纳米复相陶瓷二维超声振动辅助磨削机理及其表面质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于目前工程应用对陶瓷材料的要求日益苛刻,单相材料越来越难以满足其使用要求,故而使纳米复相陶瓷成为陶瓷材料领域研究的一大热点。但由于其对表面微观缺陷敏感、生产效率低、加工成本高等特点限制了其在高新高端技术的广泛应用,为了推动纳米复相陶瓷材料的普及和应用,探索一种高质、高精、高效的纳米复相陶瓷加工方法是现代加工面临的一项急迫的任务。
     本文以纳米复相陶瓷增强增韧机理、超声振动理论、断裂力学、宏微观力学等为理论基础,分别从纳米氧化锆增韧氧化铝陶瓷(ZTA纳米复相陶瓷)在二维超声振动辅助磨削(简称二维磨削)条件下的表面创成机理、材料去除机理及其表面微观质量等方面展开研究,从微观角度系统地研究了二维超声振动激励对ZTA纳米复相陶瓷加工特性的影响规律,揭示ZTA纳米复相陶瓷在二维磨削中所表现出的高效精密加工特性,为纳米复相陶瓷的二维磨削高效精密加工新方法的推广奠定理论基础。主要研究内容如下:
     1、以ZTA纳米复相陶瓷为加工对象,提出一种单驱动二维超声振动辅助金刚石砂轮磨削技术,通过机械阻抗综合法研究该系统的组合共振问题,分析该系统对超声激励的动态响应情况,并通过试验获取了该系统的振动特性。基于超声振动理论,从运动学角度分析新型磨削系统在二维超声振动的激励下产生的工件质点及单颗磨粒运动轨迹特征,首次建立二维磨削单颗磨粒切削轨迹方程,定义了单颗磨粒与工件的螺旋式切削轨迹,给出了单颗磨粒切入切出工件的时间、超声在切削区内的振动次数,切削弧长及超声振动临界频率条件,发现了二维磨削具有一次切削多次光磨,磨削沟槽宽化及磨削表面未切除材料痕迹尺寸变小的特点,并最终确立了二维磨削表面创成机理。
     2、以压痕断裂力学、塑性加工理论为基础,建立了二维磨削单颗磨粒切削模型,给出单颗磨粒临界切削厚度,并对磨削过程脆塑性去除机理进行分析,基于二维超声振动条件下单颗磨粒临界切削厚度模型,给出二维磨削陶瓷脆塑转变临界条件,建立脆塑两种情况下高效材料去除率模型,并通过试验得知相同磨削参数下,二维磨削材料去除是普通磨削的2~3倍。
     3、基于冲击断裂力学,振动切削理论及普通磨削磨削力模型,建立二维超声振动辅助磨削过程中的磨削力数学模型,从磨削力特性对二维超声辅助磨削技术的加工特性进行解释,并通过试验分析了二维超声振动及磨削加工参数对磨削力及其力比的影响规律。
     4、通过二维磨削ZTA纳米复相陶瓷表面粗糙度单因素试验讨论不同加工参数及二维超声振动对表面粗糙度的影响规律。基于自适应模糊神经推理系统(ANFIS)构建了ZTA纳米复相陶瓷磨削表面粗糙度的预测模型,通过各加工参数间复杂的非线性问题的处理,获得近似实际加工结果的输出值,预测精度可达到81.25%。根据自适应模糊推理预测模型形成的模糊规则曲面得出四个输入项对ZTA纳米复相陶瓷磨削表面粗糙度的影响程度,由大到小依次是砂轮粒度,磨削方式(二维磨削或普通磨削)、磨削深度、轴向进给量、工作台速度。
     5、基于扫描电镜、透射电镜、X射线衍射、白光干涉仪等测试技术探索性地讨论ZTA纳米复相陶瓷二维磨削表面/亚表面损伤特征,研究ZTA纳米复相陶瓷二维磨削过程中应力诱发氧化锆马氏体相变程度,以及由此引起的磨削表面残余应力的变化规律,从微观角度研究超声激励下磨削表面微裂纹的成核、生长和扩展规律以及变质层的分布,指出与普通磨削相比,二维磨削利于ZTA陶瓷获取较好的表面微观特征。
     6、提出了在超声振动条件下ZTA纳米复相陶瓷断裂的模拟试验方法。基于该方法分析具有预制裂纹的ZTA纳米复相陶瓷材料在超声振动条件下裂纹扩展方式,确立其断裂判据,通过该断裂模拟试验得出:沿晶断裂是普通磨削主要的断裂模式,而穿晶断裂是二维磨削主要的断裂模式,进一步证明二维磨削具有较好的材料去除特性。
Currently single-phase ceramics does not meet the higher requirement of engineering application, so nanocomposite ceramics has attracted a lot of attention and has become one of the hot-points in the field of material research. On the other hand, it is hard to machine nanocomposite ceramics, especially surface microdefects of finished surface may lead to low reliability of ceramics parts, so its wide potential application brings great challenges to modern machining techniques. It is necessary to develop precise machining technology to raise working efficiency and improve surface quality.
