柱状超声波电机的设计理论及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柱状超声波电机是近二十年来发展起来的一种新原理电机,较其他类型的超声波电机更具有力矩体积比高和可控性好的特点,在光学器械、医疗设备和航空航天等领域已经取得了应用。近年来柱状超声波电机的研究一直围绕着大力矩、高精度、高稳定性等方向发展,因而需要全面深入研究此类电机的力传递模型、结构设计与优化、材料与制作工艺、驱动与控制等层面蕴含的科学和技术问题,针对这若干问题,所作的研究工作和取得的研究成果主要有:
     首先在阐述超声波电机发展历史的基础上,重点是结合柱状超声波电机的研究进展和应用现状,论述了此类电机亟需解决的科学和技术问题。
     建立了柱状弯曲型超声波电机的力接触与传递的数学模型。结合柱状弯曲型超声波电机的结构和工作原理,理论和实验研究了定、转子的接触方式,指出了存在单点和双点两种接触方式。并给出了定转子间的力接触传递模型及其电机效率计算式。分析了电机性能与预紧力的关系,给出了临界预紧力概念。利用理论模型对电机样机参数进行优化,研制的φ14mm样机的空载转速为300r/min,堵转转矩为0.11N·m,且电机性能稳定,运行可靠。
     提出了一种新型的中空短柱状的复合型超声波电机,利用其由径向振动衍生的纵向振动和扭转振动的复合,是一种变型的纵扭复合型超声波电机。针对此类圆柱壳结构,利用弹性力学理论建立该圆柱壳的解析模型,并求解了径向和扭转振动频率方程,理论表明此类电机能完全调谐,形成了此类电机的调谐理论基础。
     形成了中空短柱状的径向-扭转复合型超声波电机的设计理论和制造工艺技术。首先给出了中空短柱的夹心式定子结构,围绕径振和扭振频率的调谐,分析了电机结构参数对一阶径振和扭振谐振频率的影响,并通过有限元分析和样机实验证实此结构能完全调谐。在此基础上,从定子、转子、压电陶瓷和摩擦材料四个方面入手,对电机结构和材料进行了优化设计。研究并形成了复合型超声波电机制作的工艺流程和工艺要求,重点阐述生产过程中的技术要点。通过对样机的机械特性测试,确定了电机最佳的工作参数和性能参数。制作了性能良好的φ60mm样机,空载转速为25r/min,堵转力矩为5N·m。研究表明,这类电机具有结构简单、短柱(定子长径比为0.68)、制造容易和力矩/体积比高等特点,另外,此类电机的转速较行波型电机更低,且在低速区运行稳定,更适合一些要求低速场合的直接驱动控制用。
     分析了径向-扭转复合型超声波电机的驱动特点,利用硬件与软件相结合的方法设计了驱动电源,将数字键盘输入和LCD显示一并纳入考虑,使超声波电机的频率、相位差和幅值都可以实时调节和直观显示,同时进行了开关功率电路和匹配电路设计。
     建立了基于DSP的超声波电机测控系统,对电机的瞬态和稳态性能进行了测试,用于分析驱动频率、电压幅值和相位差等参数对电机输出的影响。在速度控制中,利用模糊比例控制调节驱动频率的方法,实现了电机在低速下的稳定运行。在位置控制中,利用转速控制的研究结果,设计了位置/速度双闭环控制器,实现了电机高精度的位置控制。
     本文为两类柱状超声波电机的优化设计,性能提升和研究成果应用提供了理论和实验基础。
The cylindrical ultrasonic motor is a new type motor that has been developed in recent twenty years. It has the higher torque per volume and the better controllability compared with other kinds of ultrasonic motors. It has been adapted to optical, medical especially the aeronautics and astronautics fields. The researches of cylindrical ultrasonic motor are focused on the developments of the high torque, high precision and quality stability in recent years. So several technical matters such as the force transferring model, the design and optimization of the structure, the drive and control of the motor, and the manufacture technology should be studied deeply and roundly. The research work and method of this thesis are as follows:
     Based on the representation of the history of ultrasonic motor and combined with the research progress and the application of the cylindrical ultrasonic motor at home and abroad, the problems that have to be solved in this research are discussed.
     The single-point and the double-point contact modes are discovered and the force transferring model was put forward, on the foundation of the structure and working principle of the cylindrical ultrasonic motor with bending vibration mode. The performance of this motor is analyzed around a critical point of the pre-pressure. AΦ14mm prototype was fabricated. Its maximum torque is 0.11N·m, the no-load speed is about 300r/min.
