micro-machining, in Proceedings of the IEEE International Conference on Automation and Logistics. 2007: Piscataway.
    [19] Zhang, C., Brinksmeier, E., Rentsch, R., Micro-USAL technique for the manufacture of high quality microstructures in brittle materials, Precision Engineering, 2006, 30(4), 362-372.
    [20] Hashikawa, E., Development of EDM/Laser Compound Precision Fine Machining System, Manufacturing Technology & Machine Tool, 2004, 2(46-50.
    [21] Morgan, C.J., Vallance, R. R., Marsh, E. R., Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining, Journal of micromechanics and microengineering, 2004, (14), 1687-1692.
    [22]李刚,基于直线电机的微细电火花加工系统及其关键技术研究, [博士],哈尔滨,哈尔滨工业大学, 2007.
    [23] Yu, Z.Y., Zhang, Y., Li, J., Luan, J., Zhao, F., Guo, D. , High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM, CIRP Annals - Manufacturing Technology, 2009, (58), 213-216.
    [24]刘晋春,赵家齐,赵万生,特种加工,北京,机械工业出版社, 2004.
    [25]沈飞虎,材料微观结构对电火花微细加工的影响研究, [硕士],大连,大连理工大学, 2010.
    [26]冀震晓,钛合金电火花加工脉冲电源的研究, [硕士],哈尔滨,哈尔滨工业大学, 2010.
    [27]戴立,钛合金小孔电火花加工试验研究, [硕士],哈尔滨,哈尔滨工业大学, 2008.
    [28] Fonda, P., Wang, Z. G., Yamazaki, K., Akutsu, Y., A fundamental study on Ti-6Al-4V's thermal and electrical properties and their relation to EDM productivity, Journal of Material Processing Technology, 2008, 202(1-3), 583-589.
    [29]明平美,胡洋洋,朱健,微细电火花加工MEMS器件技术关键分析,微纳电子技术, 2005, 4, 157-163.
    [30]刘志东,邱明波,汪炜,田宗军,黄因慧, P型太阳能级硅电火花线切割机理及工艺研究南京航空航天大学学报, 2010, 42(5), 631-635.
    [31]张勇,张广玉,王振龙,赵万生,半导体硅材料微细电火花加工技术,哈尔滨工业大学学报, 2008, 40(11), 1736-1740.
    [32] Hidai, H., , Sugita, T., Tokura, H. Blasting of Affected Layer of Silicon Surface Sliced by Wire EDM. in 12th International Symposium on Advances in Abrasive Technology. 2009. Gold Coast, AUSTRALIA.
    [33]郭永丰,白基成,刘海生,刘晋春,毛利尚武,福泽康,绝缘陶瓷电火花磨削加工的研究,电加工与模具, 2006, 10, 54-57.
    [34] Muttamara, A., Fukuzawa, Y., Mohri, N., Tani, T., Probability of precision micro-machining of insulating Si3N4 ceramics by EDM, Journal of Materials Processing Technology, 2003, 140(1-3), 243-247.
    [35] Murali, M., Yeo, S. H. , A novel spark erosion technique for the fabrication of high aspect ratio micro-grooves, Microsystem Technologies 2004, 10(8-9), 628-632.
    [36] Fleischer, J., Masuzawa, T., Schmidt, J., Knoll, M., New applications for micro-EDM, Journal of Materials Processing Technology, 2004, 149(1-3), 246-249.
    [37]胡德金,裴景玉,郭常宁,聚晶金刚石的电火花磨削加工,上海交通大学学报, 2006, 10, 1-6
    [38] Nakaoku, H., Masuzawa, T., Fujino, M., Micro-EDM of sintered diamond Journal of Materials Processing Technology, 2007, (187-188), 274-278.
    [39]王振龙,赵万生,?狄士春,迟关心,微细电火花加工技术的研究进展,中国机械工程, 2002, 13(10), 894-898.
    [40] Lim, H.S., Wong, Y. S., Rahman, M., Edwin Lee, M. K., A study on the machining of high-aspect ratio micro-structures using micro-EDM Journal of Materials Processing Technology, 2003, 140(1-3), 318-325.
