基于机床附件化的旋转超声波加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷广泛应用于航空航天、国防、电子、汽车、生物工程等领域,但陶瓷材料硬度高、脆性大等特点使其加工困难,旋转超声波加工作为一种精密、高效的工程陶瓷加工方法,受到了各国研究人员的广泛关注,实现旋转超声波加工头和负载匹配进给系统的机床附件化,进而促进旋转超声波加工技术的推广应用,是目前必须解决的关键技术问题。
     传统的无刷式旋转超声波加工头存在能量传输效率低、传输能力小等问题;现有的机床附件化负载匹配进给系统有软件模式和硬件模式两种,软件模式存在操作和维修复杂、价格昂贵等缺点,硬件模式存在对旋转超声波加工力的变化反应不够灵敏等缺点。
     为解决以上问题,本文研究设计一种机床附件化负载匹配进给系统,研究设计一种机床附件化的旋转超声波加工头,研制一种基于电磁感应的无刷式能量传输装置(集流环),并探讨旋转超声波加工过程中刀具磨损的在线监测方法。本文主要研究内容包括以下几方面:
     1)研究并设计一种以空气静压导轨气浮工作台为核心的机床附件化负载匹配进给系统。基于气体润滑理论,利用有限元法和试验法对气浮导轨的承载力和承载刚度进行分析和测量,同时完成负载匹配进给系统的力监测和力控制系统。
     2)基于电磁感应原理,研究设计一种用于旋转超声波加工头的非接触式能量传输集流环。利用有限元法对比分析四种集流环的工作性能,并进行实验验证。探讨集流环主、副边电路的补偿方法,提出了副边电路负载为换能器时电路的补偿方法,并进行了电路补偿的有限元仿真与实验研究。
     3)研究设计一种以柱面感应集流环为核心部件的机床附件化旋转超声波加工头,利用有限元软件对变幅杆进行动力学分析和结构设计。
     4)研制旋转超声波钻削SiC陶瓷实验台,利用压电力传感器、振动加速度传感器与声发射传感器在线监测加工过程,通过观测刀具表面形貌判断刀具磨损情况、分析刀具磨损机理,通过信号处理提取表征刀具磨损的信号特征。
     5)进行旋转超声波加工负载匹配实验,通过观测工件被加工后的表面质量以及信号分析,验证气浮工作台负载匹配系统对工件的保护作用。
Engineering ceramics are widely used in various areas such as aerospace, defense, electronics, automotive, bioengineering and other fields, However the ceramic materials is difficult to process because of their high hardness, brittleness and other characteristics. As a precision and efficient processing of engineering ceramics, rotary ultrasonic machining has attracted a lot of attention from international researcher. It is a key technical issue that the application of rotary ultrasonic maching is popularised by making the rotary ultrasonic machining head and load matching system accessories.
     The energy transfer efficiency and transfer capacity are small in conventional brushless rotary ultrasonic devices. There are software mode and hardware mode in existing accessory load matching system. The normal operation and maintenance are complex and the cost is high in software mode. Responding to the change rotary ultrasonic processing load is not sensitive enough and there are othere shortcomings in hardware mode.
     To solve the above problem, a accessory load matching system and a accessory rotary ultrasonic device are researched and designed. A new brushless energy transferring device based on the principle of electromagnetic induction is developed. On-line monitoring tool wear is studied during rotary ultrasonic machining. The studies in this paper include the following aspects:
     1) A load matching system of accessoring machine tool is developed, whose core component is an air bearing workbench. The air bearing workbench adops an aerostatic guide. Based on gas lubrication theory, the bearing capacity and stiffness of the aerostatic guide are analyzed and measured by finite element method and experimental method. The monitoring force system and controlling force system of the load matching system are also designed.
     2) Based on the principle of electromagnetic induction, a non-contact power transmission collector used in rotary ultrasonic machining is developed. The working performances of four collectors are analyzed by finite element method and are verified by experiments. The circuit compensation method of the primary and secondary circuits is discussed. When the secondary circuit is transducer, the circuit compesnsation is proposed. The circuit compesnsations are analyzed by finite element analysis and are verified by experiments.
     3) A rotary ultrasonic device is designed, whose important component is a cylindrical induction power transmission collector. Dynamics of the horn is analyzed by finite element analysis and structure of the horn is designed.