     The analytical model of a cylindrical shell is established and solved. The radial and torsional vibrations of this shell are analyzed accurately. It's the basic research to the new type motor.
     A new radial-torsional vibration hybrid type ultrasonic motor (abbr. RTUSM) is put forward, which utilizes longitudinal vibration derived from radial vibration by Poisson effect. The hollow and short cylindrical structure is easy to make resonant frequencies of first-order radial and torsional vibrations into degeneracy. The FEM method is used to optimize the motor geometry from the stator, rotor, PZT ceramics and friction material. The process flow and requirements are generalize to guide the fabrication of this motor. AΦ60mm prototype is fabricated, and the mechanical characteristics is tested in order to determine the best work and performance parameters. The no-load speed and maximum torque of the motor are 25r/min and 5N·m, respectively.
     The driving system of the RTUSM is designed, according to its requirements, which considers the key input and LCD display. The driver can adjust the frequency, voltage and phase difference in real time.
     A high-performance test control system of RTUSM is developed,which is based on the DSP. Through the test of steady-state and transient-state characteristics of the motor, its output performance can be studied in the condition of different driving frequency, voltage and phase difference. In the speed control, the fuzzy proportion control can be selected to adjust the driver frequency to realize the steady rotation in low speed. In the position control, the position/speed dual closed loop control system is studied and designed.
引文
1.陈永校,郭吉丰.超声波电动机.杭州:浙江大学出版社,1994.
    2.胡敏强,金龙,顾菊平.超声波电机原理与设计.北京:科学出版社,2005.
    3.赵淳生.超声电机技术与应用.北京:科学出版社,2007.
    4. Y. Tomikawa, T. Takano, C. Kusakabe, et al. Development of ultrasonic motors.9th Smart Actuator Symposium at CAT the Pennsylvania State University, April,1994:1-11.
    5. V. Snitka, V. Mizariene, D. Zukauskas. The status of ultrasonic motors in the former Soviet Union. Ultrsonics,1996,34(2-5):247-250.
    6. T. Sashida, T. Kenjo. An introduction of ultrasonic motors. Oxford:Clarendon Press, 1993.
    7.指田年生.振动片型和表面波型超声波电机.压电与声光,1985,7(1):73-78.
    8.赵淳生.超声马达的发展与应用.测控技术,1996,15(1):8-10.
    9.褚祥诚,陈维山,陈在礼.超声波马达在美国的发展.压电与声光,1999,21(1):37-40.
    10.赵淳生.21世纪超声电机技术展望.振动、测试与诊断,2000,20(1):1-12.
    11. J. Satonobu, N. Torii, K. Nakamura and S. Ueha. Construction of megatorquee hybric transducer type ultrasonic motor. Jpn. J. Appl. Phys.,1994,(35):5038-5041.
    12. M. Fleischer, D. Stein, and H. Meixner. New Type of Piezoeletric Ultrasonic Motor. IEEE Transactions on UFFC,1989,36(6):614-619.
    13. M. Fleischer, D. Stein and H. Meixner. Novel Ultrasonic Motors with Mono and Bimodal Drives. Sensor and Actuator,1990(A21-A23):357-361.
    14. M. Aoyagi, Y. Tomikawa and T. Takano. Ultrasonic Motors Using Longitudinal and Bending Multimode Vibrators with Mode Coupling by Externally Additional Asymmetry or Internal Nonlinearity. Jpn. J. Appl. Phys,1992,31(9B):3077-3080.
    15. J. P. Schmidt, P. Hagedorn, and M. Bingqi. A Note on the Contact Problem in an Ultrasonic Traveling Wave Motor. International Journal of Non-Linear Mechanics,1996,31(6): 915-924.
    16. P. Le Moal, P. Minotti. A 2-D Analytical Approach of the Stator-Rotor Contact Problem Including Rotor Bending Effects for High Torque Piezomotor Design. European Journal of Mechanics,1997,16(6):1067-1103.
    17. T. Kamano, T. Suzuki, and T. Kuzuhara. Adaptive Feed forward Control for Positioning System with Progressive Wave Type Ultrasonic Motor. Electric Machines and Power System,1995,23:583-595.