    [41] Wong, Y.S., Rahman, M., Lim, H. S., Han, H., Ravi, N. , Investigation of micro-EDM material removal characteristics using single RC-pulse discharges Journal of Materials Processing Technology, 2003, 140(1-3), 303-307.
    [42] Reynaerts, D., Heeren, P. H., Brussel, H. V., Microstructuring of silicon by electro-discharge machining (EDM) - part I: theory Sensors and Actuators, A:Physical, 1997, 60(1-3), 212-218.
    [43] Masuzawa, T., Fujino, M., Kobayashi, K., Suzuki, T., and Kinoshita, N. , Wire Electro-Discharge Grinding for Micro-Machining, Annals of the CIRP, 1985, 34(1), 431-434.
    [44] Schmidt, J., Fleischer, J., Knoll, M. , Electrodes for micro-EDM, in Proceedings of the EUSPEN International Topical Conference on Precision Engineering, Micro Technology, Measurement Techniques and Equipment. 2003: Paris. p. 177-179.
    [45] Huang, J.D., Kuo, C. L., Pin-plate micro assembly by integrating micro-EDM and Nd-YAG laser, International Journal of Machine Tools & Manufacture, 2002, 42(13), 1455-1464.
    [46] Pham, D.T., Dimov, S.S., Bigot, S., Ivanov, A., Popov, K. , Micro-EDM - recent developments and research issues, Journal of Materials Processing Technology, 2004, 149(1-3), 50-57.
    [47] Wang, A.C., Yan, B. H., Tang, Y. X., Huang, F. Y. , The feasibility study on a fabricated micro slit die using micro EDM, International Journal of Advanced Manufacturing Technology, 2005, 25(1-2), 10-16.
    [48] Masuzawa, T., Tonshoff, H. K. , Three-dimensional micromachining by machine tools, CIRP Annals - Manufacturing Technology, 1997, 46(2), 621-628.
    [49]郭洪勤,裴景玉,李五一,电火花加工微小孔的工艺研究,航天制造技术, 2005, 5, 16-18.
    [50] Liu, H.S., Yan, B. H., Chen, C. L., Huang, F. Y. , Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining, International Journal of Machine Tool & Manufacture, 2006, 46(1), 80-87.
    [51]高长水,宋小中,刘正埙,电火花微细加工系统研制,机械科学与技术, 1997, 26(5), 48-51.
    [52]李勇,王显军,?郭旻,周兆英,严晓敏,胡敏,微细电火花加工关键技术研究,清华大学学报(自然科学版), 1999, 39(8), 45-48.
    [53]王振龙,栾英艳,?赵万生,张晓东,微细电火花加工中的电极在线制作与检测,电加工与模具, 2000, (3), 13-15.
    [54]耿春明,赵万生,?刘晋春,赵家齐,精密电火花磨削加工的切向进给法,制造技术与机床, 2001, (7), 31-32.
    [55]胡富强,王振龙,?赵万生,贾宝贤,张勇,线电极放电磨削(WEDG)技术的研究与应用,哈尔滨工业大学学报, 2003, 35(10), 1171-1174.
    [56]赵万生,李文卓,王振龙,高精度微细电火花加工系统的研制,电加工与模具, 2004, (1), 6-8.
    [57] Kuo, C.L., Huang, J. D., Fabrication of series-pattern micro-disk electrode and its application in machining micro-slit of less than 10μm, International Journal of Machine Tool & Manufacture, 2004, 44(5), 545-553.
    [58] Yamazaki, M., Suzuki, T., Mori, N., Kunieda, M., EDM of micro-rods by self-drilled holes, Journal of Materials Processing Technology, 2004, 149(1-3),134-138.
    [59] Liu, H.S., Yan, B. H., Huang, F. Y., Qiu, K. H., A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications, Journal of Materials Processing Technology, 2005, 169(3), 418-426.
    [60] Ravi, N., Chuan, S. X., The effects of electro-discharge machining block electrode method for microelectrode machining, Journal of micromechanics and microengineering, 2002, (12), 532-540.
    [61] Ravi, N., Huang, H., Fabrication of symmetrical section microfeatures using the electro-discharge machining block electrode method, Journal of micromechanics and microengineering, 2002, (12), 905-910.
    [62] Zhao, W.S., Jia, B.X., Wang, Z. L., Hu, F. Q., Study on block electrode discharge grinding of micro rods, Key Engineering Materials, 2006, (304-305), 201-205.