     4) A device of rotary ultrasonic drilling of SiC is established for on-line monitoring the process by piezoelectric sensor, vibration sensor and acoustic emission sensor. Tool wear and tool wear mechanism are analyzed by observing the surface morphology. The signal characteristics of tool wear is extracted by processing signals.
     5) The load matching system can be employed to protect the workpiece from damage during rotary ultrasonic machining, which is confirmed by observing the machined workpiece surface and analyzing the signals.
引文
[1] F.Z. Fang, Trends of manufacturing development (plenary speech), Jinan, China: PEI General Assembly, 2010-12-12
    [2] F.Z. Fang, Advances in micro manufacturing (keynote speech), Tsukuba, Japan: TMMF2005, 2005-10-17
    [3] Seymour Bortz, Reliability of ceramics for heat engine applications, Washington, D.C.: Publication NMAB-357, National academy of sciences, 1980
    [4] H.E. Helms, P.J. Haley, Emerging ceramic components for automotive gas turbines, Proceedings of third international symposium on ceramic materials and components for engines, Las Vegas, NV, Nov.2730, 1988
    [5] J. Barta, Preparation and properties of silicon nitride for radome applications, Proceeds of 16th symposium of electromagnetic windows, 1982. 87~92
    [6] J.C. Brice, Crystals for quartz resonators, Rev. Mod. Phys. 1985, 57: 105~146
    [7] A. Ballato, J.C. Gualtieri, Advances in high-Q piezoelectric resonator materials and devices, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1994, 41(6): 834~844
    [8] J.R. Davis, Handbook of materials for medical devices, Printed in the United States of America ISBN: 0-87170-790-X, ASM International Materials Park, 2003
    [9]庞滔,郭大春,庞楠,超精密加工技术,北京:国防工业出版社,2000
    [10]龚江宏,陶瓷材料断裂力学,北京:清华大学出版社,2001
    [11] Z.J. Pei, P.M. Ferreira, S.G.Kapoor, Rotary ultrasonic machining for face milling of ceramics, Tools Manufacture, 1995, 35(7):1033~1046
    [12]于思远,林彬,工程陶瓷材料的加工技术及其应用,北京:机械工业出版社,2008
    [13] T.J. Drozda, C. Wick, Non-traditional machining–Book chapter 29: Tool and manufacturing engineers handbook (Desk Ed.). Soc. Manuf Engrs, Dearborn, MI, ISBN No. 0872633519. 1983. 1~23
    [14] M. Adithan, Abrasive wear in ultrasonic drilling. Tribology International, 1983, 16(5): 253~255
    [15] E.A. Neppiras, Report on ultrasonic machining. Metalworking Prod, 1956. 1283~1288, 1333~1336, 1377~1382, 1420~1424, 1464~1468, 1554~1560, 1599~1604
    [16] H. Gong, F.Z. Fang et al., Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials, International Journal of Machine Tools and Manufacture, 2010, 50(3): 303~307
    [17] M. Komaraiah, P. Reddy, Narashima, Rotary ultrasonic machining– A new cutting process and its performance, Int. J. Prod. Res., 1991, 29(11), 2177~2187
    [18] D. Prabhakar, Machining advanced ceramic materials using rotary ultrasonic machining process: [M. S. Thesis], USA: University of Illinois at Urbana-Champaign, 1992
    [19] D.P. Stinton, ORNL/TM-Report 10791, Tennessee: Oak Ridge National Laboratory, 1988