     Based on the toughening and reinforcing mechanisms of ceramics, ultrasonic vibration theory, fracture mechanics and macro micro mechanics, it worked on surface formation mechanism, material removal mechanism and surface quality of nano zirconium toughening alumina ceramics (ZTA nanocomposite ceramics) under two-dimensional ultrasonic vibration assisted grinding (TDUVAG), and it analyzed how two-dimensional ultrasonic vibration has the effect on the processing characteristic of ZTA nanocomposite ceramics, which may reveal efficient precision finishing characteristic ZTA nanocomposite ceramics under TDUVAG and provide fundamental basis for the popularization of TDUVAG. The main research contents were listed as follow:
     1. New technique of two-dimensional ultrasonic assisted grinding (TDUVAG) for ZTA nanocomposite ceramics was put forward, the resonance vibration of the system was analyzed by the mechanical impedance theory, vibratory response of the system was deduced by elastic-plastic mechanics, and vibration characteristics of the system was measured by test. Based on ultrasonic vibration theory, microscopic cutting trace of abrasive particle under two dimensional ultrasonic vibrations were analyzed, and cutting trace formula of abrasive particle was built fistly, and the spiral cutting trace of single abrasice grain was defined, cutting time, ultrasonic vibration time, and cutting arc length of single abrasive grain in the cutting zone are deduced, and the critical frequency condition of ultrasonic vibration was given. Based on the series of research, surface formation mechanism of TDUVAG was established.
     2. Based on indentation fracture mechanics and plastic working theory, it worked on the removal mechanism of ZTA nanocomposite ceramics under TDUVAG,the critical cutting thickness of abrasive particle under TDUVAG was built, and the critical condition of brittle-ductile transition of ceramics under TDUVAG was given by plastic working theory, high efficient material removal rate model of ceramics under TDUVAG, and experiment results showed that the material removal rate under TDUAG is about twice as that under common grinding.
     3. Based on impulse theories and the grinding force model under common grinding, the mathematics grinding force model under TDUVAG was built, and the processing characteristic of TDUVAG was analyzed according to the characteristic of grinding force,and it analyzed how ultrasonic vibration and grinding parameters had affect grinding force and grinding force ratio by tests.
     4、How grinding parameters and ultrasonic vibration affect surface roughess Ra was analyzed by single-factor test of surface roughness Ra, experimental results showed that TDUVAG may obtain the less surface roughness Ra than common grinding. By means of adaptive-network-based fuzzy inference system, the prediction model of surface roughness of ZTA ceramics was built, and the model may obtain the higher precsion (81.25%) by dealing with nonlinear problem among grinding parameters, and fuzzy rule curved face formed by prediction model showed four input factors have different influence on surface roughness Ra, and they are abrasive grain size, grinding method (TDUVAG or common grinding), grinding depth, axial feed and speed of worktable from top to bottom.
     5、The surface/subsurface damages of ZTA ceramics under TDUVAG were observed by XRD、SEM、TEM and white light interferometer. The phase transformation, surface residual stress, microcrack and grinding badness layer in the grinding surface of ZTA nanocomposite ceramics under TDUVAG were analyzed by comparative trials,experimental results showed TDUVAG may form the higher compressive stree caused by martensitic transformation of zirconia grain, the microcracks in the grinding surface under TDUVAG differed from that under common grinding, and grinding badness layer of ZTA nanocomposite ceramics under TDUVAG is shallower than that under common grinding, as a result, TDUVAG may obain the better grinding surface integrity of ZTA ceramics.
     6、The fracture analog experiment was designed to study the fracture behaviour of ZTA ceramics under ultrasonic vibration. With the aid of the experiment, crack formation and its expand pattern of ZTA ceramics under ultrasonic vibration were analyzed, its fracture criterion was established and the experiment results showed that intercrystalline fracture is the main fracture pattern of ZTA ceramics under common grinding, and transcrystalline fracture is the main fracture pattern of ZTA ceramics under TDUVAG, and the finding add to evidence showing that TDUVAG has better material removal property.
引文
[1]张玉军,张伟儒等编.结构陶瓷材料及其应用.北京:化学工业出版社,2005:40-62
    [2]张玉龙,马建平主编.实用陶瓷材料手册.北京:化学工业出版社,2006:1-3
    [3]杜则裕等编著.工程材料简明手册.北京:电子工业出版社,1996,9:412-427
    [4]贾志新,艾冬梅等.工程陶瓷材料加工技术现状.机械工程材料,2000,24(1):2-5
    [5]杜建华,刘永红,李小朋等.工程陶瓷材料磨削加工技术.机械工程材料,2005,29(3):1-3
    [6] David J.Green著,龚江宏译.陶瓷材料力学性能导论.北京:清华大学出版社,2003.
    [7]苗赫濯,林旭平,齐龙浩.先进结构陶瓷材料研究进展.稀有金属材料与工程,2008,36(suppl.1):14-19
    [8]新原皓一.セヲシックス.Strength and toughness of brittle ceramic materials, 1990, 25(1):17-18
    [9]张凯锋,骆俊廷,陈国清,王国锋,纳米陶瓷超塑加工成形的研究进展,塑性工程学报,2003,10 (1):13
    [10]王峰,周立娟,杨庆伟.发展中的高技术陶瓷一纳米陶瓷.陶瓷研究,1998,13 ( 2): 8 -10
    [11]黄勇.先进结构陶瓷研究进展评述.硅酸盐通报,2005,23 (5) : 96.