    [63]贾宝贤,王振龙,赵万生,用块电极轴向进给法电火花磨削微细轴,电加工与模具, 2004, (2), 26-29.
    [64] Mohri, N., Takezawa H., Furutani K., Ito Y., Sata T., A new process of additiveand removal machining by EDM with a thin electrode, nnals of the CIRP, 2000, 49(1), 123-126.
    [65]曹国辉,王振龙,?迟关心,郭永丰,赵万生,基于单脉冲放电的钨微细电极快速成形方法及其应用研究,机械工程学报, 2003, 39(7), 43-47.
    [66] Zhao, W.S., Cao, G. H., Wang, Z. L., Chi, G. X. , Primary Study on InstantaneousFabricating Mechanism of Tungsten Microelectrode Based on Single Dischargeand Its Application, Key Engineering Materials, 2004, (259-260), 496-501.
    [67]崔景芝,微细电火花加工的基本规律及其仿真研究, [博士],哈尔滨,哈尔滨工业大学, 2007.
    [68] Takahata, K., Gianchandani, Y. B. , Batch mode micro-electro-discharge machining, Journal of Microelectromechanical Systems, 2002, 11(2), 102-111.
    [69]彭良强,伊福廷,张菊芳,大面积微细结构的电火花加工,航空制造技术, 2002, (5), 47-48.
    [70]彭良强,基于LIGA技术的微细电火花加工,机器工人, 2004, (1), 26-28.
    [71]邹丽芸,张院春,?彭良强,黄军容,伊福廷,张菊芳,韩勇,基于LIGA技术的微细电火花加工优化研究,电加工与模具, 2004, (增刊), 39-41.
    [72]明平美, UV-LIGA-微细电火花加工组合制造技术基础研究, [博士],南京,南京航空航天大学, 2006.
    [73]邹丽芸,杨大勇,吴洪波,伏金娟,复杂形状零件的微细电火花加工,航空制造技术, 2006, (1), 78-80.
    [74] Weng, F.T., Her, M. G., Study of the batch production of micro parts using the EDM process, International Journal of Advanced Manufacturing Technology 2002, 19(4), 266-270.
    [75] Kim, B.H., Park, B. J., Chu, C. N., Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, Journal of Micromechanics andMicroengineering, 2006, 16(4), 843-850.
    [76]曾伟梁,微细阵列电极阵列孔组合电加工关键技术研究, [博士],哈尔滨,哈尔滨工业大学, 2008.
    [77] Hung, J.C., Yan, B. H., Liu, H. S., Chow, H. M. , Micro-hole machining using micro-EDM combined with electropolishing, Journal of micromechanics and microengineering, 2006, 16(8), 1480-1486.
    [78] Puranik, M.S., Joshi, S. S., Analysis of accuracy of high-aspect-ratio holes generated using micro-electric discharge machining drilling, Proceedings of the institution of mechanical engineers part B-Journal of engineering manufacture, 2008, 222(11), 1453-1464.
    [79]张勇,微细电火花加工系统及其工艺技术的研究, [博士],哈尔滨,哈尔滨工业大学, 2004.
    [80] Tong, H., Li, Y., Wang, Y. , Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section, Journal of Materials Processing Technology, 2007, 208(1-3), 289-298.
    [81] Hung, J.H., Lin, J. K., Yan, B. H., Liu, H. S., Ho, P. H., Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining, Journal of micromechanics and microengineering, 2006, 16, 2705-2713.
    [82] Bamberg, E., Heamawatanachai, S., Orbital electrode actuation to improve efficiency of drilling micro-holes by micro-EDM, journal of Material Processing Technology, 2009, 209(4), 1826-1834.
    [83] Klocke, F., Lung, D.,T, Nothe., Micro contouring by EDM with fine wires, in Proceedings of the 13th International Symposium for Electromachining. 2001: Aachen Techn Univ. p. 767-779.
    [84] Chen, S.T., Yang, H. Y., Du, C. W., Study of an Ultrafine W-EDM Technique, Journal of micromechanics and microengineering, 2009, 19(11), 5033-5041.