    [20] T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on ultrasonic Machining, International Journal of Mechanical Tools Manufacture, 1988, 38(4): 239~255
    [21]丁仕燕,数控展成超声磨削陶瓷型面的基础研究:[博士学位论文],南京:南京航空航天大学,2006
    [22] Z.J. Pei, N. Khana, P.M. Ferria, Rotary ultrasonic machining of structural ceramics-a review, Ceramic Engineering and Science Proceedings, 1995, 16(1): 259~278
    [23] P. Legge, Machining without abrasive slurry, Ultrasonic, 1966, 4(7): 157~162
    [24]程学艳,新型旋转超声复合磨削头及其系列化研究:[硕士学位论文],天津:天津大学,2005
    [25] D. Prabhakar, Z.J. Pei, P.M. Ferreira, A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics, Transactions of the North American Manufacturing Research Institution of SME, 1993, XXI: 167~172
    [26] H. Frei, G. Grathwohl, Microstructure and strength of advanced ceramics after machining, Ceramics international, 1993, 19(2): 93~104
    [27] Z.J. Pei, P.M. Ferreira, S.G. Kapoor, Rotary ultrasonic machining for face milling of ceramics, International journal of machine tools & manufacture, 1995, 35(7): 1033~1046
    [28] Z.J. Pei, Plastic flow in rotary ultrasonic machining of ceramics, Journal of materials processing technology, 1995, 48(1~4): 771~777
    [29] Z.J. Pei, P.M.Ferreira, Modeling of ductile-mode material removal in rotary ultrasonic machining, International journal of machine tools & manufacture, 1998, 38: 1399~1418
    [30] G. Spur, S.E. Holl, Ultrasonic assisted grinding of ceramics, Journal of materials processing technology, 1996, 62(4): 287~293
    [31] T.C. Lee, C.W. Chan, Mechanism of the ultrasonic machining of ceramic composites, Journal of materials processing technology, 1997, 71: 195~201
    [32] B. Varghess, S. Malkin, Experimental Investigation of Methods to Enhance Stock Removal for Superfinishing, Annals of the CIRP, 1998, 47(1): 231~234
    [33] E. Uhlmann, G. Spur, Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance, CIRP Annals-Manufacturing Technology, 1998, 47(1): 249~252
    [34] W. Qu, K. Wang, M.H. Miller, et al., Using vibration-assisted grinding to reduce subsurface damage, Journal of the international societies for precision engineering and nanotechnology, 2000, 24(4): 329~337
    [35] B.G. hahramani, Z.Y. Wang, Precision ultrasonic machining process: a case study of stress analysis of ceramics(Al2O3), International journal of machine tool & manufacture, 2001, 41: 1189~1208
    [36] L. Gaete-Garretón, Y. Vargas-Hernandez, Development of an ultrasonic high-pressure roller press, Chemical engineering science, 2003, 58(19): 4317~4322
    [37] Y. Wu, T. Kondo, M. Kato, A new centerless grinding technique using a surface grinder, Journal of materials processing technology, 2005, 162~163: 709~717
    [38] Y. Ichida, R. Sato, Y. Morimoto, Material removal mechanisms in non-contact ultrasonic abrasive machining, Wear, 2005, 258(1~4): 107~114
    [39] Suzuki, Kiyoshi, Mishiro et al., A micro ultrasonic grinding device with very high frequency and its application, Key engineering materials, 2007, 329: 45~50
    [40]陈传梁,用加工中心机床(MC)对陶瓷材料进行超声复合磨削,电加工,1992,1:31~34
    [41]张其馨,罗建伟等,碳纤维复合材料旋转超声控力钻孔的研究,电加工,1994,3:25~27