    [12] Izaki.K, Hakkei.K. Ultrastructure Processing for Advanced Ceramics, New York. John Willey&Sons, 1988: 891-896
    [13]张希华,张建华等.氧化铝基陶瓷材料增韧研究现状及其发展方向[J].山东大学学报(工学版). 2004(5):14-17
    [14]王昕,孙康宁.纳米复合陶瓷材料的研究进展[J].复合材料学报. 1999, 16(1): 105-109
    [15]邓建国,刘东亮,陈建.纳米技术在陶瓷领域的应用及发展趋势.四川理工学院学报,2007,20(6):86-90
    [16]单妍,王听,尹衍升等. ZTA纳米复相陶瓷的研究.硅酸盐通报. 2002, 21(2): 43-46
    [17]李晓贺,丰平,纳米复相陶瓷处理的烧结技术,中国陶瓷,2007. 43 (7 ):43-46
    [18]陈国清. Al2O3—ZrO2纳米复相陶瓷制备与超塑性成形研究[博士论文].哈尔滨:哈尔滨工业大学. 2004
    [19]靳喜海,高濂.纳米复相陶瓷.化工进展,2003, 22 (6):553-558
    [20]邹东利、郭亚昆、路学成,纳米陶瓷及其纳米复相陶瓷的研究现状,陶瓷,2007.No.10
    [21]谭小平,梁叔全,李少强等.氧化锆-莫来石纳米复相陶瓷的制备.中南大学学报,2005,36(5):790-794
    [22]陈国清,王旭东,张凯锋. Al2O3—ZrO2纳米复相陶瓷的超塑性变形行为.稀有金属材料与工程,2005,34 (zl):295-297
    [23]田春艳,刘宁. Si3N4-TiC纳米复相陶瓷的组织与力学性能研究.矿冶工程,2007,27 (6):72-75
    [24]王宏志,高镰,郭景坤. SiC颗粒尺寸对A1203-SiC纳米复合陶瓷的影响.无机材料学报.1999:45-49
    [25] T.Rounxel, F. Wakai, K. Izaki. Tensile Ductility of Superplastic A1203-Y203-Si304/SiC Composites. J. Am. Ceram. Soc.1992, 75(9): 2363-2372
    [26]傅正义,李建保.先进陶瓷及无机非金属材料.北京:科学出版社,2007
    [27]尹衍升,陈守刚,李嘉.先进结构陶瓷及其复合材料.北京:化学工业出版社,2006
    [28]袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社,2000
    [29]于思远,林彬.工程陶瓷材料的加工技术及其应用.北京:机械工业出版社,2008:128-129
    [30]田欣利.工程陶瓷加工的理论与技术.北京:国防工业出版社,2006:120-130
    [31]于思远,林滨,林彬.国内外先进陶瓷材料加工技术的进展.金刚石与磨料磨具工程,2001, (4): 36-39
    [32] E.Verlemann, Technologies and Strategies for the Machining of Ceramic Conponents, Ceramic Monographs,No.1.8.3.1, Varley Schmid GmbH. 1993.
    [33]于爱兵.发动机部件用陶瓷材料加工技术.汽车技术, 1998, (5): 26-28
    [34]邓朝晖,张璧,孙宗禹等.陶瓷磨削材料去除机理的研究进展.中国机械工程, 2002,13(18): 1608-1611
    [35]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究[博士论文].长沙:湖南大学,2004
    [36]页:136
    [0]Z. J. Pei, P. M. Ferreira, M. Haselkorn, Plastic flow in rotary ultrasonic machining of ceramics, Journal of Materials Processing Technology, 1995, 48 (1-4): 771-777
    [37]邓朝晖,张璧,周志雄等.陶瓷磨削的表面/亚表面损伤.湖南大学学报. 2002,29(5):61-71
    [38] Hoyle, R. Developments in micro and nano engineering and manufacturing. Polymer Process Engineering Conference, 2007:50-56
    [39] Cao, G. , Namba, Y. Straightness error compensation for ultra-precision machining based on a straightness gauge. Key Engineering Materials, 2008, 381-382:105-108
    [40] Lee, E.S., Won, J.K., Chun, Y.J.et al. Ultra-precision lapping of machinable ceramic Si3N 4-BN by in-process electrolytic dressing. International Journal of Advanced Manufacturing Technology, 2007,31(11-12): 1101-1108
    [41] Ji, Renjie, Liu, Yonghong, Yu, Lili et al. Research on mechanism of ultra-precision electrical discharge and mechanical grinding for nonconductive engineering ceramics. Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems 2007, 2007, B:1445-1448
    [41] Shen, Jianyun, Lin, Weimin, Ohmori, Hitoshi et al. Surface behaviors of ELID ground engineering ceramics. Key Engineering Materials, 2007, 336-338 II:1469-1472
    [42] Wang, Cheng, Zeng, Xiaoyan. Study of laser carving three-dimensional structures on ceramics: Quality controlling and mechanisms. Optics and Laser Technology, 2007, 39(7): 1400-1405
    [43] Isoyama Hirofumi, et al. Ultrasonic grinding of fine ceramics for inductively coupled plasma atomic emission spectrometry using slurry nebulization technique[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(10): 1370-1374.