    18. T. Ishii, S. Ueha, K. Nakamura, et al. Wear Properties and Life Prediction of Frictional Materials for Ultrasonic Motors. Jpn. J. Appl. Phys,1995,34(5B):2765-2770.
    19. N. W. Hagood, A J. McFarland. Modeling of a Piezoelectric Rotary Ultrasonic Motor. IEEE Transactrions on UFFC,1995,42(2):210-231.
    20.王大春.压电陶瓷电机.压电与声光,1989,11(4):53-60.
    21.徐志科.行波型超声波电机的模型仿真与试验研究[博士学位论文].南京:东南大学,2005.
    22.张凯,周铁英.三种弯曲旋转超声电机的原理及研究.压电与声光,2002,24(3):191-195.
    23.朱华,赵淳生.微型旋转超声电机的发展与和现状.压电与声光,2005,27(6):627-630.
    24. Shuxing Dong, Shuxin Wang, et al. A Miniature Piezoelectric Ultrasonic Motor Based on Circular Bending Vibration Mode[J]. IEEE/ASME Transactions on Mechatronics,2000, 5(4):325-330.
    25.李志荣,赵淳生,黄卫清.圆柱形三自由度超声电机定子的结构动力学优化设计.振动工程学报,2005,18(4):471-474.
    26.金龙,胡敏强,顾菊平等.一种球转子三自由度超声波电动机的设计.东南大学学报(自然科学版),2004,25(5):152-155.
    27.曲建俊,张国际,宋宝玉.国内外弯曲旋转微超声马达研究新进展.微电机,2005,38(4):72-75.
    28. M.Kurosawa, K. Nakamura, T. Okamoto, et al. An ultrasonic motor using bending vibrations of a short cylinder. IEEE Transactions on UFFC,1989,36(5):517-521.
    29.周铁英,陈宇,鹿存跃等.超声电机在透镜调焦中的研发、应用和展望.第十一届中国小电机技术研讨会论文集,上海,Nov.15,2006.
    30.董蜀湘,王淑昕,沈文江等.弯曲振动模式压电超声微马达研究.声学学报,1999,24(2):120-126.
    31.周铁英,陈宇,鹿存跃等.螺母型超声电机驱动的集成透镜调焦系统.第十三届中国小电机技术研讨会论文集,上海,Nov.13,2008.
    32.周铁英,张筠,陈宇等.螺母型超声电机及其在透镜调焦中的应用.科学通报,2008,53(11):1251-1256.
    33.莫岳平,胡敏强,金龙等.双转子柱体超声波电机运行机理与实验研究.中国电机工程学报,2003,23(1):100-104.
    34.金龙,张焱,徐志科等.短柱型超声波电动机的优化设计.微特电机,2004,6:8-10.
    35.莫岳平,金龙,胡敏强等.短柱型超声波电机两相振动频率的简并.中国电机工程学报,2004,24(8):115-118.
    36. M. Kurosawa, T. Morita, T. Higuchi. A cylindrical ultrasonic micromotor based on PZT thin film. IEEE Ultrasonic Symposium,1994:549-552.
    37. T. Morita, M.Kurosawa, T. Higuchi. An ultrasonic micromotor using a bending cylindrical transducer based on PZT thin film. Sensors and Actuators,1995, A50:75-80.
    38. T. Morita, M.Kurosawa, T. Higuchi. Design of cylindrical ultrasonic micromotor to obtain mechanical output. Jpn. J. Appl. Phys,1996,35(5B):3251-3254.
    39. T. Morita, M.Kurosawa, T. Higuchi. A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (φp2.4 mm, L=10 mm stator transducer). IEEE Transactions, Ferroelectrucs, and Frequency Control,1998,45(5): 1178-1187.
    40. T. Morita, M.Kurosawa, T. Higuchi. A cylindrical micro-ultrasonic motor. Ultrasonic, 2000,38:33-36.
    41. T. Morita, M.Kurosawa, T. Higuchi. A cylindrical shaped micro ultrasonic motor utilizing PZT thin film. Sensors and Actuators,2000,83:225-230.
    42. T. Morita, M. Kurosawa, T. Higuchi. Cylindrical Micro Ultrasonic Motor Utilizing Bulk Lead Zirconate Titanate (PZT). Jpn. J. Appl. Phys,1999,38(5B):3347-3350.
    43. Burhanettin Koc, Serra Cagatay, Kenji Uchino. A piezoelectric motor using two orthogonal bending modes of a hollow cylinder. IEEE Transactions on UFFC,2002,49(4):495-500.