    [42]于思远,赵艳红,刘殿通,超声磨削加工工程陶瓷小孔的实验研究,电加工与磨具,2001,4:31~34
    [43]于思远,殿通,林滨等,硬脆材料超声磨削孔槽加工机,中国专利,01205966.8,2001
    [44]肖德贤,赵福令,冯冬菊等,旋转超声波加工中延性去除模式的实验研究,电加工与模具,2004,4:27~30
    [45]周忆,梁德沛,超声研磨硬脆材料的去除模型研究,中国机械工程,2005,16(8):664~666
    [46]周凌云,旋转超声加工磨削头及气动工作台的研究与设计:[学士学位论文],天津:天津大学,2008
    [47]倪皓,旋转超声加工及其关键技术的研究:[硕士学位论文],天津:天津大学,2009
    [48] T. Nakagawa, K. Suzuki, T. Uematsu, Development of a New Turning Center for Grinding Ceramic Materials, Annals of the CIRP, 1988, 37(1): 319~322
    [49] M. Wiereigroch, J. Wojewoda, A.M.Krivtsov. Dynamics of ultrasonic percussive drilling of hard rocks. Journal of sound and vibration. 2004.15(2):187~205
    [50]久保田治,由井隆行,古川英雄,超声波加工主轴装置,日本专利,200680024192,2008
    [51]范国良,张维贤,侯文斌等,T3030-3/ZV超声旋转加工机的研制及其应用,第五届全国电加工学术年会论文集(特种加工篇与综合性论文篇),浙江省:中国机械工程学会特种加工分会,1986.140~149
    [52]程学艳,林彬,一种新型旋转超声复合磨削头的研制,航空制造技术,2005,7:81~82
    [53] T.B. Thoe, D.K. Aspinwall, M.L.H. Wise. Review on ultrasonic machining. International journal of machine tools & manufacture, 1998, 38(4): 239~255
    [54] D.C. Kennedy, R.J. Grieve, Ultrasonic machining-a review, The production engineer, 1975, 54(9): 481~486
    [55]张其馨,冯友彬等,碳纤维复合材料旋转超声钻孔装置研究,材料科学与工艺,1994,2(2):103~106
    [56]张其馨,罗建伟等,便携式旋转超声振动钻研究,制造技术与机床,1994,8:8~11
    [57] E. Kai, M. Takahisa, Microultrasonic machining by the application of workpiece vibration, Annals of the CIRP, 1999, 48(1): 131~134
    [58]刘殿通,于思远,陈锡让,工程陶瓷小孔的超声磨削加工,电加工与模具,2000,5:22~25
    [59]张剑芳,曾励,非金属硬脆材料超声加工的研究,新技术断工艺,1993,6:12~13
    [60]轧刚,秦华伟,许永娃等,旋转超声波加工的试验研究,新工艺·新技术·新设备,2000,6:56~59
    [61]张晓峰,大行程超精密工作台关键技术研究:[博士学位论文],天津:天津大学,2008
    [62]王云飞,气体润滑理论与气体轴承设计,北京:机械工业出版社,1997
    [63]冯慧成,侯予等,国内静压气体润滑技术研究进展,润滑与密封,2011,36(4):108~113
    [64]党根茂,气体润滑技术,南京:东南大学出版社,1990
    [65]姚绍明,气体复合润滑技术,北京:国防工业出版社,2008
    [66]刘暾,刘育华,陈世杰,静压气体润滑,哈尔滨:哈尔滨工业大学出版社,1990
    [67] (日)十合晋一著,韩焕臣译,气体轴承设计、制作与应用,北京:宇航出版社,1988
    [68]周俊杰,徐国权,张华俊,FLUENT工程技术与实例分析,北京:中国水利水电出版社,2010
    [69]温正,石良臣,任毅如,FLUENT流体计算应用教程,北京:清华大学出版社,2009
    [70] G.D. Kim, W.T. Kwon, C.N. Chu, Indirect cutting force measurement and cutting force regulation using spindle motor current, The International Journal of Advanced Manufacturing Technology, 1999, 15(7): 478~484
    [71]周红,刘晓东,应变式集成力传感器的研制,电子机械工程,2004,20(5):52~54
    [72] Z.J. Pei, P.M. Ferreirab, An experimental investigation of rotary ultrasonic face milling, International journal of machine tools & manufacture, 1999, 39: 1327~1344
    [73] H. Jiang, Steady state analysis of the series resonant converter based on loosely coupled inductive couplers: [PhD dissertation], Belgium: Vrije Universiteit Brussel (VUB), 1996
    [74] W. Li, Control aspects of fully automatic inductive charging system, [PhD dissertation], Belgium: Vrije Universiteit Brussel (VUB), 2002
    [75] J. Sallan, J.L. Villa, A. Llombart et al., Optimal design of ICPT systems applied to electric vehicle battery charge, IEEE Transaction on industrial electronics, 2009, 56(6): 2140~2149
    [76] P. Sergeant, A.Van den Bossche, Inductive coupler for contactless power transmission, IET Electric Power Application, 2008, 2(1): 1~7.