    [44] Takehara, T., Tatsumi, Y. Ichikawa. Summary of CGT302 Ceramic Gas Turbine Research and Development Program. Journal of Engineering for Gas Turbines and Power, 2002, 124(3):pp. 627-635
    [45]许琰,王贵成.工程陶瓷磨削加工的研究及其发展.工具技术, 2004, 38(9 ):53-55
    [46]谢桂芝,黄红武,黄含等.工程陶瓷材料高效深磨的试验研究.机械工程学报, 2007, 43 (1 ):176-184
    [47]范国良.神通广大的超声加工.知识就是力量. 2001, No. 09
    [48]李小朋,刘永红,纪仁杰等.绝缘工程陶瓷的特种加工技术.电加工与模具. 2006 No.05:6-9
    [49] Feng, Jiao, Bo, Zhao, Chuanshao, Liu et al. Material removal rate characteristics in ultrasonic aided lapping of engineering ceramics based on single-point scratch. Key Engineering Materials, 2008, 375-376: 63-267
    [50] Kumabe, J., Fuchizawa, K., Soutome, T.et al. Ultrasonic superposition vibration cutting of ceramics. Precision Engineering. 1989, 11(2): 71-77
    [51]隈部淳一郎著,韩一昆,薛万夫等译.精密加工振动切削(基础与应用).北京:机械工业出版社. 1985:21-24
    [52] Spur, G., Uhlmann, E., Holl, S.-E. Ultrasonic assisted grinding of ceramics. Industrial Ceramics, 2001, 21(3): 177-181
    [53] Okano, Keisaku, Tsutsumi, Chisato, Murata, Ryoji et al. Machining of ceramics (Part 3) - Machining characteristics of ceramics in ultrasonic core-drilling. Kikai Gijutsu Kenkyusho Shoho/Journal of Mechanical Engineering Laboratory. 1988, 42 ( 4):159-168
    [54] Ramulu, M. Ultrasonic machining effects on the surface finish and strength of silicon carbide ceramics. International Journal of Manufacturing Technology and Management, 2005, 7( 2-4):107-126
    [55] G. Ya, H. W. Qin, S. C. Yang, et al. Analysis of the rotary ultrasonic machining mechanism . Journal of Materials Processing Technology, 2002, 129(1-3): 182-185
    [56]刘晋春,赵家齐,赵万生主编.特种加工(第3版).北京:机械工业出版社出版, 2000,7
    [57] Garvie R C, Hannink A H, Pooscoe R T. Ceramic steel. Nature, 1975, 258: 703-704
    [58]王焕英,张萍,国占生等.纳米氧化锆复合陶瓷粉体的制备及应用研究进展.人工晶体学报. 2007, 36 (1) : 161-165
    [59]梁晓峰,杨世源,尹光福.氧化锆增韧氧化铝陶瓷复合粉体的研究进展.山东陶瓷. 2004,27(1) :13-15
    [60]尹衍升,张景德.氧化锆陶瓷及其复合材料.北京:化学工业出版社. 2001,(4) :31-35
    [61]娄本浊. Al_2O_3/TiO_2纳米复相陶瓷的增韧机理研究.陶瓷, 2008,(05):24-28
    [62] Zhao J ,Sterns L C ,Harmer M P. Mechanical behavior of alumina-silicon carbide nano composites. J Am Ceram Soc,1993,76(2):503-510
    [63]焦绥隆, Borsa C.E.氧化铝/碳化硅纳米复合材料的力学性能和增韧机理.材料导报,1996增刊:89-93
    [64]高家化,沈志坚,丁之上.陶瓷基纳米复合材料.复合材料学报,1994.11(1):1-7
    [65]王惠,刘含莲,黄传真等.纳米复合陶瓷刀具材料增韧补强机理的研究进展.工具技术, 2008, (04):3-7
    [66]熊昆,徐光亮,李冬梅. SiC复相陶瓷的强化增韧趋势.稀有金属, 2008, (01):
    [67]穆柏春等.陶瓷材料的强韧化.北京:冶金工业出版社, 2002
    [68]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望( I)—二组元陶瓷复合材料的研究与开发.硅酸盐通报, 1996(5) :43~48
    [69] Antonio H,DeAza, Jerome C. Slow crack-growth beheavior of zirconia-toughened alumina ceramics processed by different method. J Am Ceram Soc, 2003, 86(1): 115~120
    [70] John F, Joanna M. Modeling and fabrication of fine alumina-zirconia composites produced from nanocrystalline precursors. J Am Ceram Soc, 1998, 81(7): 1773~1780
    [71]闫联生,余惠琴,宋麦丽等.纳米陶瓷复合材料研究进展.宇航材料工艺,2003,33(1):6-9
    [72]于庆华,王介强,郑少华等. ZTA纳米复相陶瓷的研究进展.现代技术陶瓷,2004,(4):27-30
    [73] John F, Joanna M. Modeling and fabrication of fine alumina-zirconia composites produced from nanocrystalline precursors. J Am Ceram Soc, 1998, 81 (7):1773-1780
    [74]于庆华,王介强,郑少华等.液相沉淀法制备ZTA纳米复相陶瓷.复合材料学报. 2006,23(3):108-113
    [75]王晶,高宏,邱竹贤.氧化锆增韧的氧化铝纳米粉体制备及性能研究.有色金属(冶炼部分),2001,(5):38-42
    [76]余明清,范仕刚,张联盟. (Y, Ce)-ZrO2增韧92Al2O3陶瓷的研究.硅酸盐通报,2002,(4):31-35
    [77]王昕,于薛刚,单妍等.纳米ZrO2与微米Al2O3复合陶瓷的断裂模式.材料研究学报. 2007, 21(5): 482-486
    [78] Kaya, C., Butler, E.G. Zirconia-toughened alumina ceramics of helical spring shape with improved properties from extruded sol-derived pastes. Scripta materialia, 2003, 48(4):359-364
    [79]张大海,杨辉,魏文霖等.无机盐溶胶-凝胶法制备Al2O3/PSZ复合陶瓷及其力学性能研究.浙江大学学报. 1999, 33(6): 673-678
    [80] Jayaseelan, D, Gnanam, F.D., Nishikses, T et al. Effect of machining and post-sintering heat treatment of sol-gel-derived zirconia-toughened alumina on its mechanical properties. Journal of materials science letters. 1998, 17(17): 1475-1477
    [81]严泉才. ZTA陶瓷粉体的水热合成及其烧结特性.现代技术陶瓷,1994,(4):12-16
    [82]林洁,杨建,刘娇等.用包裹纳米复合粉体制备ZTA陶瓷.材料科学与工程学报. 2007,25(5):760-763
