多频率超声辅助磨削纳米氧化锆陶瓷表面/亚表面损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硬脆材料在国防等尖端领域的需求日趋增多,对其零件加工质量的要求也越来越苛刻,但加工过程产生的表面/亚表面损伤成为遏制其广泛应用的瓶颈。因此,探求硬脆材料高质高效的精密加工方法是一项十分有意义的工作。
     针对超声振动在硬脆材料加工方面独特的优越性以及ZrO2陶瓷特殊的相变性能,本文将超声振动与磨削过程相结合对纳米ZrO2陶瓷进行加工,着重研究多频率超声磨削过程中纳米ZrO2陶瓷材料的损伤机理及损伤特征,揭示超声振动塑性域磨削硬脆材料精密高效的本质。本文主要研究内容包括:
     基于波动理论对声学系统进行设计计算,通过有限元方法对其优化,研制了不同频率的超声振动磨削装置,给出了结构参数对系统振动特性的影响规律,并通过试验获取声学系统的振动特性。
     从分析振动频率、振幅、振动方式等参数对磨粒轨迹的影响出发,研究了超声磨削表面的创成过程,结果表明:1)超声振动磨削改变了磨粒运动的直线型轨迹,增强了磨粒之间的干涉,使磨粒在试件表面产生往复熨压、研磨作用;2)二维超声振动能量的叠加使得超声振动对磨削过程的干预能力增强;超声振幅越大,磨粒对材料的干涉宽度越宽;频率越高,磨粒轨迹越密,磨粒对材料干涉的程度增大;3)超声磨削时磨粒前磨刃面对材料产生周期性变化的挤压力,该挤压力的作用相当于压痕过程中压头在材料作用面上不断的加载卸载过程,从而引发细小横向裂纹产生并扩展至表面使材料以细碎和粉末方式去除。
     建立了超声磨削过程中单颗磨粒的通用磨削力模型以及应力场模型,拓宽了以往研究中单一的声学系统装夹角度、以及两个方向上要求超声波频率相同等苛刻条件,使系统在工作台上不同装夹角度、不同振动频率时的单颗磨粒磨削力模型及应力场模型达到了统一。
     在压痕断裂力学基础上,建立中位裂纹成核的临界磨削深度模型,并通过试验定性分析了超声振动对裂纹成核临界磨削深度的影响,研究表明高频振动冲击下材料的等效硬度降低,断裂韧性增加,超声振动可以拓宽裂纹成核的临界磨削深度,有助于实现材料的塑性域磨削。
     研制了能够有效模拟金刚石砂轮磨削过程的超声辅助刻划试验装置,对多频率条件下一维和二维超声辅助刻划时的陶瓷材料损伤情况进行研究,得出材料损伤情况随超声维数和频率变化的规律:二维刻划优于一维超声刻划,一维超声刻划又优于普通刻划;材料损伤与频率之间基本呈上开口抛物线形变化趋势,即在超声频率不高于35kHz时,材料损伤程度随频率增大而降低,频率达到35kHz左右,损伤程度最小,之后随着频率增大损伤程度又逐渐增大。这一规律在磨削试验中得到了验证。
     通过多频率超声磨削试验得出了表面残余应力随超声维数和频率变化的规律:二维超声磨削表面的残余压应力大于一维超声磨削,普通磨削时最小;残余应力与频率之间基本呈下开口抛物线形变化趋势,即在超声频率不高于35kHz时,残余压应力随频率增大而增大,在35kHz频率磨削时残余压应力达到最大值,之后随着频率增大,残余压应力又逐渐减小。
     研究表明超声磨削对硬脆材料而言是一种有效的加工方法,尤其是35kHz二维超声振动磨削时,超声振动对材料的干预能力大大增强,扩大了材料塑性域去除的范围,材料表面亚表面损伤情况显著改善,磨削表面产生较大的残余压应力,在一定范围内可有效闭合磨削表面微裂纹,提高材料的强度。
With the increasing demand of hard brittle materials in national defense and other cutting-edge fields, requirements for part quality become increasingly harsh, but the surface and subsurface damage generated in machining process is the bottleneck hindering its widespread applications. Therefore, it is very significant to seek the high quality and efficiency precision machining method for hard brittle materials.