    [85] Masuzawa, T., Okajima, K., Taguchi, T., Fujino, M., EDM-Lathe for Micromachining, CIRP Annals, 2002, 51(1), 355-358.
    [86] Yu, Z.Y., Three dimensional micro-EDM using simple shape electrodes, [Ph. D], Tokyo, University of Tokyo, 1998.
    [87] Yu, Z.Y., Masuzawa, T., Fujino, M., 3D micro-EDM with simply shaped electrode, Annals of the CIRP, 1997, 46(1), 1-8.
    [88] Thornell, G., Johansson, S. , Microprocessing at the Fingertips, Journal of Micromechanics and microengineering, 1998, (8), 251-262.
    [89] Takahata, K., Aoki, S., Sato, T., Fine surface finishing method for 3-dimensional micro structures in Proceedings of the 9th Annual International Workshop on Micro Electro Mechanical Systems. 1996: San Diego. p. 73-78.
    [90] http://www.sandia.gov/mst/technologies/meso-machining.html.
    [91]贾宝贤,郭景哲,王冬生,微细特种加工组合系统及应用,哈尔滨工业大学学报, 2010, 42(7), 1117-1120.
    [92] Zeng, Z.Q., Wang,Y. K., Dong, Y. H., Wang, Z. L. Fabrication of Key Components in Micro Turbine Engine by Using Mircro Electrical Discharge Machining (EDM). in Proceedings of the 16th International Symposium on Electromachining. 2010. Shanghai, China.
    [93] Peng, Z.L., Wang, Z. L., Dong, Y. H., Chen, H., Development of a reversible machining method for fabrication of microstructures by using micro-EDM, Journal of Material Processing Technology, 2010, 210(1), 129-136.
    [94]禇旭阳,微细电火花集成加工技术的研究, [博士],哈尔滨,哈尔滨工业大学, 2010.
    [95] Tong H., W., Y., Li Y., Vibration-assisted servo scanning 3D micro EDM, Journal of micromechanics and microengineering, 2008, 18(2), 1-8.
    [96]丁维育,汪炜,刘正埙,张伟,陈建宁,硅阵列通孔微细电火花加工试验研究,电加工与模具, 2009, (6), 9-13.
    [97] http://www.mech.kuleuven.ac.be/pma/research/mpe/default_en. phtml.
    [98] Stampfl, J., Leitgeb, R., Cheng, Y. L., Prinz, F. B., Electro-discharge machining of mesoscopic parts with electroplated copper and hot-pressed silver tungsten electrodes, Journal of Micromechanics and Microengineering, 2000, 10(1), 1-6.
    [99] Hirata, T., Guenat, O. T., Akashi, T., Gretillat, M. A. de Rooij, N.F., A numerical simulation on a pneumatic air table realized by micro-EDM, Journal of Microelectromechanical Systems, 1999, 8(4), 523-528.
    [100]曾俊,瓦崇龙,陶瓷结合剂金刚石砂轮在加工PCD刀具中的优越性,超硬材料工程, 2005, 17(62), 18-20.
    [101]李嫚,张弘弢,刘培德,聚晶金刚石研磨机理研究,大连理工大学学报, 2001, 41(4), 465-467.
    [102] Zhang, G.F., Zhang, B., Deng, Z.H., Cheng, J.F., An experimental study on laser cutting mechanisms of polycrystalline diamond compacts, Annals of the CIRP, 2007, (56), 201-204.
    [103] Tso, P.L., Liu, Y.G., Study on PCD machining, International Journal of Machine Tool & Manufacture, 2002, 42, 331-334.
    [104] Cao, F.G., Zhang, Q. J., Neural network modelling and parameters optimization of increased explosive electrical discharge grinding (IEEDG) process for large area polycrystalline diamond, Journal of Material Processing Technology, 2004, 149, 106-111.
    [105] Harrison, P., Henry, M., Laser Processing of Polycrystalline Diamond, Tungsten Carbide and a related composite material, Journal of Laser Applications, 2006, 18(2), 117-126.
    [106] Tso, P.L., Liu, Y. G., Study on PCD machining, International Journal of Machine Tools& Manufacture, 2002, (42), 331-334.
    [107] Cao, F.G., Zhang, Q. J. , Neural network modelling and parameters optimization of increased explosive electrical discharge grinding (IEEDG) process for largearea polycrystalline diamond, Journal of Material Processing Technology, 2004, 149, 106-111.