    [83]杨建,刘娇,丘泰等. ZrO2(3Y)包裹Al2O3纳米复合粉体的制备.化工学报. 2006,57(8):1997-2001
    [84]于庆华,王介强,郑少华,高新睿. ZTA纳米复相陶瓷的研究进展.现代技术陶瓷. 2004,4:27-31
    [85]夏傲.氧化锆增韧陶瓷材料的结构性能和应用.陶瓷科学与艺术. 2005, (3):4-8
    [86]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用.陶瓷学报. 2000,21(1)
    [87]张锐,高濂.微波烧结和无压烧结对Al2O3-ZrO2陶瓷磨损行为的影响.无机材料学报. 2002,17(3):621~624
    [88]范福康.特种陶瓷现状,展望与思考.江苏陶瓷. 2005,38(5):1-4
    [89]朱平,林忠钦,陈关龙等.几种生物陶瓷材料的裂纹扩展特性.材料研究学报. 2002, 16(5):479
    [90]李金涛.氧化锆增韧氧化铝陶瓷材料的研究进展.科教文汇(上旬刊) , 2008,(03):197
    [91]张光磊,邢朋飞,高辉.脆性陶瓷材料的增韧方法及其应用现状.材料开发与应用. 2008, 23(2):77-82
    [92] Prabhakar D, Z. J. Pei, and P. M. Ferreira. A Theoretical Model for Predicting Material Removal Rates in Rotary Ultrasonic Machining of Ceramics. Society of Manufacturing Engineers, Transactions of the North American Manufacturing Research Institution of SME.1993, XXI :167-172
    [93] H. Frei and G. Grathwohl. Microstructure and Strength of Advanced Ceramics After Machining. Ceramics International. 1993 19(2):93-104
    [94] Z. J. Pei, P. M. Ferreira, S. G. Kapoor and M. Haselkorn. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools & Manufacture. 1995, 35(7): 1033-1046
    [95] Z. J. Pei. Plastic flow in rotary ultrasonic machining of ceramics. Journal of Materials Processing Technology. 1995, 48 (1-4): 771- 777
    [96] Z. J. Pei. D. Prabhakar, et al. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J. Eng. Ind. (Trans. ASME). 1995, 117(2):142-151
    [97] Z. J. Pei, P. M. Ferreira. Modeling of ductile-mode material removal in rotary ultrasonic machining. International Journal of Machine Tools and Manufacture. 1998, 38 (10-11):1399-1418
    [98] G. Spur, S. -E. Holl. Ultrasonic assisted grinding of ceramics. Journal of Materials Processing Technology, 1996, 62(4): 287-293
    [99] T.C.Lee,C.W.Chan. Mechanism of the ultrasonic machining of ceramic composites. Journal of Materials Processing Technology. 1997,71: 195-201
    [100] E. Uhimann. Surface Formation in Feed Grinding of Advanced Ceramics with and Without Ultrasonic Assistance. Annals of the CIRP. 1998, 47(1) : 249-252
    [101] Qu, Weimin.The effects of high-frequency vibration on the grinding process(Ph.D.).Michigan Technological University, 1999
    [102] W. Qu, K. Wang, M.H. Miller, et al. Using vibration-assisted grinding to reduce subsurface damage. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24(4): 329–337
    [103] B.Ghahramani,Z.Y.Wang. Precision ultrasonic machining process: a case study of stress analysis of ceramics(Al2O3). International Journal of Machine Tool & Manufacture. 2001, 41:1189-1208
    [104] Qu W, Wang K, Miller M H, et al. Using vibration-assisted grinding to reduce subsurface damage. Journal of the international Societies for Precision Engineering and Nanotechnology. 2004, 24: 329-337.
    [105] P. Hu, J. M. Zhang, Z. J. Pei, et al. Modeling of material removal rate in rotary ultrasonic machining: designed experiments. Journal of Materials Processing Technology, 2002, 129(1-3): 339-344
    [106] L. Gaete-Garretón, Y. Vargas-Hernandez, A. Chamayou, et al. Development of an ultrasonic high-pressure roller press. Chemical Engineering Science, 2003, 58(19): 4317-4322
    [107] Y. Wu, Y. Fan, M. Kato, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique. Journal of Materials Processing Technology, 2004, 155-156: 1780-1787
    [108] Y. Wu, T. Kondo, M. Kato. A new centerless grinding technique using a surface grinder. Journal of Materials Processing Technology, 2005, 162-163: 709-717
    [109] Y. Ichida, R. Sato, Y. Morimoto. Material removal mechanisms in non-contact ultrasonic abrasivemachining. Wear, 2005, 258(1-4):107-114
    [110] Suzuki, Kiyoshi, Mishiro, Shoji, Shishido, Yoshiaki et al. A micro ultrasonic grinding device with very high frequency and its application, Key Engineering Materials, 2007, (329): 45-50
    [111]王先逵等.超声砂带精密磨削技术.电加工.1988, (4): 4-9
    [112]陈传梁.用加工中心机床(MC)对陶瓷材料进行超声复合磨削.电加工, 1992, (4): 31-34
    [113]左武炘,陈永洁.超声波复合振动加工机理及应用研究.华中理工大学学报. 1994, 7: 125-128.