    44. Serra Cagatay, Burhanettin Koc, Kenji Uchino. A 1.6mm, metal tube ultrasonic motor. IEEE Transactions on UFFC,2003,50(7):782-786.
    45. T. Kanda, A. Makino, K. Suzumori, et al. A cylindrical micro ultrasonic motor using a micro-machined bulk piezoelectric transducer. IEEE Ultrasonic Symposium,2004: 1298-1301.
    46. T. Kanda, Akira Makino, Yoshitaka Oomorl, et al. A cylindrical micro ultrasonic motor using micro-machined piezoelectric vibrator. The 13th International Conference on Solid-Statr Sensors, Actuator and Microsystems,2005:721-724.
    47. T. Kanda, A. Makino, T. Ono, et al. A micro ultrasonic motor using a micro-machined. Sensors and Actuators,2006,127:131-138.
    48.楮祥诚,阎立,董蜀湘等.φ1.8mm棒状压电陶瓷微马达的研究.压电与声光,2001,23(2):103-105.
    49.张凯,周铁英,王欢等.1mm压电柱式超声微电机的研制.声学学报,2004,29(3):258-261.
    50.朱华,陈超,赵淳生.一种微型柱体超声电机的研究.中国电机工程学报,2006,26(12):128-133.
    51.曲建俊,张国际.实心金属柱状弯曲旋转微超声波马达及其运动机理.微电机,2006,39(3):28-31.
    52. K. Takemura, T. Maeno. Design and control of an ultrasonic motor capable of generating multi-DOF motion. IEEE/ASME Transactions on mechatronics,2001,6(4):499-506.
    53.金龙,顾菊平,胡敏强等.圆柱定子3自由度超声波电动机驱动控制技术的研究.中国电机工程学报,2004,35(8):163-167.
    54.顾菊平,金龙,胡敏强等.圆柱定子三自由度球转子超声波电机的轨迹运动方程.中国电机工程学报,2005,25(10):154-158.
    55.展风江,李志荣,黄卫清等.单定子三自由度超声电机运动轨迹控制的研究.振动、测试与诊断,2002,22(4):265-269.
    56.赵向东,刘长青,赵淳生.圆柱体弯曲行波压电超声电机运动机理的研究.应用力学学报,2000,17(3):120-123.
    57.羊全钢,张凯,周铁英等.弯曲旋转超声电机接触界面锥形角的分析与实验.声学学报,2002,27(5):413-419.
    58. Pin Lu, Kwok Hong Lee, Siak Piang Lim, et al. A kinematic analysis of cylindrical ultrasonic micromotors. Sensors and Actuators,2001, A87:194-197.
    59. Xiaopeng Wang, Chong Jin Ong, Chee Leong Teo, et al. Dynamic analysis of cylindrical ultrasonic motor under external excitation. Sensors and Actuators,2003,105:247-254.
    60.郭吉丰,龚书娟,刘晓等.纵扭复合型超声波电机的特性研究.声学学报,2004,29(4):
    334-340.
    61.龚书娟.纵扭复合型超声波电机的若干问题研究[博士学位论文].杭州:浙江大学,2008.
    62.张旭,陈宇,鹿存跃,周铁英.纵扭复合型驻波超声波电动机的回顾与展望.微特电机,2006,9:32-36.
    63. K. Nakamura, M. Kurosawa, S. Ueha. Characteristics of a Hybrid Transducer Type Ultrasonics Motor. IEEE Transactions on UFFC,1991,38(3):188-193.
    64. M. Kurosawa, S. Ueha. Hybrid Transducer Type Ultrasonic Motor. IEEE Transactions On UFFC,1991,38(2):89-92.
    65. J. Satonobu, DongKyung Lee, K. Nakamura, S. Ueha. Improvement of the Longitadinal Vibration System for the Hybrid Transducer Ultrasonic Motor. IEEE Transactions on UFFC, 2000,47(1):216-221.
    66. J. Satonobu, James R. Friend, K. Nakamura, et al. Numerical Analysis of the Symmetric Hybrid Transducer Ultrasonic Motor. IEEE Transactions on UFFC,2001,48(6):1625-1631.
    67. Y. Tomikawa, K. Adachi, M. Aoyagi, et al. Some Constructions and Characteristics of Rod-Type Piezoelectric Ultrasonic Motors Using Longitudinal and Torsional Vibrations. IEEE Transactions on UFFC,1992,39(5):600-608.