    [77] A.P. Hu, J.T. Boys, G.A. Covic, Frequency analysis and compution of a current-fed resonant convert for ICPT power supplies, Proceedings of 2000 international conference on power system technology, 2000,1~3: 327~332
    [78] C.S. Wang, O.H. Stielau, G.A. Covic, Design considerations for a contactless electric vehicle battery charger, IEEE Transactions on industrial electronics, 2005, 52(5): 1308~1314
    [79] J.L. Villa, J. Sallan, A. Llombart et al., Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge, Applied energy, 2009, 86(3): 355~363
    [80] J.T. Boys, G.A.J. Elliott, An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups, IEEE transactions on power electronics, 2007, 22(1): 333~335
    [81] C.S. Wang, G.A. Convic, O.H. Stielau, Investigating an LCL load resonant inverter for inductive power transfer applications, IEEE transactions on power electronics, 2004, 19(4): 995~1002
    [82] I. Takehiro, O. Hiroyuki, Y. Hori, Basic experimental study on helical antennas of wireless power transfer for electric vehiecles by using magnetic resonant couplings in vehicle power and propulsion conference, Vehicle Power and Propulsion Conference, 2009. 936~940
    [83] N.A. Keeling, J.T. Boys, G.A. Covic, Unity power factor inductive power transfer pick-up for high power applicatios, Industrial Electronics, 34th Annual Conference of IEEE, 2008. 1039~1044
    [84] C.S. Wang, G.A. Covic, O.H. Stielau, General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems, In 27th Annual conference of the IEEE industrial electronics society, 2001, 1~3: 1049~1054
    [85] A. Esser, H.C. Skudelny, A new approach to power supplies for robots, IEEE transactions on industry applications, 1991, 27(5): 872~875
    [86] A. Esser, A. Nagel, Contactless high speed signal transmission integrated in a compat rotatable power transformer, The fifth European conference on power electronics and applications, 1993. 409~414
    [87] K. Ishioka, J. Hirai, Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications, IEEE transations on industry applications, 1996, 32(3): 503~508
    [88] J. Hirai, T.W. Kim, A. Kawamura, Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system, IEEE Transactions on industrial electronics, 1999, 46(2): 349~359
    [89] J. Hirai, T.W. Kim, A. Kawamura, Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive, IEEE transactions on power electronics, 2000, 15(1): 13~20
    [90] J. Hirai, T.W. Kim, A. Kawamura, Study on intelligent battery charging using inductive transmission of power and information, IEEE transactions on power electronics, 2000, 15(2): 335~345
    [91] J. Hirai, T. W.Kim, A. Kawamura, Wireless transmission of power and information and information for cableless linear motor drive, IEEE transactions on power electronics, 2000, 15(1): 21~27
    [92] K.W. Klontz, D.M. Divan, D.W. Novotny et al., Contactless power delivery system for mining applications, IEEE Transactions on industry applications, 1995,31(1): 27~35
    [93] T. Kojiya, F. Sato, H. Matsuki et al., Construction of non-contacting power feeding system to underwater vehicle utilizing electro magnetic induction, Oceans 2005-Europe, 2005, 1: 709~712
    [94] T. Kojiya, F. Sato, H. Matsuki et al., Automatic power supply system to underwater vehicles utilizing non-contacting technology, OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04. 2004, 4: 2341~2345
    [95] A.M. Bradley, M.D. Feezor, H.Singh et al., Power systems for autonomous underwater vehicles, IEEE Journal of oceanic engineering, 2001, 26(4): 526~538
    [96] M.D. Feezor, F.Y. Sorrell, P.R. Blankinship, An interface system for autonomous undersea vehicles, IEEE Journal of oceanic engineering, 2001, 26(4): 522~525
    [97] T. Mcginnis, C.P. Henze, K. Conroy, Inductive power system for autonomous underwater vehicles, 2007 Oceans, 2007, 1: 736~740