    [114] [0]赵波.工程陶瓷内燃机缸套超声振动珩磨研究.金刚石与磨料磨具工程. 1997, 6:26-31
    [115]赵波等;工程陶瓷内燃机缸套超声振动珩磨研究,金刚石与磨料磨具工程,1997, (6):26-31,.
    [116]赵波、郑玉歌,内燃机缸套超声高效珩磨的数学模型研究,农业机械学报,1998, 29(3):133-18
    [117]赵波.硬脆材料超声珩磨系统及延性切削特征研究[D].上海:上海交通大学, 1999
    [118]赵波等.超声振动珩磨传声子系统的研究.机械科学与技术. 1998, 27(3):9-13
    [119]赵波等.超声振动珩磨的局部共振现象研究.机械工艺师. 1998: 4-6
    [120]曲云霞,关颉文.超声振动磨削对工件表面粗糙度的影响.河北工业大学学报, 1997, 26(3):99-104
    [121] [0]庞楠.新陶瓷材料的超声波磨削复合加工[博士学位论文].沈阳:东北大学机械系,1997
    [122]史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计.磨床与磨削, 1997, (1): 52-54
    [123]潘洪平,梁迎春,董申.陶瓷球的超声振动研磨.哈尔滨理工大学学报, 1999, 4(3): 29-33
    [124]潘洪平,梁迎春.陶瓷球超声振动研磨装置的研究.机械工程师, 1999, (5): 5-6
    [125]于思远,赵艳红,刘殿通.超声磨削加工工程陶瓷小孔的实验研究.电加工与磨具,2001.4:31-34
    [126]肖德贤,赵福令,冯冬菊等.旋转超声波加工中延性去除模式的实验研究.电加工与模具. 2004, (4): 27-30
    [127]周忆,梁德沛.超声研磨硬脆材料的去除模型研究.中国机械工程, 2005, 16(8): 664-666
    [128] Zhao, B., Zhang, X.H., Liu, C.S. et al. Study on ultrasonic vibration grinding character of nano ZrO2 ceramics, Key Engineering Materials. 2005, (291-292): p45-50
    [129] Zhao, B., Wu, Y., Liu, C.S.et al. The study on ductile removal mechanisms of ultrasonic vibration grinding nano-ZrO2 ceramics. Key Engineering Materials. 2006, (304-305): 171-175
    [130] Yan, Yan, Zhao, Bo, Wu, Yan et al. Study on material removal mechanism of fine-crystalline ZrO2 ceramics under two dimensional ultrasonic grinding. Materials Science Forum. 2006, (532-533): 532-535
    [131]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003
    [132] B. R. Lawn and M. V.Swain, Microfracture Beneath Point Indentations in Brittle Solids, J.Mater.Sci. 1975, 10:113-231,
    [133] W. Cheng, E. Ling and L.Finnie, Median Cracking of Brittle Solids Due to Scribing with sharp Indentors,J.Amer,Ceram.Soc. 1990, 73: 580-586,
    [134] D. B. Marshall, B. R. Lawn and A. G. Evans, Elastic/:lastic Indentation Damage in Ceramics:The Lateral Crack System. J.Amer.Ceram.Soc. 1982, 65:561 -566.
    [135] D. B. Marshall, Controlled Flaws in Ceramics: A comparison of Knoop and Vickers Indentation, J.Amer.Ceram.Soc. 1983, 66:127-131
    [136] D. B. Marshall, Effectsin Elastic/Plastic Indentation. J.Amer. Ceram.Soc. 1984, 67: 57-60
    [137] T G Bifano,T A Dow,R O Scattergood.Ductile-regime grinding:a new technology for machining brittle materials.Trans.of the ASME,J.of Eng.for Ind.1991,113∶184~189
    [138] J. C. Cinway and H. P. Kirchner, The Mechamics of Crack Initiation and Propagation Beneath a Moving Sharp Indentor, J.Mater.Sci. 1980, 15: 2879-2883
    [139] H.Kawamura, Study of Grinding Process and Strength for Ceramic Hear Insulated Engine, Superabrasives 91,SME, 1991:91-97
    [140] Y. Matsuo, T. Ogasawara and S. Kimura, Statistical Analysis of the Effect of Surface Grinding on the Strength on Alumna using Weibull’s Mukti-Modal Function, J Mater,Sci. 1987, 22:1482-1488,.