    68. Osamu Ohnishi, Osamu myohga, Tadao Uchikawa, et al. Piezoelectric Ultrasonic Motor Using Longitudinal-Torsional Composite Resonance Vibration. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control,1993,40(6):687-693.
    69. J. Tsujino, T. Ueoka. Vibration Characteristics of One-Dimensional Longitudinal-Torsional Converter with Multiple Slitted Parts. IEEE Ultrasonics Symposium,1998:723-728.
    70. J. Tsujino, T. Ueoka, K. Otada, et al. One-Dimensional Longitudinal-Torsional Vibration Converter with Multiple Diagonally Slitted Parts. Ultrasonics,2000,38:72-76.
    71. J. Tsujino, T. Ueoka, T. Sano, et al. Ultrasonic Complex Vibration Welding System Using 100 kHz One-Dimensional Longitudinal-Torsional Vibration Converter. IEEE Ultrasonics Symposium,2000:695-698.
    72. J. Tsujino, A. Suzuki. Load Characteristics of Ultrasonics Motor with a Longitudinal-Torsional Converter and Various Nonlinear Springs for Inducing Static Pressure. IEEE Ultrasonics Symposium,2001:545-550.
    73.周铁英,张立群,薛毅等.扭纵超声马达振动系统共振频率简并的研究.压电与声光,1999,21(2):150-153.
    74.万平英,黄明军,周铁英.扭纵复合驻波超声马达驱动相位的实验研究.压电与声光,1999,21(1):72-76.
    75.张旭,陈字,周铁英.扭、纵超声电机定子的设计研究.微电机,2006,39(1):45-47.
    76.孙合明,赵淳生.纵扭复合型超声波电动机的设计及有限元分析.微电机,2002,35(4):7-10.
    77.孙合明,魏守水,赵淳生.纵扭复合型压电超声电机的研究.南京航空航天大学学报,2000,32(5):604-608.
    78.孙合明,张龙,赵淳生.纵-扭复合型压电超声电机的优化设计.振动、测试与诊断,2000,20(3):166-170.
    79.孙合明,郭辉.纵扭复合型超声电机预压力和输出扭矩的关系.摩擦学学报,2001,21(1):51-54.
    80.孙合明,赵淳生,朱晓东等.纵扭复合型超声波电机的实验研究.微特电机,2002,30(4):3-5.
    81.郭吉丰,伍建国.航天用大力矩高精度超声波电机研究.宇航学报2004,25(1):70-76.
    82.冯威,邬锡忠,魏燕定等.纵扭复合型超声波电机原理及模态简并研究.微电机,2001,34(6):7-10.
    83. Lin Shuyu. Sandwiched Piezoelectric Ultrasonic Transducers of Longitudinal-Torsional Compound Vibrational Modes. IEEE Transactions on UFFC,1997,44(6):1189-1197.
    84.曹辉,林书玉.纵扭复合型超声马达谐振频率的理论研究.西北大学学报,2006,36(5):629-633.
    85.曹辉,林书玉,郭建中.预压力对纵扭复合压电超声马达共振频率影响的研究.陕西师范大学学报(自然科学版),2006,34(1):36-38.
    86.易幼平,钟掘.复合型超声马达纵-扭振动固有频率简并研究.振动工程学报,2005,18(2):194-199.
    87.易幼平,钟掘.复合型超声马达纵向振动建模.中南大学学报(自然科学版),2005,36(3):452-457.
    88.易幼平,钟掘.纵-扭复合型超声马达共振频率调谐.中南大学学报(自然科学版),2005,36(4):626-630.
    89.刘锦波.行波型超声波电机定子振动模型及其驱动设计.机械工程学报,2004,40(10):129-133.
    90.顾菊平,胡敏强,石斌等.超声波电机谐振升压式驱动技术研究.中国电机工程学报2002,22(8):49-52.
    91.金龙,楮国伟,王心坚等.基于DSP的超声波电机控制系统.电工技术学报,2004,19(8):93-98.
    92.金龙,楮国伟,胡敏强等.超声波电机速度与定位控制系统.中国电机工程学报,2005,25(1):130-136.
    93. T. Senjyu, H. Miyazato, K. Uezato. Performance comparison of PI and adaptive controller for adjustable speed drives of ultrasonic motors. Industrial Technology. Proceedings of the IEEE International Conference,1994:519-523.