     According to the unique superiority of ultrasonic vibration for hard brittle materials and special phase transition property of ZrO2 ceramics, nano-ZrO2 ceramics was machined by combination of ultrasonic vibration and grinding in this paper, and the damage mechanism and characteristics of nano-ZrO2 ceramics in multi-frequency ultrasonic vibration grinding were mainly studied, so as to reveal the precision and high efficiency essence of ultrasonic vibration ductile grinding hard brittle materials. The main contents of this study are as follows:
     The acoustic systems were calculated and designed on the basis of the wave theory,and optimized by finite element method. The ultrasonic vibration grinding devices with different frequencies were developed, influence rules of structural parameters on system vibration characteristics were got, and vibration performances of devices were obtained by experiments.
     From the analysis of effects of vibration frequency, amplitude and mode on abrasive trace, the ultrasonic ground surface generation process was discussed. The results show that: 1) Ultrasonic vibration can change the straight line trace of abrasive grains, and enhance the interference between abrasive grains, thus, abrasive grains can play a reciprocating extrusion and lapping role on the ground surface. 2) The energy superposition of two-dimensional ultrasonic vibration reinforces the ability of ultrasonic vibration intervening to grinding process. The bigger of ultrasonic vibration amplitude, the wider interference width of abrasive grains to material, and the higher of frequency, the denser of abrasive trace, so the interference degree of abrasive grain to material is increased. 3) In ultrasonic grinding, periodic vibration extrusion force is generated by rake faces of abrasive grains, and the effect of this extrusion force is equivalent to the indenters’loading and unloading process on action surface of material during indentation, therefore fine transverse cracks generated and propagated to surface and make the material removal in fine crushing and pulverizing.
     In the present paper, the general grinding force model and stress field model of single-grit in ultrasonic grinding were built, which broaden harsh conditions of previous studies, such as single clamping angle of acoustic system and the same ultrasonic frequency in two directions, in addition, unify the grinding force model and stress field model of single grit with diverse clamping angles and different vibration frequencies.
     Based on indentation fracture mechanics, the critical grinding depth model of radial crack nucleation was built, and the effect of ultrasonic vibration on the critical grinding depth was qualitatively analyzed through the experiment. The results show that under high frequency ultrasonic vibration, the material equivalent hardness is decreased, and its fracture toughness is increased. Ultrasonic vibration can widen the critical grinding depth of crack nucleation, and contribute to the ductile grinding of material.
     The experimental devices of ultrasonic assisted single-grit scratching were developed, which can effectively simulate the grinding process of diamond wheel. From the study of ceramics damage on the condition of one dimensional and two dimensional ultrasonic vibration assisted scratching with multi-frequency, the rules of material damage with ultrasonic dimension and frequency variation were obtained. The research shows the damage in two dimensional ultrasonic assisted scratching is better than that in one dimensional and the scratch in one dimensional ultrasonic is better than that without ultrasonic; the material damage shows parabola with open side up changing along with frequency, in other words, the damage decreases with the growth of frequency under 35KHz, and the damage degree is the lowest at 35KHz, later the damage increase with frequency increasing. The above rules were validated in grinding experiment.
     From multi-frequency ultrasonic grinding test, the rules of the surface compressive residual stress changing with ultrasonic dimension and frequency can be drawn, that is, the surface residual stress in two dimensional ultrasonic grinding is bigger than that in one dimensional with the same frequency, and it is minimum in common grinding; the surface residual compressive stress shows parabola with open side down changing along with frequency, that is, the residual stress increases with the growth of frequency under 35KHz, and the residual compressive stress is the biggest at 35KHz, later the residual stress decreases with frequency increasing.