    [141] M. W. Hawman, P. H. Cohen, J. C. Conway and R. N. Paangborn, The Effect of Grinding on the Flexural Strength of a Sialon Ceramic,J.Mater,Sci. 1985, 20: 482-490
    [142] B. Zhang and T. D. Howes. Material Removal Mechanisms in Grinding Ceramics. Annals of the CIRP. 1994, 43(1):305-308
    [143] Xu. Hockin H.K, S. Jahanmir and Y. Wang. Effect of Grain Size on Scratch I teractions and Material removal in Alumina. J.Amer.Ceram.Soc. 1995, 78: 881-891
    [144] R. Rentsh and I. Inasaki. Molecular Dynamics Simulation for Abrasive Process. Proceeding of the 1st International Euspen conference.Bremen. 1999 : 250-253.
    [145]林滨.工程陶瓷超精密磨削机理与实验研究[博士论文].天津:天津大学. 1999
    [146] K. Subramanian,S. Ramanath and Y. O. Matsuda. Precision Production grinding of Fine ceramics. Industrial Diamond Review. 1990,50(540): 254-262
    [147] D. W. Richerson. Modern Ceramics Engineering,Properties,Processing and Use in Design,Ed,Marced Dekker,Ine. Newrork,EUA,1992
    [148] H. H. K Xu,S. Iahanmir and L. k. Ives. Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride,J .Mater. Res. 1996,11: 1717-1724
    [149] H. H. K. Xu and S. Jahamir. Microstructure and Material Removal in Scratching of Alumina.Mater. Sci.. 1995,30:2235-2247
    [150] T G Bifano,T A Dow,R O Scattergood.Ductile-regime grinding:a new technology for machining brittle materials.Trans.of the ASME,J.of Eng.for Ind.,1991,113∶184-189
    [151]邓朝晖,张壁,孙宗禹,周志雄.陶瓷磨削的材料去除机理.金刚石与磨料磨具工程. 2002,2(128):47-51
    [152] B.R, Lawn, A.G.Evans. A model for crack initiation in elastic/plastic:indentation fields. J. Mater. Sci. 1977, 12:2195-2199
    [153]郑建新,徐家文,吕正兵.陶瓷材料延性域磨削机理.硅酸盐学报. 2006,34(1):102-106
    [154]纳米尔,林滨,关强等.几种工程陶瓷的延性域磨削.天津大学学报. 1999,32(4):486-491
    [155] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials. Journal of Engineering for Industry, Transactions of the ASME, 1991, 113(5):184-189
    [156] J. M. Boettger, M. K. Ker, P. Shore and D. J. Stephenson, Influence of Ductile Mode Grinding on the Strength of Silicon Based Ceramics, NIST SP 847, 1993: 353-358
    [157] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials. Journal of Engineering for industry, Transactions of ASME. 1991, (113) :184-189
    [158]林滨,林彬,于思远.陶瓷材料延性域去除临界条件新研究.金刚石与磨料磨具工程. 2002, (127):44-45
    [159] Zhao B,Yan YY et al. Study on motion model of abrasive particle and surface formation mechanics under two dimensional ultrasonic grinding,Key Engineering Materials. 2006, 315-316: 314-318
    [160]赵淳生.超声电机技术与应用.北京:科学出版社,2007
    [161]吴雁.微-纳米复合陶瓷二维超声振动磨削脆-塑转变机理及其表面微观特性研究[博士学位论文].上海:上海交通大学. 2007
    [162]周竹发,王淑梅,吴铭敏.陶瓷现代成型技术的研究进展.中国陶瓷. 2007,43(12):3-8
    [163]黄勇,张立明,汪长安等.先进结构陶瓷研究进展评述.硅酸盐通报. 2005,(5):91-101
    [164]崔仲鸣,王彦林,杜磊.陶瓷零件精密成形磨削新工艺研究.金刚石与磨料磨具工程. 2007,(4):49-54
    [165]白雪清,于爱兵,贾大为等.可加工陶瓷材料机械加工技术的研究进展.硅酸盐通报. 2006,25(4):130-136
    [166] Garvie R C, Hannink A H, Pooscoe R T. Ceramic steel [J]. Nature, 1975, 258:703-704.
    [167] Vasylkiv O , Sakka Y. Low-temperature processing and mechanical of zirconia andzirconia-alumina nanoceramics [J ] . J A m Ceram S oc , 2003 , 86 (2) : 299 - 304.
    [168] Huang X W, Wang S W, Huang X X. Microstr ucture and properties of ZTA fabricated by liquid phase sintering [ J ] . Ceram I nt , 2003 , 29 (7) : 765 - 769.