    [98] D. Yoshioka, H. Sakamoto, Y. Ishihara et al., Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy, IEEE Transactions on magnetics, 2007, 43(6): 2663~2665
    [99] C.F. Andren, M.A. Fadali, V.L. Got et al., Skin tunnel transformer-a new system that permits both high efficiency transfer of power and telemetry of data through intact skiin, IEEE Transactions on biomedical engineering, 1968, 15(4): 278~280
    [100] J.C. Schuder, J.H. Gold, Inductively coupled rf system for transmission of 1 Kw of power through skin, IEEE transactions on biomedical engineering, 1971, 18(4): 265~273
    [101] H. Matsuki, Y. Yamakata, N. Chubachi et al., Transcutaneous DC-DC converter for totally implantable artificial heart using synchronous rectifier, IEEE Transactions on magnetic, 1996, 32(5): 5118~5120
    [102] K.H. Jung, Y.H. Kim, J. Kim et al., Wireless power transmission for implantable devices using inductive component of closed magnetic circuit, Electronics letters, 2009, 45(1): 21~28
    [103] K.M. Silay, C. Dehollain, M. Declercq et al., Improvement of power efficiency of inductive links for implantable devices, Istanbul, Turkey: Proceeding of conference on Ph.D research in microelectronics and electronics, 2008. 229~232
    [104] H. Miura, S. Arai, Y. Kakubari et al., Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts, IEEE Transactions on magnetics, 2006, 42(10): 3578~3580
    [105] M. Catrysee, B. Hermans, R. Puers, An inductive power system with integrated bi-directional data-transmission, Sensors and actuators A: Physical,2004, 115(2~3): 221~229
    [106] S. Kim, R.R. Harrison, F. Solzbcher, Influence of system integration and packaging on its inductive power link for an integrated wireless neural interface, IEEE transactions on biomedical engineering, 2009, 56(120): 2927~2936
    [107] H. Matsuki, M. Shiili, K. Murakami et al., Investigation of coil geometry for transcutaneous energy transmission for artificial-heart, IEEE Transactions on magnetics, 1992, 28(5): 2406~2408
    [108] G. Simard, M. Sawan, D. Massicotte, Novel coils topology intended for biomedical implants with multiple carrier inductive link, 2009 IEEE International symposium on circuits and systems-ISCAS 2009, 2009: 537~540
    [109] H. Matsuki, M. Yamaguchi, T. Watanabe et al., Implantable transformer for an artificial-heart utilizing amorphous magnetic fibers, Journal of applied physics, 1988, 64(10): 5859~5861
    [110] C.M. Zierhofer, E.S. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils, IEEE Transactions on biomedical engineering, 1996, 43(7): 708~714
    [111] F. Sato, T. Nomoto, G. Kano et al., A new contactless power-signal transmission device for implanted functional electrical stimulation, IEEE Transactions on magnetics, 2004, 2964~2966
    [112] Z. Yang, W.T. Liu, E. Basham, Inductor modeling in wireless links for implantable electronics, IEEE Transactions on magnetics, 2007, 43: 3851~3860
    [113] S. Ping, A.P. Hu, S. Malpas et al., A frequency control method for regulating wireless power to implantable devices, IEEE Transactions on biomedical circuits and systems, 2008, 2(1): 22~29
    [114] T.B. Tang, S. Smith, B.W. Flynn et al., Implementation of wireless power transfer and communications for an implantable ocular drug delivery system, IET Nanobiotechnology, 2008, 2(3): 72~79
    [115] L.Roszyk, L.Barnas, Hand held battery operated device and charging means therefore, U.S, 3840795, 1974
    [116] H. Abe, H. Sakamoto, K. Harada, A noncontact charger using a resonant converter with parallel capacitor of the secondary coil, IEEE Transactions on industry applications, 2000, 36(2): 444~451
    [117] S.Y.R. Hui, W.W.C. Ho, A new generation of universal contactless battery charging platform for portable consumer electronic equipment, IEEE Transactions on power electronics, 2005, 20(3): 620~627
