压电管式复合驱动器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电复合材料是上世纪七十年代发展起来的一种新型材料,它不仅具有压电陶瓷的响应速度快、可控精度高、低能耗、无电磁干扰等优点,同时具有良好的柔韧性和机械加工性能,克服了压电陶瓷易碎和难以加工成复杂形状的缺点,易于与水及生物组织实现声阻抗匹配,已广泛应用于水声换能器和医疗超声成像等领域。其中1-3型压电复合材料具有优良的特性,且易于制备,是复合材料中研究和应用最为广泛的一种。
     传统的1-3型压电复合材料使用方形或者圆柱形立柱与基体材料复合,本文使用压电陶瓷管与基质复合,制成压电管式复合驱动器以适应于多种场合的应用。除了具有传统压电复合物的优点之外,压电管式复合物所需的极化和驱动电压低,能够与导体基质复合,每个压电陶瓷管可以独立控制,电场利用率高,易于完成多模式驱动。基于短管的片状复合物可以应用在超声波和高频振动抑制方面。基于长管的片状或者块状复合物可以用在所需位移较大的场合,例如形状控制,中低频的振动和噪声控制,变形镜和压电马达等。
     本文以压电管式复合驱动器为研究对象,首先利用经典理论和有限元法系统的研究了压电管式复合物的静、动态特性,其次分析了四管单元复合物在特定驱动模式下的静态和谐振特性,最后列举了压电管式复合驱动器在弯曲摇头式压电马达以及新型压电离心泵中的应用实例。主要工作及结论包括:
     结合电场分布模型,分析了压电单管的静、动态特性。将压电应变类比于热应变,用rule of the mixture models和concentric cylinder models进行压电管式复合物的宏观等效性能参数计算公式的推导。研究了电场的非均匀性对其压电系数产生的影响,给出了密度、介电常数、压电常数以及弹性模量的计算公式,讨论了不同压电陶瓷管体积分数、厚径比、分布密度以及基体材料对复合物压电特性产生的影响。借助有限元软件对复合物单元的压电系数和杨氏模量矩阵进行推导,研究了陶瓷材料的体积分数对其产生的影响,并与理论结果对比。仿真了复合物单元在不同载荷下容易引发材料破坏的应力分布情况。分析了复合物的振动模态及其共振频率随结构尺寸参数的变化趋势。
     对各管独立驱动的四管复合驱动器进行了研究。理论分析了其静态与动态特性,给出了弯曲挠度、力矩及其共振模态参数的计算公式。与传统薄壁理论进行对比,证实了分析的合理性。制作了四管复合驱动器样机并进行性能测试,结合有限元分析验证了理论推导的正确性。并将四管复合驱动器和传统的单管四分电极驱动器在各项性能参数上做了详细的对比,证实当四管复合驱动器和单管四分电极驱动器拥有相同尺寸,在相同电场强度驱动下,四管复合驱动器的整体性能通常优于单管四分电极驱动器。此外,四管复合驱动器具有可扩展性强,电磁辐射小和驱动电压低等优点,并且可以避免传统单管四分电极驱动器制造中非对称的缺陷,提高驱动精度。它可以代替传统的单管四分电极驱动器,在扫描探针显微镜、压电马达和压电陀螺等领域有着广泛的应用价值。
     使用压电八管复合驱动器研制了弯曲摇头式压电马达,理论分析了八管复合驱动器的静态和动态特性。设计制作了马达样机。样机测试结果与理论值基本吻合。马达转速与驱动电压幅值呈良好的线性关系。静态时,马达定子的端部轨迹并非理想的圆,主要由压电迟滞造成。马达工作在共振频率附近,当驱动电压幅值为200V_(p-p),频率为5.0kHz时,该马达的最大空载转速和堵转力矩分别为319rpm和1.6mNm。当驱动电压幅值为160V_(p-p),频率为5.0kHz,预压力为0.3N时,马达的最大效率为12%,最大输出功率为7mW。
     设计了基于压电四管复合驱动器的新型离心式压电陶瓷泵。该泵无机械部件所以具有较高的效率;无精密阀门或者细微管道所以对液体纯净度要求不高;可扩展性强,由于压电管式复合物单个压电元件的控制独立性,可以采用不同的驱动方式衍生出多种结构。对离心泵的静、动态特性进行了理论分析。研究了静态端部弯曲挠度、输出力矩、共振模态以及液体流速对共振频率的影响。制作了原理样机并进行性能测试,实验证明该压电泵可在驱动电压幅值为120V_(p-p),谐振频率232Hz时,2.0kPa的负压下以7.7ml/min的速度抽出蒸馏水。在驱动信号幅值为120V_(p-p),频率为233.2Hz时,流速最大值为8.6ml/min,泵所能承受的背压最大值为5.4kPa。
     基于以上研究,本论文在以下方面具有创新之处:(1)对压电管式复合物的压电系数和杨氏模量矩阵进行了系统的分析,并讨论了其在不同载荷下的应力和电势分布情况。(2)利用压电四管复合物制作的驱动器的特性优于传统的单管四分电极驱动器,可以代替其在扫描隧道显微镜中发挥重要作用。(3)研制了基于压电八管复合驱动器的弯曲摇头式压电马达,其输出力矩性能优于基于单管的压电马达。(4)设计了基于压电四管复合驱动器的新型离心式压电陶瓷泵,它具有结构简单,控制方便,输出稳定和高频运作等特点。
     研究所取得的成果对压电管式复合物的优化设计、驱动器性能的系统分析及压电驱动技术的应用探索等方面具有一定的理论价值和实用意义。
Piezoelectric composites are new type of transducer components developed in1970, which not only have the merits of piezoelectric ceramics, such as fast response,high precision, low power consumption, no electromagnetic interference, etc, but alsohavemeritsofhighflexibilityandgoodmechanicalprocessingproperties. Itovercomestheshortcomingsofpiezoelectricceramicsforbeingfragileandbeingdifficulttobefab-ricated into complex shapes. It is also easy to achieve impedance matching between thepiezoelectric composites and water or biological tissues. Piezoelectric composites havebeen widely used in acoustic transducers and medical ultrasonic imaging area. Amongthem, 1-3piezoelectriccompositesareextensivelyresearchedbecauseoftheirexcellentultrasonic character and easy fabrication process.