    [169] Niiharak. New design concept of structure ceramic-ceramic namocomposites. J Ceram Soc Jpn, 1991, 99(10):974-982
    [170]刘含莲,黄传真,王随莲等.纳米复相陶瓷力学性能的研究进展.机械工程材料,2004,28(2):38-40
    [171]张锐,高濂.微波烧结和无压烧结对Al2O3-ZrO2陶瓷磨损行为的影响.无机材料学报,2002,17(3):621-624
    [172]柴枫,徐凌,廖运茂等.不同氧化锆含量对氧化锆增韧的纳米复合陶瓷(Al2O3-nZrO2)基体性能影响的研究.口腔医学研究,2002,18(3):158-161
    [173]许琰,王贵成工程陶瓷磨削加工的研究及其发展,工具技术, 2004,
    [174]郭春丽.陶瓷零件的加工方法.陶瓷. 2006, (3): 21-24
    [175]潘立.陶瓷磨削技术的研究进展.浙江工业大学学报. 2003, (6): 641-645
    [176] David J.Green著,龚江宏译,陶瓷材料理论学性能导论,清华大学出版社,2003
    [177] Claussen, Nils, Janssen, Rolf, Holz, Dietmar. Reaction bonding of aluminum oxide (RBAO)-science and technology. Nippon seramikkusu kyokai gakujutsu ronbunshi/Journal of the ceramic society of Japan. 1995, 103(1200): 749-758
    [178] Lawn, Brian, Wilshaw, Rodney. Review indentation fracture: principles and applications. Journal of materials science. 1975, 10(6): 1049-1081
    [179]李伯民,赵波.现代磨削技术.北京:机械工业出版社. 2003: 400-403
    [180]于爱兵、徐燕申、林彬.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报,2002,21(1):58-61
    [181] Marshall D B, Lawn B R, Evans A G. Elastic/plastic indentation damage in ceramics: the lateral crack system. J. Am. Ceram.Soc. 1982, 65: 561-566
    [182] Clifton, R.J., Espinosa, H.D.. Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Materials Division, Advances in Failure Mechanisms in Brittle Materials. 1996, (75):187
    [183]樱井良文等.黄忠良译.新陶瓷超精密工学.武汉出版社,1983:
    [184] Shaw M. C. Ultrasonic grinding. Micro technology. 1956(10): 257.
    [185]陈明君,张飞虎,董申等,光学玻璃塑性模式超精密磨削加工的研究,中国机械工程,2001,12(4):460~462
    [186]王军,庞楠.工程陶瓷超声波磨削加工技术.金刚石与磨料磨具工程,2000,(3):32-34
    [187] Z. J. Pei. Plastic flow in rotary ultrasonic machining of ceramics. Journal of Materials Processing Technology. 1995, 48(1-4):771-777
    [188] Zhao Bo, Liu Chuanshao, Gao Guofu. Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits. Journal of Material Processing Technology. 2002, 123(1):54-60
    [189] Lawn B R, Marshall D B, Evans A G. Elastic/plastic indentation damage in ceramics: the median/radial crack system. J. Am. Ceram.Soc. 1980, 63:574-581
    [190]贺永,董海,马勇等.工程陶瓷磨削力的研究现状与进展.金刚石与磨料磨具工程. 2002, 127(1):40-44
    [191] G.Werner. Influence of work material on grinding forces. Annals of the CIRP. 1978, 27(1) Kun Li, T.Warren Liao. Modeling of ceramic grinding processes-PartⅠ: number of cutting points and grinding forces per grit. Journal of Materials Processing Technology, 1997, (65):1-10
    [192]李力钧,付杰才.磨削力的数学模型的研究.机械工程学报. 1981, 17(4):31-41
    [193]吴博达,常颖,杨志刚等.超声振动减摩性能的实验研究及理论分析.中国机械工程. 2003,15(9):813-815
    [194] Adachi K, Kato K, Sasatani Y. The Micro-mechanism of friction drive with ultrasonic wave. Wear, 1996,194:137-142
    [195]黄明军,周铁英,巫庆华.超声振动对摩擦力的影响.声学学报. 2000, 25(6): 497-502
    [196]马尔金著,蔡光起,巩亚东,宋贵亮译.磨削技术理论与应用.沈阳:东北大学出版社,2002
    [197]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社. 1992
    [198]张勤俭.工程陶瓷加工效果预测及其表面改性和强化的研究[博士论文].济南:山东大学. 2007:24-35
    [199]陈继光. MATLAB与自适应神经网络模糊推理系统.济南:山东省地图出版社. 2002: 161-169
    [200]朱洪涛,林滨,吴辉等.陶瓷磨削机理及其对表面/亚表面损伤的影响.精密制造与自动化. 2004, (2): 15-18
    [201] Li K, Liav T W. Surface/subsurface damage and the fracture strength of ground cerarnics Mater Proe Technol, 1996, 57: 207- 220.
    [202] Zhang, Bi, Zheng, X.L., Tokura, H., et al. Grinding induced damage in ceramics. Journal of Materials Processing Technology. 2003, 132 (1-3):353-364
    [203]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨.纳米技术与精密工程.2003, (1):48-56
    [204] Conway J C, Kirchner H P. The mechanics of crack initiation and propagation beneath a moving indentor. Journel of material science. 1980, 15:2879-2883
    [205]于爱兵,田欣利,韩建华等.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报.2002,(1):58-61
    [206] Lawn, Brian, Wilshaw, Rodney. Review indentation fracture: principles and applications. Journal of Materials Science, 1975, 10(6):1049-1081
    [207] H. Wu, S.G. Roberts, B. Derby. Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics. Acta mater., 2001,(49): 507- 517
    [208]田欣利,于爱兵,林彬.陶瓷磨削残余应力对表面性能的影响.机械科学与技术. 2002(7):615~616
    [209]祝昌军,高玲,氮化硅陶瓷磨削表面残余应力的测试与计算,中国有色金属学报,2002(5):41~42
    [210]王宏智,高濂,郭景坤. Al2O3- SiC纳米复合陶瓷中的残余应力分析.中国科学,1999,(29):200- 205
    [211]范天佑.断裂力学基础.江苏科学技术出版社出版. 1978
    [212]田欣利,徐燕申.陶瓷磨削表面变质层的产生机理.机械工程学报,2000(11),30-32
    [213]田欣利.陶瓷磨削表面完整性的理论与试验研究[博士论文].天津:天津大学, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700