    94. T. Senjyu, S. Yokada, H. Miyazato, K. Uezato. Speed control of ultrasonic motors by adaptive control with a simplified mathematical model. Electric Power Applications, IEE Proceedings,1998,145(3):180-184.
    95. T. Senjyu, K. Uezato, H. Miyazato. Adjustable speed control of ultrasonic motors by adaptive control. IEEE Transactions on Power Electronics,1995,10(5):532-538
    96. T. Senjyu, T. Kashiwagi, K.Uezato. Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference. Power Electronics Specialists Conference, 2001,4:2031-2036.
    97. T. Senjyu, H. Miyazato, S. Yokoda, K.Uezato. Position control of ultrasonic motors using neural network. Industrial Electronics:ISIE1996, Proceedings of the IEEE International Symposium,17-20 June 1996, vol 1:368-373.
    98. T. Senjyu, S. Yokoda, K. Uezato. Position control of ultrasonic motors using sliding mode control with multiple control inputs. Applied Power Electronics Conference and Exposition, 1998, Vol 2:597-602.
    99. T. Senjyu, S. Yokoda, Y.Gushiken, K.Uezato. Position control of ultrasonic motors using variable structure type adaptive control. Power Electronics Specialists Conference,1998, Vol 2:1860-1866.
    100. T. Senjyu, S. Yokoda, Y. Gushiken, K. Uezato. Position control of ultrasonic motors with adaptive dead-zone compensation. Industry Applications Conference,1998. Vol 1:506-512.
    101. T. Senjyu, H. Miyazato, K. Uezato. Precise speed control of ultrasonic motors with repetitive control. Industrial Automation and Control:Emerging Technologies,1995, International IEEE/IAS Conference:165-169.
    102. T. Senjyu, H. Miyazato, K. Uezato. Quick and precise position control of ultrasonic motors with dual mode control. Power Electronics and Drive Systems, Proceedings of 1995 International Conference:605-609.
    103. S. Furuya, T. Maruhashi, M. Nakaoka. A compact ultrasonic motor-actuated software system implementation using fuzzy reasoning-based controller. Electrical Machines and Drives, 1991, Fifth International Conference on:232-236.
    104. Y. Izuno, T. Izumi, M.Nakaoka. Ultrasonic motor-actuated valve direct driving and positioning motion control system using improved fuzzy reasoning controller. Industry Applications Society Annual Meeting,1994, Conference Record of the 1994 IEEE:368-375.
    105. Faa-Jeng Lin, L.C.Kuo. Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control. Electric Power Applications, IEE Proceedings, 144(3):199-206.
    106. Faa-Jeng Lin, Rong-Jong Wai, Hsin-Hai Lin. An adaptive fuzzy-neural-network controller for ultrasonic motor drive using the LLCC resonant technique. IEEE Transactions on UFFC, 46(3):715-727.
    107. Faa-Jeng Lin. Fuzzy adaptive model-following position control for ultrasonic motor. IEEE Transactions on power electronics,12(2):261-268.
    108. Faa-Jeng Lin, Rong-Jong.Wai, C.C.Lee. Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter. Control Theory and Applications, IEE Proceedings,146(1):99-107.
    109. Faa-Jeng Lin, Rong-Jong Wai, Rou-Yong Duan. Fuzzy neural networks for identification and control of ultrasonic motor drive with LLCC resonant technique., IEEE Transaction on Industrial Electronics,46(5):999-1011.
    110. J. Maas, T. Schulte, H. Grotstollen. Optimized drive control for inverter-fed ultrasonic motors. Industry Applications Conference, IEEE, Vol 1:690-698.
    111. J. Maas, T. Schulte, N. Frohleke. Model-based control for ultrasonic motors. IEEE/ASME Transactions on Mechatronics,5(2):165-180.
    112. K. Takemura, T. Maeno. Method for controlling multi-dof ultrasonic motor using neural network. Jounral of robotics and mechtronics,2003,15(2):534-540.
    113. K. Takemura, T. Maeno. Control of multi-dof ultrasonic motor using neural network based inversed model. Proceedings of the 2002 IEEE/RSJ intl conference on intelligent robots and systems EPFL:2187-2192.
    114.纪科辉,郭吉丰,刘晓.超声波电机的步进特性和步进定位控制.中国电机工程学报,2004,24(1):71-75.
    115.林书玉.弯曲振动压电陶瓷换能器.压电与声光,1994,16(5):27-30.