     The results show that ultrasonic vibration assisted grinding is an effective method for hard brittle materials. Especially in two-dimensional ultrasonic vibration grinding with 35kHz frequency, the interference ability of the ultrasonic vibration to machined material was greatly enhanced, and the scope of material ductile regime removal was expanded, so that the surface and subsurface damage was significantly alleviated. The relatively large compressive residual stress which generated on the ground surface can close surface micro-cracks effectively and improve the material strength in a certain range.
引文
[1] B.R Lawn. Fracture of brittle solids [M]. Cambridge:Cambridge university press, 1998:249-319
    [2] B.Zhang, T. D. Howes. Subsurface Evaluation of Ground Ceramics [J]. Annals of the CIRP,1995,44:1263-266
    [3] Bo Zhao, Mingli Zhao, Guofu Gao. Research on Surface Roughness and Micro-topography of Nano-ZrO2 Plate in Two-dimensional Ultrasonic Grinding [J]. Advanced Materials Research,2008,53-54:243-247
    [4] Bo Zhao, Chuanshao Liu, et al. Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits [J]. Journal of Materials Processing Technology, 2002,123(4) :54-60
    [5] Brinksmeier E. State of the art of nondestructive measurement of sub-surface material properties and damage [J]. Precision Engineering, 1999, 11: 217-221
    [6] Conway J C, Kirchner H P. The mechanics of crack initiation and propagation beneath a moving sharp indenter [J]. J. Mater. Sci. ,1980 ,15:2879-2883
    [7] Conway J C, Kirchner H P. Crack branching as a mechanism of crushing during grinding [J]. J.Amer, Ceram.Soc.,1986,69:603-607
    [8] Erbe E M, Marx Jc, Clineff T D. Potential of an ultraporousbeta-tricalcium phosphate synthetic cancellous bone voidfiller and bone marrow aspirate composite graft [J]. Eur Spine J, 2001,(10) :141-146
    [9] Evans A G, Cannon R M. Toughening of brittle solids by martensitic transformations [J]. Acta Metall.,1986,34:176-179
    [10] Gleiter H. Nanocrystalline Materials[J]. Prog. Mater. Sci. ,1989, 33: 223-231
    [11] H.Wu. Residual stress and subsurface damage in machined alumina and alumina silicon carbide nanocomposite ceramics [J]. Act material, 2001, 49: 507-511
    [12] H.Z.Wu, S.G.Roberts. Residual stress determination and subsurface microstructure in ground and polished alumina/silicon carbide nanocomposite and monolithic alumina ceramics [J].Mat.Res.Soc.Symp.Proc.,2002,581:303-308
    [13] Hagan J.T. Nucleation of median and lateral cracks around Vickers indentation in soda-lime glass [J]. The science of ceramic machining and surface finishing, 2001, 12:15-21