    [108] Mamalis, A.G., Grabchenko, A.I., Magazeev, M.G., Krukova, N. V., Prohàszká, J., Vaxevanidis, N. M., Two-stage electro-discharge machining fabricating superhard cutting tools, Journal of Materials Processing Technology, 2004, 146(3), 318-325.
    [109]张勤俭,曹凤国,?刘媛,王先逵,聚晶金刚石加工技术进展,金刚石与磨料磨具工程, 2006, 4, 76-80.
    [110]甘晓明,华红艳,聚精金刚石拉丝模具的特种加工方法总述,金刚石与磨料磨具工程, 2005, 3, 70-72.
    [111] Kaminski, P.C., Capuano, M.N., Micro hole machining by conventional penetration electrical discharge machine, International Journal of Machine Tool & Manufacture, 2003, 43, 1143-1149.
    [112]桥川荣二,电火花与激光复合精密微细加工系统的开发,制造技术与机床, 2004, 2, 46-50.
    [113] Wada, T., Masaki, T., Davis, D.W., Development of Micro Grinding Process using Micro EDM trued Diamond Tools, in Proceedings of 17th Annual Meeting of the American Society for Precision Engineering. 2002: St Louis, USA. p. 16-9.
    [114] Sheu, D. Y., Su, H. C., Lin, J. K., Mai, C. C., An investigation on microholes machining phenomena of polycrystalline diamond by micro EDM, in Proceedings of the 15th International Symposium on Electromachining 2007: St. Louis, USA. p. 201-204.
    [115] Hung, J.C., Lin, J. K., Yan, B. H., Liu, H. S. and Ho, P. H., Using a helical micro-tool in micro EDM combined with ultrasonic vibration for micro-hole machining, Journal of Micromechanics and Microengineering, 2006, 16, 2705-2713.
    [116] Kim, D.J., Yi, S. M., Lee, Y. S., Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration, Journal of Micromechanics and Microengineering, 2006, 16(2), 1092-1097.
    [117] Zhao, W.S., Wang, Z. L., Di, S. C., Chi, G. X., Wei, H. Y., Ultrasonic and electric discharge machining to deep and small hole on titanium alloy Journal of Materials Processing Technology, 2002, 120(1-3), 101-106.
    [118]王振龙,孟庆鑫,?赵万生,狄士春,分层去除微细电火花铣削技术的实验研究,电加工与模具, 2002, (4), 5-8.
    [119]佟浩,微细电火花加工主轴伺服控制系统及三维加工技术的研究, [博士],哈尔滨,哈尔滨工业大学, 2008.
    [120]钱军,高长水,工件激振式复合电火花微细孔加工,航空精密制造技术术, 1997, 33(5), 18-20.
    [121]邓建新,曲宝键,郭玉和,导电Al2O3基陶瓷刀具材料的超声—放电复合加工技术研究,江苏陶瓷, 2002, (31), 1-5.
    [122] Huang, H., Zhang, H., Zhou, L., Zheng, H.Y., Ultrasonic Vibration Assisted Electro-discharge Machining of Microholes in Nitinol, Journal of micromechanics and microengineering, 2003, 13(5), 693-700.
    [123] Egashira, K., Matsugasako, A., Tsuchiya, H., Miyazaki, M., Electrical discharge machining with ultralow discharge energy, Precision Engineering, 2006, 30(4), 414-420.
    [124] Shervani-Tabar, M.T., Abdullah, A., Shabgard, M. R., Numerical and experimental study on the effect of vibration of the tool in ultrasonic assisted EDM, International Journal of Advanced Manufacturing Technology, 2007, 32(7-8), 719-731.
    [125]郑书友,冯平法,徐西鹏,旋转超声加工技术研究进展,清华大学学报(自然科学版) , 2009, 49(11), 1800-1804.
    [126] Rajurkar, K.P., Wang, Z.Y., Kuppattan, A., Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining, Precision Engineering, 1999, 23(2), 73-78.
    [127] Deng, J.X., Lee, T. C., Ultrasonic machining of alumina-based ceramic composites, Journal of the European Ceramic Society, 2002, 22(8), 1235-1241.