    116.王光庆.行波型超声波电机的若干关键问题研究[博士学位论文].杭州:浙江大学,2006.
    117.曲建俊,姜开利,袁世明等.纵扭复合型超声电动机的时域驱动模型[J].机械工程学报,2002,38(2):11-15.
    118.祝磊,马赢.ANSYS7.0入门与提高.北京:清华大学出版社,2004.
    119.朱华,陈超,赵淳生.行波型杆式超声电机的动力学分析与性能仿真.振动与冲击,2008,27(6):103-109.
    120.董迎辉,黄康,赵淳生.杆状弯曲行波型超声电机运动机理研究.应用力学学报,2005,22(2):271-275.
    121.董迎辉,李志荣,赵淳生.杆状弯曲行波超声电机定子和转子的优化设计.振动、测试与诊断,2002,22(3):175-178.
    122.程耀东.机械振动学.杭州:浙江大学出版社,1990.
    123.丁浩江.横观各向同性弹性力学.杭州:浙江大学出版社,1997.
    124.刘颖.圆柱函数.北京:国防工业出版社,1983.
    ,125.赵衡兵.纵扭复合型超声波电机的基础研究[博士学位论文].杭州:浙江大学,1999.
    126.魏燕定,董春兵,郭吉丰.复合型USM压电扭振子设计及其特性分析.浙江大学学报(工学版),2004,38(2):226-230.
    127.曲建俊,齐毓霖,张志谦等.超声马达转子摩擦材料厚度对驱动性能的影响研究.摩擦学学报,2002,22(2):134-137.
    128.曲建俊.超声马达摩擦材料研究进展.第三届全国超声波电机研讨会,2005,杭州.
    129.李宝库.超声波电机摩擦材料纳米改性的技术关键.第三届全国超声波电机研讨会,2005,杭州.
    130.荣德新.纵向压电换能器的预应力控制.应用声学,1982,2(1):28-30.
    131.郭海训,郭吉丰,魏燕定,等.大力矩纵扭复合型超声波电机的理论及实验研究.电工技术学报,2002,17(2):7-12.
    132.刘和平,王维俊,江渝等.TMS320LF240xDSP C语言开发应用.北京:北京航空航天大学出版社2003.
    133. N. E. Ghouti. Hybrid modeling of a traveling wave piezoelectric motor [Doctoral thesis]. Demark:Aalborg University,2000.
    134.谷海涛等.正交解码电路和捕获单元在转角和转速测量中的应用.2005,24(1):112-115.
    135.丁敬..超声波电机瞬态特性测试和理论研究[硕士学位论文].杭州:浙江大学,2006.
    136.王敏才.基于DSP的超声波电机转速控制研究[硕士学位论文].南京,东南大学,2006.
    137.顾菊平,秦申蓓等.超声波电机测试技术的研究.电工技术学报,2003,18(1):12-16.
    138.刘晓,郭吉丰,魏燕定.纵扭复合型超声波电机的瞬态特性研究.压电与声光,2003,25(4):291-294.
    139.胡敏强,王心坚,金龙等.行波超声波电机瞬态特性的测试与分析.中国电机工程学报,2008,28(18):83-89.
    140.陶永华.新型PID控制及其应用.北京:机械工业出版社,2002.
    141.张志勇.精通MATLAB 6.5版.北京:航空航天大学出版社,2004.
    142.刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    143.傅平,郭吉丰,丁敬.基于神经元自适应PID的超声波电机速度位置控制.电工技术学报,2008,22(2):28-34.
    144.夏长亮等.基于RBF神经网络的超声波电机参数辩识与模型参考自适应控制.中国电机工程学报,2004,24(7):117-121.
    145.王心坚等.行波超声波电机非参数辨识模型.中国电机工程学报,2008,28(18):83-89.
    146.夏长亮等.基于遗传算法的超声波电机模糊自适应速度控制.中国电机工程学报,2003,23(3):99-103.
    147.何红林,朱华,赵淳生.超声电机基于模糊-PI技术的位置控制.机械科学与技术2003,25(2):149-151.
    148.李华峰.使用模糊控制的超声波电机精密位置控制.华中科技大学学报,2004,32(5):22-24.
    149.刘曙光,魏俊民,竺志超.模糊控制技术.北京:中国纺织出版社,2002.
    150.方康玲,王新民,刘彦春.过程控制系统.武汉:武汉理工大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700