    [118] B. Choi, J. Nho, H.Y. Cha et al., Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device, IEEE Transactions on industrial electronics, 2004, 51(1): 140~147
    [119] X. Liu, S.Y.R. Hui, Optimal design of a hybrid winding structure for planar contactless battery charging platform, IEEE Transactions on power electronics, 2008, 23(1): 455~463
    [120] Y.P. Su, X. Liu, S.Y.R. Hui, Mutual inductance calculation of movable planar coils on parallel surfaces, IEEE Transactions on power electronics, 2009, 24(3~4): 1115~1123
    [121] Y.P. Su, X. Liu, S.Y.R. Hui, Extended theory on the inductance calculation of planar spiral windings including the effect of double-layer electromagnetic shield, IEEE Transactions on power electronics, 2008, 23(4): 2052~2061
    [122] X. Liu, P.W. Chan, S.Y.R. Hui et al., Finite element simulation of a universal contactless battery charging platform, Applied Power Electronics Conference and Exposition, 2005, 3: 1927~1932
    [123] X. Liu, S.Y.R. Hui, Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features, IEEE Transactions on power electronics, 2007, 22(6): 2202~2210
    [124] K.D. Papastergious, A power converter with a rotating secondary stage for an airborne radar system: [Phd Thesis], Edinburgh: University of Edinburgh, 2005
    [125] K.D. Papastergious, D.E. Macpherson, F.A. Fisher, A 1kW phase-shifted full bridge converter incorporating contact~less transfer of energy, 2005 IEEE 36th power electronic specialists conference (PESC), 2005, 1~3: 83~89
    [126]李宏,感应电能传输——电力电子及电气自动化新领域,电气传动,2001,2:62~64
    [127]孙跃,王智慧,戴欣等,非接触电能传输系统的频率稳定性研究,电工技术学报,2005,20(11):56~59
    [128]苏玉刚,王智慧,孙跃等,非接触供电移相控制系统建模研究,电工技术学报,2008,23(7):92~97
    [129] C.S. Tang, Y. Sun, Y.G. Su et al., Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system, IEEE Transactions on powr electronics, 2009, 24(1~2): 416~425
    [130]马皓,周雯琪,电流型松耦合电能传输系统的建模分析,电工技术学报,2005,20(10):66~71
    [131]周雯琪,马皓,何湘宁,基于动态方程的电流源感应耦合电能传输电路的频率分析,中国电机工程学报,2008,28(3):119~124
    [132]徐哗,马皓,串联补偿电压型非接触电能传输变换器的研究,电力电子技术,2008,42(3):4~5
    [133]武瑛,新型无接触供电系统的研究:[博士学位论文],北京:中国科学院,2005
    [134]武瑛,严陆光,徐善纲,新型无接触电能传输系统的稳定性分析,中国电机工程学报,2004,24(5):63~66
    [135]韩腾,卓放,闫军凯等,非接触电能传输系统频率分叉现象,研究电工电能新技术,2005,24(2):44~47, 76
    [136]韩腾,卓放,闫军凯等,可分离变压器实现的非接触电能传输系统研究,电力电子技术,2004,38(5):28~29, 82
    [137]张凯,非接触供电技术及其水下应用研究:[硕士学位论文],长沙:国防科学技术大学,2008
    [138]毛赛君,非接触感应电能传输系统关键技术研究:[硕士学位论文],南京:南京航空航天大学,2006
    [139]张峰,王慧贞,姜田贵,电压型松耦合全桥谐振变换器原理分析与实现,电力电子技术,2007,41(4):28~30
    [140]姜田贵,张峰,王慧贞,松耦合感应电能传输系统中补偿网络的分析,电力电子技术,2007,41(8):42~44
    [141]黄学功,炮口感应装定引信技术及试验研究:[博士学位论文],南京:南京理工大学,2005
    [142]杨会军.多管火箭弹引信感应装定技术与飞行时间修正方法:[博士学位论文],南京:南京理工大学,2006
    [143]王怀斌,旋转超声磨削加工工艺及装置的研究:[硕士学位论文],天津:天津大学,2010
    [144]庞明鑫,非接触式超声电能传递装置的设计理论及实验研究:[硕士学位论文],山西太原:太原理工大学,2010
    [145]久保田治,由井隆行,古川英雄,超声波加工主轴装置,日本专利, 200680024192,2008
    [146]张占松,蔡宣三,开关电源的原理与应用,北京:电子工业出版社,1998
    [147]邱俊翔,非接触式感应馈电技术应用与镍镉电池充电之研究:[硕士学位论文],台湾:成功大学,2007
    [148] C.Sen. Wang, A.C. Grant, O.H. Stielau, Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems, IEEE Transactions on industrial electronics, 1999, 46(2): 271~278
    [149] V.I. Babitsky, A.N. Kalashnikov, F.V. Molodtsov, Autoresonant control of ultrasonically assisted cutting, Mechatronics, 2004, 14: 91~114
    [150] W.H. Zhu, M.B. Jun, Y. Altintas, A fast tool servo design for precision turning of shafts on conventional CNC lathes, International Journal of Machine Tools & Manufacture, 2001, 41: 953~965
    [151]梁志强,王西彬,吴勇波,垂直于工件平面的二维超声振动辅助磨削单晶硅表面形成机制的试验研究,机械工程学报,2010,46(19):171~176
    [152]章福学,现代压电学下册,北京:科学出版社,2002
    [153]林书玉,超声换能器的原理及设计,北京:科学出版社,2003
    [154]张云电,夹心式压电换能器及其应用,北京:科学出版社,2006
    [155]林仲茂,超声变幅杆的原理和设计,北京:科学出版社,1987
    [156]王爱玲,祝锡晶等,功率超声振动加工技术,北京:国防工业出版社,2006
    [157]陈桂生,超声换能器设计,北京:海洋出版社,1984
    [158]贺西平,高洁,超声变幅杆设计方法研究,声学技术,2006.