    [14] Huang H. Experimental investigations of machining characteristics and removal mechanismsof advanced ceramics in high-speed deep grinding [J]. International Journal of Machine Tools and Manufacture, 2003, 13(8):811-823
    [15] Ichida, Yoshio. Study on One-pass mirror finish grinding technology of fine ceramics [J]. Journal of the Japan Society of Precision Engineering, 1992, 58(3): 463- 470
    [16] Isoyama Hirofumi, et al. Ultrasonic grinding of fine ceramics for inductively coupled plasma atomic emission spectrometry using slurry nebulization technique [J]. Journal of Analytical Atomic Spectrometry, 2004, 19(10): 1370-1374
    [17] Izaki K, Hakkei K. Ultrastructure Processing for Advanced Ceramics [M], New York.John Willey&Sons,1988:891-896
    [18] Jahanmir S, Strakna T.J. Effect of grinding on strength and surface integrity of silicon nitride: part I [J]. Machining of advanced Material, 1993, 847: 263-277
    [19] Johnson walls. Residual stresses in machined ceramic surface [J]. J.Am.Ceram Soc,1986,69(1):44-47
    [20] K.W.Lee, P.K.Wong, J.H. Zhang. Study on the Grinding of Advanced Ceramics with Slotted Diamond Wheels [J]. Journal of Materials Processing Technology, 2000,(1):230-235
    [21] Kirchner H.P. Residual stresses in hot-pressed Si3N4 grooved by single-point grinding [J]. J. Am Ceram Soc,1982,65(1):55-60
    [22] Kirchner H.P. Damage penetration at elongated machining grooves in hot-pressed Si3N4 [J]. J. Amer. Ceram. Soc., 1984, 67: 127-132
    [23] L.Gaete-Garretón, Y. Vargas-Hernandez, A. Chamayou. Development of an ultrasonic high-pressure roller press [J]. Chemical Engineering Science, 2003, 58(19): 4317-4322
    [24] Lawn B R, Evans A G. A model for crack initiation in elastic/plastic indentation fields [J]. J. Mater. Sci., 1977,12: 2195-2199
    [25] Lawn B R, Swain M V. Microfracture beneath point indentations in brittle solids [J]. J. Mater. Sci. ,1975,10 :113-122
    [26] Lawn, Brian, Wilshaw, Rodney. Review indentation fracture: principles and applications [J]. Journal of Materials Science, 1975, 10(6):1049-1081
    [27] Lee, E.S., Won, J.K., Chun, Y.J. Ultra-precision lapping of machinable ceramic Si3N4-BN by in-process electrolytic dressing [J]. International Journal of Advanced Manufacturing Technology, 2007, 31(11-12): 1101-1108
    [28] M. Zhou, X.J. Wang. Brittle-ductile transition in the diamond cutting of glasses with the aid ofultrasonic vibration [J]. Journal of Materials Processing Technology, 2002, 121:243-251
    [29] Niihara K.The Centennial memorial Issue of the Ceramic Society of Japan.1991,99:974-982