    [128] Egashira, K., Mizutani, K., Nagao, T., Ultrasonic vibration drilling of microholes in glass, Annals of the CIRP, 2002, 51(1), 339-342.
    [129] Yu, Z.Y., Rajurkar, K.P., Tandon, A., Study of 3D micro-ultrasonic machining, Journal of Manufacturing Science and Engineering, 2004, (126), 727-732.
    [130]安成明,殷国强,李剑中,余祖元,微细孔、阵列孔及微细三维型腔的超声加工研究,电加工与模具, 2011, (1), 23-27.
    [131] Sun, X.Q., Makuzawa, T., Fujino, M., Micro ultrasonic and self-aligned multilayer machining/assembly technologies for 3D micro-machines, in IEEE Robotics and Automation Society 1996: San Diego, USA. p. 312-317.
    [132] Egashira, K., Masuzawa, T., Microultrasonic machining by the application of workpiece vibration, CIRP Annals - Manufacturing Technology, 1999, 48(1), 131-134.
    [133]杨晓辉,增泽隆久,采用工件加振方式的微细超声加工特性的研究,电加工, 2000, (3), 29-32.
    [134] Yan, B.H., Wang, A. C., Huang, C. Y., Huang, F. Y., Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining, International Journal of Machine Tools and Manufacture, 2002, 42(10), 1105-1112.
    [135]欧阳红兵,超声波孔加工技术进展,机械制造, 1997, (5), 7-9.
    [136]孔庆华,杨志强,超声波加工建筑玻璃小孔的试验研究,机械科学与技术, 1996, 25(2), 15-18.
    [137]贾宝贤,边文凤,赵万生,王振龙,微细孔超声加工关键技术,机械工程学报, 2007, 43(11), 212-216.
    [138] Hu, P., Zhang, J. M., Pei, Z. J., Treadwell, C., Modeling of material removal ratein rotary ultrasonic machining designed experiments, Journal of Materials Processing Technology, 2002, 129(1-3), 339-344.
    [139] Li, T., Gianchandani, Y. B., A Micromachining process for die-scale pattern transfer in ceramics and its application to bulk piezoelectric actuators, Journal of Microelectromechanical Systems, 2006, 15(3), 605-612.
    [140]秦勇,王霖,?吴春丽,张勤俭,张建华,大理石的超声波加工试验研究,新技术新工艺, 2001, (2), 17-19.
    [141]贾宝贤,微细特种加工系统及技术的研究, [博士],哈尔滨,哈尔滨工业大学, 2005.
    [142]郭锐,基于Linux的微细电火花加工数控系统及其相关关键技术的研究, [博士],哈尔滨,哈尔滨工业大学, 2006.
    [143]杨海威,赵阳,拉瓦尔型微喷管性能的DSMC模拟,固体火箭技术, 2007, 30(2), 106-119.
    [144] M, K., Micro propulsion technology assessment of Darwin, [Master], 2004.
    [145]邱晓暾,?李勇,陈旭鹏,彭良强,微小型电化学推进器的结构原理和工艺设计,中国机械工程, 2005, (16), 57-60.
    [146]徐超, MEMS固体微推进器的设计与制备,合肥,国防科学技术大学, 2006.
    [147]何赞.,微推进器结构与制作工艺研究, [博士],南京,南京理工大学, 2008.
    [148]陈旭鹏,李勇,周兆英,微小型化学能推进器的研究,微纳电子技术, 2003, 7(8), 456-460.
    [149]闫联生,王涛,邹武,张钢锤,刘永华,国外复合材料推力室技术研究进展,固体火箭技术, 2003, 26(1), 64-70.
    [150]孙小兵,微型固体火箭推进器关键技术研究, [硕士],上海,上海交通大学, 2007.
    [151]侯大立,脉冲等离子体推力器工作过程及其效率的研究, [博士],上海,上海交通大学, 2007.
    [152] Hou, D. L., Zhao, W. S., Kang, X. M., Wang, P. Y. , Effect of ceramic nozzle on performance of pulsed plasma thruste, Aerospace Science and Technology, 2008, 12, 573-578.
    [153] Beal, G.H., Montierth, M. R., Smith, G. P., Workable glass-ceramics, Tonind. Ztg. Keram, 1971, 95(12), 351-356.