    [159] S.G. Amin, M.H.M. Ahmed, H.A. Youssef, Computer-aided design of acoustic horns for ultrasonic using finite-element analysis. Journal of Materials Processing Technology, 1995, 55: 254~260
    [160] Y.S. Wong, W.K.H. Seah at el., Approximation of exponential curves for CNC machining of toolholders used in ultrasonic machining, Journal of Materials Processing Technology, 1995, 48: 713~719
    [161]郑书友,旋转超声加工机床的研制及实验研究:[博士学位论文],厦门:华侨大学,2008
    [162] G. Byrne, D. Dornfeld, I. Inasaki et al., Tool Condition Monitoring (TCM)-The Status of Research and Industrial Application, Annals of the CIRP, 1995, 44(2): 541~567
    [163] T.I. El-Wardanya, D. Gao, M.A. Elbestawia, Tool condition monitoring in drilling using vibration signature analysis, International journal of Machine Tools and Manufacture, 1996, 36: 687~711
    [164] I. Inasaki, Application of acoustic emission sensor machining processes, Ultrasonics, 1998, 36: 273~281
    [165] Y.B. Guo, S.C. Ammula, Real-time acoustic emission monitoring for surface damage in hard machining, International Journal of Machine Tools and Manufacture, 2005, 45: 1622~1627
    [166] W.M. Zeng, Z.C. Li, Z.J. Pei et al., Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics, International Journal of Machine Tools and Manufacture, 2005, 45: 1468~1473
    [167] N. Ghosh, Y.B. Ravi, A. Patra et al., Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mechanical Systems and Signal Processing, 2007, 21: 466~479
    [168]黄贤武,郑筱霞,传感器原理与应用,成都:电子科技大学出版社,2004
    [169]屈维德,唐恒龄,机械振动手册,北京:机械工业出版社,2000
    [170]施克仁,无损检测新技术,北京:机械工业出版社,2007
    [171]杨明纬,声发射检测,北京:机械工业出版社,2005
    [172]袁振明,声发射检测,北京:国防工业出版社,1981
    [173]耿荣生,声发射喜好处理和分析技术,无损检测,2002,24(1):23~28
    [174] D. Donoho, I. Johstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 1994, 81(9): 425~455
    [175] Xiaoli Li, A brief review: Acoustic emission method for tool wear monitoring during turning, International journal of machine tool & manufacture, 2002, 42(2): 157~165
    [176] J.C. Mossing, T.A. Tuthill, Reduced interference distributions for the detection and classification of outside sound source acoustic emissions, IEEE International conference on acoustics, speech, and signal processing, Atlanta, GA, USA: IEEE, 1996. 2758~2761
    [177] M.R. Gorman, Plate wave acoustic emission, Journal of acoustic emission, 1991, 90(1): 358~364
    [178] M. Surgeon, M. Wevers, Modal analysis of acoustic emission signals from CFRP Laminates, NDT and E International, 1999, 32(6) :311~322
    [179]刘松平,Michael Gorman等,模态声发射检测技术,无损检测,2000,22(1):38~41
    [180] A. Terchi, Y.H. Au, Acoustic emission signal processing, Measurement and control, 2001, 4(8): 240~244
    [181] M. najar, Continuous wavelet transform analysis of acoustic emission signals, Proceedings of the international modal analysis conference-IMAC, 1999, 1(1): 99~102
    [182] E.P. Serrano, M.A. Fabio, Application of the wavelet transform to acoustic emission signals processing, IEEE transactions on signal processing, 1996, 44(5): 1270~1275
    [183] X. Li, J. Wu, Wavelet analysis of acoustic emission signals in boring, Journal of engineering manufacture, 2000, 214(5): 412~424
    [184] H. Zeng, Z.D. Zhou et al., Wavelet analysis of acoustic emission signals and quality control in laser welding, Journal of laser application, 2001, 13(4): 167~173
    [185] S.V. Kamarthi, R.T. Soundar et al., Wavelet representation of acoustic emission in turning process, Intelligent engineering systems through artificial neural networks, 1995, 5(11): 861~866
    [186]陈志奎,工程信号处理中的小波基和小波变换分析仪系统的研究:[博士学位论文],重庆:重庆大学,1998
    [187]胡昌华,张军波,夏军等,基于MATLAB的系统分析与设计,西安:西安电子科技大学出版社,1999
    [188]李世雄,刘家琦,小波变换和反演数学基础,北京:地震出版社,1994
    [189]陈逢时,子波变换理论及其在信号处理中的应用,北京:国防工业出版社,1998
    [190]崔锦泰,小波分析导论,西安:西安交通大学出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700