    [30] Nishioka, Takao. Surface grinding characteristics of Si3N4 ceramics under high-speed and speed-stroke grinding conditions [J]. Journal of the Ceramic Society,1995,103:1238-1242
    [31] P. Hu, J. M. Zhang, Z. J. Pei, et al. Modeling of material removal rate in rotary ultrasonic machining: designed experiments [J]. Journal of Materials Processing Technology, 2002, 129(1-3): 339-344
    [32] Pentland A P. Fractal-based description of natural scenes [J]. IEEE PAM I, 1984, 26 (6): 661-674
    [33] Ramesh K. Experimental evaluation of super high-speed grinding of advanced ceramics [J]. International Journal of Advanced Manufacturing Technology,2001,17(2): 87-92
    [34] Rezaei S M. Creep feed grinding of advanced ceramics [J]. Journal of Engineering Manufacture,1992,206:93-99
    [35] S.G.Roberts. Surface damage analysis in alumina and alumina composites [J]. Act Material, 2002,3:167-182
    [36] Shen J Y. Ceramics grinding under the condition of constant pressure [J]. Journal of Materials Processing Technology, 2002,129(1-3):l76-l81
    [37] Shen, Jianyun, Lin, Weimin, Ohmori, Hitoshi et al. Surface behaviors of ELID ground engineering ceramics [J]. Key Engineering Materials, 2007, 336-338 II:1469-1472
    [38] Suzuki, Kiyoshi, Mishiro, Shoji. A micro ultrasonic grinding device with very high frequency and its application [J].Key Engineering Materials, 2007, 329: 45-50
    [39] Takehara, T., Tatsumi, Y. Ichikawa. Summary of CGT302 Ceramic Gas Turbine Research and Development Program [J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(3): 627-635
    [40] Thomas A P, Thomas T R. Engineering surface as fractals-fractal aspects of materials [M]. Pittsburgh: Materials Research Society, 1986
    [41] Tsutsumi C.O, Kano K. High quality machining of ceramics [J]. Annals of the CRIP, 2005, 44(1): 263-266
    [42] Walls D J. Residual Stresses in Machined Ceramic Surfaces [J]. J.Am. Ceram. Soc. 1986, 69 (1):234-237
    [43] Weimin Qu. The effect of high frequency vibration on the grinding process [D]. Michigantechnological university, 1999
    [44] Wobker H.G, Tonshoff H.K. High efficiency grinding of structural ceramics [J]. Machining of advanced materials, 2003, 847: 171-183
    [45] Xu H H K, Jahanmir S. Simple Technique for Observing Subsurface Damage in Machining of Ceramics [J]. J Amer Ceram Soc, 1994, 77: 1388-1390
    [46] Xu H.H.k, Jahamir S.M. Microfracture and material removal in scratching of Alumina [J]. J Mater Sci, 1995, 30: 2235-2247
    [47] Xu H.H.K, Jahanmir S. Material removal and damage formation mechanisms in grinding silicon nitride [J]. J Mater Res, 1996, 11: 1717-1724