    [154] Grosssman, D.G., Machinable glass-ceramics based on tetrasilicic mica, Journal of American Ceramic Society, 1972, 55(9), 446-449.
    [155] Chyung, K., Fluorophlogopite mica glass-ceramics, in proceedings of 10th International glass congress. 1974, ceramics Society of Japan: Tokyo. p. 33-40.
    [156] Makishima, A., Asami, M., Ogura, Y., A machinable calcia-alumina-yttria-silica glass-ceramic, Journal of American Ceramic Society, 1989, 72(6), 1024-1026.
    [157]中非,可加工微晶云母陶瓷,军民两用技术与产品, 2004, (8), 20-20.
    [158]张磊,硬脆材料异形面超声微精加工工艺研究, [硕士],扬州,扬州大学, 2010.
    [159]胡玉景,超声振动-磨削-脉冲放电复合加工技术及其智能控制的研究, [博士],山东大学, 2006.
    [160]曹凤国,张勤俭,超声加工技术的研究现状及其发展趋势,电加工与模具, 2005, (4), 25-31.
    [161]范国良,陈传梁,超声加工概况和未来展望,电加工, 1994, (6), 7-11.
    [162]周光炯、严宗毅、许世雄、章克本,流体力学,北京,高等教育出版社, 2000.
    [163]谭援强, SiC陶瓷预应力切削的离散元模拟和划痕实验研究, [硕士],湘潭,湘潭大学, 2009.
    [164]李智,单晶金刚石研磨方法与机理的研究, [硕士],大连,大连理工大学, 2004.
    [165] M.W.Cook, P.K.B., Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride, International Journal of Refractory Metals& Hard Materials, 2000, 18(147-152.
    [166]卢学军,贾云海,冯利斌,放电参数对PCD表层材料微观结构影响的实验研究,第13届全国特种加工学术会议论文集. 2010. p. 90-94.
    [167]冯莉,基于灰色理论的金刚石木工刀具电火花磨削工艺参数研究, [博士],沈阳,东北林业大学, 2008.
    [168]王振龙,微细电火花加工关键技术研究, [博士],哈尔滨,哈尔滨工业大学, 2000.8.
    [169]赵万生,先进电火花加工技术,北京,国防工业出版社, 2003.10.
    [170] K.H. Ho, S.T.N., State of the Art Electrical Discharge Machining (EDM) International Journal of Machine Tools & Manufacture, 2003, 43, 1287~1300.
    [171] Bai, Q., Yao, Y., Chen, S., Research and development of polycrystalline diamond woodworking tools, International Journal of Refractory Metals & Hard Materials, 2002, 20, 395-400.
    [172] Reynaerts, D., Heeren, P.H., Brussel, s.H.V., Microstructuring of silicon by electro-discharge machining (EDM).Part I. Theory, Sensors and Actuators, A : Physical 1997, 60(5), 212-218.
    [173] Cao, F.G., Lin, Y., Gui, X.B., Zhang, Q.J., Research on edm mechanism of polycrystalline diamond, in Proceedings of the 16th International Symposium on Electromachining. 2009: Shanghai, China.
    [174] Pierson, H.O., Handbook of carbon, graphite, diamond and fullerenes: properties, processing and applications, Berkshire, UK, Noyes Publications, 1993.
    [175] Bennett, J.A., Wang, J., Show, Y., Swain, G.M., Effect of sp2-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thinfilm electrodes, Journal of the Electrochemical Society 2004, 151(9), E306 - E313.
    [176]曹凤国,超声加工技术,北京,化学工业出版社, 2005.
    [177]王献孚,空化泡和超声空化泡流动理论及应用,北京,国防工业出版社, 2009.
    [178] Knapp R T, D.J.W., Haminitt F G, Cavitation, New York, McGraw-Hill, 1970.
    [179]董德生,阵列轴孔的微细超声电火花复合加工技术研究, [硕士],哈尔滨工业大学, 2006.
    [180]陶建松,微结构超声复合电加工技术, [硕士],扬州,扬州大学, 2010.
    [181] Liu, Y.K., Tso, P. L. , The optimal diamond wheels for grinding diamond tools, International Journal of Advanced Manufacturing Technology, 2003, (22), 396-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700