    [48] Xu X P, L Yi, Malkin S. Force and energy in circular sawing and grinding of granite[J]. Transactions of ASME: Journal of Manufacturing Science & Engineering, 2001,123(1):13-22
    [49] Y. Ichida, R. Sato, Y. Morimoto. Material removal mechanisms in non-contact ultrasonic abrasive machining [J]. Wear, 2005, 258(1-4):107-114
    [50] Y. Wu, T. Kondo, M. Kato. A new centerless grinding technique using a surface grinder [J]. Journal of Materials Processing Technology, 2005, 162-163: 709-717
    [51] Y. Wu, Y. Fan, M. Kato, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique [J]. Journal of Materials Processing Technology,2004, 155-156: 1780-1787
    [52] Yan, YanYan, Zhao, Bo, Wu, Yan. Study on material removal mechanism of fine-crystalline ZrO2 ceramics under two dimensional ultrasonic grinding [J]. Materials Science Forum,2006,532-533: 532-535
    [53] Zhang B. Surface integrity in machining hard-brittle materials [J]. Journal of Japan Society for A brasive Technology, 2003,47(3):131-134
    [54] Zhang Bi, Howes T.D. Material removal mechanisms in grinding ceramics [J]. Annals of the CRIP, 1998, 43:305-308
    [55] Zhang Bi. Precision grinding regime of advanced ceramics [J]. Proceedings of the Annual meeting of American society of precision engineering, 2003:225-229
    [56] Zhang Bi, Zheng X.L. Grinding induced damage in ceramics [J]. Journal of material processing technology, 2003, 132 :353-364
    [57] Zhao J, Sterns L C, Harmer M P. Mechanical behavior of alumina-silicon carbide nano composites [J]. J Am Ceram Soc,1993,76(2):503-510
    [58] Zhao, B., Wu, Y., Liu, C.S. The study on ductile removal mechanisms of ultrasonic vibrationgrinding nano-ZrO2 ceramics [J]. Key Engineering Materials,2006, (304-305): 171-175
    [59] Zhao, B., Zhang, X.H., Liu, C.S. et al. Study on ultrasonic vibration grinding character of nano-ZrO2 ceramics [J]. Key Engineering Materials,2005, (291-292): 45-50
    [60] Fritz Klocke, Andreas Weber, Bernd Bresseler.超声波在硬脆材料磨削中的应用[J].现代制造-现代金属加工,2007,3:20-23
    [61] [美]David J.Green著.龚江宏译.陶瓷材料力学性能导论[M],北京:清华大学出版社,2003
    [62] [美]S.马尔金著.蔡光起,巩亚东等译.磨削技术理论与应用[M].沈阳:东北大学出版社,2002:33-60
    [63] [日]隈部淳一朗.韩一昆译.精密加工振动切削(基础与应用)[M].北京:机械工业出版社,1985:20-223
    [64]曹凤国等.超声加工技术[M].北京:化学工业出版社,2004:50-60
    [65]陈传梁.用加工中心机床对陶瓷材料进行超声复合磨削[J].电加工,1992,(4):31-34
    [66]邓朝晖,安磊,胡中伟.聚晶金刚石复合片磨削试验研究[J].金刚石与磨料磨具工程, 2007,(6):32-33
    [67]邓朝晖,荆琦,安磊.纳米结构WC/12Co涂层精密平面磨削残余应力有限元模拟与实验[J].机械工程学报,2008,44(7):58-60
    [68]邓朝晖,张璧等.陶瓷磨削的表面/亚表面损伤[J].湖南大学学报,2002,5:61-63
    [69]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究[D].湖南大学,2004
    [70]邓朝晖,张璧,孙忠禹,周志雄.陶瓷磨削材料去除机理的研究进展[J].中国机械工程, 2002,13(18):1608-1611
    [71]邓朝晖,张璧.陶瓷磨削的材料去除机理[J].金刚石与磨料磨具工程,2002,128(2):47-51
    [72]电子工业专用设备设计手册:超声与激光[M].电子工业部标准化研究所,1983:25-85
    [73]杜建华,刘永红,李小朋.工程陶瓷材料磨削加工技术[J].机械工程材料,2005,29(3): 1-3
    [74]范国良,陈传梁.超声加工概况和未来展望[J].电加工,1994,6:32-36
    [75]费斌,王海容.机械加工表面分形特性的研究[J].西安交通大学学报,1998,32(5): 83-86
    [76]高国富.金刚石砂轮椭圆振动修整技术及其磨削性能研究[D].上海:同济大学,2008
    [77]高家化,沈志坚,丁之上.陶瓷基纳米复合材料[J].复合材料学报,1994,11(1):1-7
    [78]葛世荣.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-79
    [79]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001
    [80]何维军,王渊,赵福令.基于分形维数的CFRP切削加工表面三维形貌评定方法[J].计量学报,2009,30(4):297-232
    [81]江琴.Al2O3陶瓷蠕动进给超声磨削特性试验研究[J].宇航材料工艺,2007,(1):68-71
    [82]江炎兰,梁小蕊.纳米陶瓷材料的性能及其应用[J].兵器材料科学与工程,2008,31(5):91-93
    [83]蒋书文,姜斌等.磨损表面形貌的三维分形维数计算[J].磨擦学学报,2003,23(6):534-536
    [84]焦锋.工程陶瓷超声辅助固着磨料高效研磨机理及试验研究[D].上海:上海交通大学,2008
    [85]焦绥隆,Borsa C E.氧化铝/碳化硅纳米复合材料的力学性能和增韧机理[J].材料导报,1996,(增刊):89-93
    [86]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000
    [87]李爱兰,曾燮榕.航空发动机高温材料的研究现状[J].材料导报,2003,17(2):26-28
    [88]李伯奎,刘远伟.表面粗糙度理论发展研究[J].工具技术,2004,38:163-66
    [89]李伯民,赵波.磨料磨具与磨削技术[M].北京:化学工业出版社,2010
    [90]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003
    [91]李富龙,徐家文等.Al2O3陶瓷超声磨削的微观机理分析[J].电加工与模具,2006(3):52-55
    [92]林滨,林彬,于思远.陶瓷材料延性域去除临界条件新研究[J].金刚石与磨料磨具工程,2002,127 (1):44-46
    [93]林滨.工程陶瓷超精密磨削技术研究[D].天津:天津大学,1998
    [94]刘枫,巩亚东.砂轮约束磨粒喷射精密光整加工外圆表面分形维数研究[J].兵工学报,2009,30(1):100-104
    [95]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,2004:32-40
    [96]刘伟香,邓朝晖.工程陶瓷磨削表面残余应力测试[J].现代制造工程,2005(2):99-101
    [97]刘伟香,周忠于.陶瓷材料磨削表面残余应力的产生机理[J].工具技术,2007,41(12):32-34
    [98]马大猷等.声学技术[M].北京:科学出版社,2004:164-178
    [99]纳米尔.工程陶瓷超精密加工技术及其表面质量的研究[D].天津:天津大学,1999
    [100]潘洪平,梁迎春,董申.陶瓷球的超声振动研磨[J].哈尔滨理工大学学报,1999,4(3): 29-33
    [101]潘洪平,梁迎春.陶瓷球超声振动研磨装置的研究[J].机械工程师,1999,(5):5-6
    [102]潘立,张国林.陶瓷磨削技术的研究进展[J].浙江工业大学学报,2003,(6): 641-646
    [103]庞楠.新陶瓷材料的超声波磨削复合加工[D].沈阳:东北大学机械系,1997
    [104]裴光文,钟维烈,岳书彬.单晶、多晶和非晶物质的x射线衍射[M].济南:山东大学出版社,1989
    [105]彭艳萍.军用新材料的应用现状及发展趋势[J].材料导报,2000,14(1):13-16
    [106]乔忠云.Al-SiCp复合材料磨损表面分形维数的研究[J].盐城工学院学报(自然科学版) 2007,20(2):56-59
    [107]全国科学技术名称审定委员会.砂轮2010. http://baike.baidu.com/view/33841.htm
    [108]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社,1999
    [109]任敬心,史兴宽.磨削技术的新进展-硬脆材料光滑表面的超精磨削[J].中国机械工程,1997,8(4):106-110
    [110]任升峰.烧结Nd-Fe-B永磁材料加工新技术及机理研究[D].济南:山东大学,2006
    [111]史兴宽,康仁科.内圆超声振动磨削装置的设计[J].磨床与磨削,1997,(1):52-54
    [112]苏华礼.超声磨削工程陶瓷材料方法与机理的研究[J].煤矿机械,2008,129(8):33-36
    [113]田欣利,徐燕申,林彬.陶瓷磨削表面残余应力的理论模型[J].中国机械工程,1999, 10(7):724-727
    [114]田欣利,徐燕申.陶瓷磨削表面变质层的产生机理[J].机械工程学报,2000,(11):30-32
    [115]田欣利,于爱兵,林彬.陶瓷磨削温度对表面残余应力的影响[J].中国机械工程,2002, 13(18):1600-1603
    [116]田欣利,于爱兵.工程陶瓷加工的理论与技术[M].北京:国防工业出版社,2006
    [117]田欣利.陶瓷磨削表面完整性的理论与试验研究[D].天津:天津大学,1996
    [118]王峰,周立娟.发展中的高技术陶瓷—纳米陶瓷[J].陶瓷研究,1998,13(2):8-10
    [119]王强国,高航,裴志坚.KDP晶体超声辅助磨削的亚表面损伤研究[J].人工晶体学报, 2010,39 (1):67-70
    [120]王炜.陶瓷在机械工业上的应用[J].机电工程,1991,(4):20-23
    [121]王西彬,李相真.结构陶瓷磨削表面的残余应力[J].金刚石与磨料磨具工程.1997,(6): 18-22
    [122]王西彬,任敬心.结构陶瓷磨削表面微裂纹的研究[J].无机材料学报,1996,(4):658-664
    [123]王先逵.超声砂带精密磨削技术[J].电加工,1988,(4):4-9
    [124]王昕,孙康宁等.纳米复合陶瓷材料的研究进展[J].复合材料学报,1999,16(1):105-109
    [125]王毅,吴立言,韩冰.ANSYS的两种有限元单元应用研究[J].科学技术与工程,2007,7(6):954-957
    [126]魏东波.互换性和测量技术基础[M].北京:北京航空航天大学出版社,1996:102-107
    [127]吴雁.纳米复相陶瓷二维超声振动磨削脆-塑转变机理及其表面微观特性研究[D].上海:上海交通大学,2007
    [128]吴玉厚,王凯,姜庆凯.基于比磨削能的花岗岩内圆磨削的正交试验[J].沈阳建筑大学学报,2009,25(3):556-558
    [129]肖德贤,赵福令,冯冬菊等.旋转超声波加工中延性去除模式的实验研究[J].电加工与模具,2004,(4):27-30
    [130]谢桂芝,黄红武,黄含等.工程陶瓷材料高效深磨的试验研究[J].机械工程学报,2007, 43 (1):176-184
    [131]辛志杰,刘钢.超声波振动内圆磨削:Mll4W磨床实现超声磨削的探讨[J].华北工学院学报,1996,17(2):185-188
    [132]熊志庆.碳化钨-钴陶瓷亚表面裂纹扩展预测模型的建立.湖南大学硕士论文,2005
    [133]薛进学,赵波,吴雁.二维超声磨削纳米复相陶瓷表面残余应力研究[J].兵工学报,2010, 31(5):636-640
    [134]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报,2000,21(1):46-50
    [135]闫艳燕.ZTA纳米复相陶瓷二维超声辅助磨削及其表面/亚表面损伤机理研究[D].上海:上海交通大学,2009
    [136]陈永胜,胡永强,余雷,赵博.工程陶瓷材料的现状及发展趋势[J].金刚石磨料磨具工程,1998,104 (2):37-39
    [137]于爱兵,田欣利.应用压痕断裂力学分析陶瓷材料的磨削加工[J].硅酸盐通报,2002,(1):58-61
    [138]于爱兵,徐燕申,林彬.工程陶瓷磨削裂纹形成过程研究[J].天津大学学报,1999,32 (2):177-180
    [139]于思远,林彬.工程陶瓷材料的加工技术及其应用[M].北京:机械工业出版社,2008
    [140]于思远,林滨,林彬.国内外先进陶瓷材料加工技术的进展[J].金刚石与磨料磨具工程,2001,124 (4):36-39
    [141]于思远,赵艳红,刘殿通.超声磨削加工工程陶瓷小孔的实验研究[J].电加工与磨具,2001,(4):31-34
    [142]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社,2000
    [143]袁哲俊.纳米科学与技术[M].哈尔滨:哈尔滨工业大学出版社,2005
    [144]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨[J].纳米技术与精密工程,2003,1(1):48-56
    [145]张定铨,何家文.材料中残余应力的x射线衍射分析和作用[M].西安:西安交通大学出版社,1999
    [146]张洪丽.超声振动辅助磨削技术及机理研究[D].济南:山东大学,2007
    [147]张金升.王美婷等.先进陶瓷导论[M].北京:化学工业出版社,2007:40-42
    [148]张云电.超声加工及其应用[M].北京:国防工业出版社,1995
    [149]赵波,何定东.超声珩磨局部共振问题研究[J].机械工艺师,1998,(6):4-6
    [150]赵波,郑玉歌.内燃机缸套超声高效珩磨的数学模型研究[J].农业机械学报,1998,29(3):133-18
    [151]赵波.硬脆材料超声珩磨系统及延性切削特征研究[D].上海:上海交通大学,1999
    [152]赵明利.工程陶瓷超精密平板研抛技术的研究.焦作:河南理工大学硕士论文,2007
    [153]赵明利,赵波等.基于新型二维超声磨削方式的工装设计及其振动特性实验[J].机械制造,2007,514:29-31
    [154]周承新,陈慧琴.基于加工表面盒维数的刀具磨损状态研究[J].工具技术,2010,44(2):65-67
    [155]周忆.超声研磨硬脆材料的去除模型研究[J].中国机械工程,2005,16(8):664-666
    [156]左敦稳.现代加工技术[M].北京:北京航空航天大学出版社,2005
    [157]左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社,1987
    [158]左武炘,陈永洁.超声波复合振动加工机理及应用研究[J].华中理工大学学报,1994,7:125-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700