     The traditional 1-3 piezoelectric composites usually mix piezoelectric square orcylindrical columns with matrix. This paper uses piezoelectric tubes as the piezoelec-tric components to adapt to various applications. In addition to owning the merits oftraditional piezoelectric composites, the piezoelectric tubular composites require lowpoling and driving voltages and can be mixed with conductive matrix. Each piezoelec-tric tube can be controlled independently so it is easy for them to complete multi-modemotion. It utilizes electric field more efficiently than composites with interdigitatedelectrodes. Sheet shaped composites with short tubes can be applied to ultrasound andhigh-frequency vibration suppression. Sheet or block shaped composites based on longtubes can be used in occasions that require large displacement, such as shape control,medium and low frequency vibration and noise control, deformable mirrors and piezo-electric motors.
     Piezoelectric tubular composite actuators are studied in this paper. Firstly, the-oretical and FEM analysis on static and dynamic character of the composite actuatorare conducted in detail, followed by static and dynamic analysis on the four tubularcomposites in a particular driving mode. And a two phase traveling wave motor and apiezoelectric centrifugal pump are presented to illustrate the application of the piezo-electric tubular composite actuators. The main work and conclusions are as following:
     By use of electric field distribution model, the static and dynamic properties ofa single tube piezoelectric actuator were studied. By taking the piezoelectric strainas the thermal strain, the formulas of property parameters of the piezoelectric tubularcomposite were deduced with the rule of mixture models and the concentric cylinder models. The influence of non-uniform electric field on the piezoelectric coefficientswere studied. The formulas of density, dielectric constant, piezoelectric constants andYoung’s modulus were given. The piezoelectric constants as functions of volumes frac-tion, aspect ratio, distribution density of the piezoelectric tubes and matrix materialswere discovered. By means of finite element software, piezoelectric coefficients andYoung’s modulus matrix of the composite unit were derived and their change with thevolume fraction of ceramic materials were studied. Their values were compared withthe theoretical results. The stress, which is apt to cause damage to the composite, wassimulated under different loads. The vibration modes of the composite and the changeof its resonant frequencies with size parameters were analyzed.
     Under the condition that each piezoelectric tube is driven independently, a fourtubular composite actuator was invstigated. Theoretical analysis on its static and dy-namic character were conducted and formulas of bending deflection, output torque, andresonance frequencies were given. Compared with the traditional thin-wall theory, theanalysis in the paper is confirmed more reasonable. A prototype was fabricated andtested. By use of finite element analysis with ANSYS, theoretical analysis results wereverified. The character of the four tubular composite actuator was compared with theconventional single-tube actuator with quartered electrodes. It is confirmed that whenthetwokindsofactuatorsareinthesamesizeanddrivenbythesameelectricfieldinten-sity, four tubular composites actuator usually has better performance. In addition, fourtubular composites actuator have the advantages of large scalability, small electromag-netic radiation and low driving voltage. It is possible for tubular composite actuator tohandle with the defects of asymmetric structure of the piezoelectric tube in fabrication,which is an unconquerable problem in single-tube actuator, thus improving the drivingaccuracy. The tubular composite actuator can replace the conventional single-tube ac-tuator with quartered electrodes and work in scanning probe microscopes, piezoelectricmotors, piezoelectric gyroscopes, and even more extensive applications.
     A two phase traveling wave piezoelectric motor based on eight tubular compositeactuatorwasinvestigated. Theoreticalanalysisonthestaticanddynamiccharacteristicsof the eight tubular composite actuator was presented. A prototype motor was designedand fabricated. The test results of the motor character were in accordance with thetheoretical analysis well. The angular speed of the rotor possesses a good linearity withthe driving voltage amplitude. At static, the moving trace of the stator tip is not an idealcircle, which is caused by piezoelectric hysteresis. Motor can work in the vicinity ofthe resonant frequency. With a driving voltage of 200V_(p-p) at 5.0kHz, the motor can rotateatthehighestangularspeedof319rpmwithnoloadandproduceamaximumstalltorqueof1.6mNm, respectively. Whenthedrivingvoltageis160V_(p-p) withafrequencyof5.0kHz andpre-pressureof0.3N,themotor’smaximumefficiencyreaches12%,andthe maximum output power is 7mW.
     A novel centrifugal piezoelectric pump using piezoelectric tubular composite ac-tuator is introduced. It has no sliding parts and so is supposed to have higher efficiency.it is not sensitive to the quality of the pumping liquid as neither precision valve nor mi-cro channel is needed. Due to the independent control of each single piezoelectric tube,a variety of piezoelectric pumps may be derived from this structure. Its static and dy-namic characteristics were analyzed in theory. The static deflection, the output torque,resonant modes and the influence of liquid flow rate on the resonant frequency werestudied. A prototype was produced and performance testing was conducted. The ex-perimentsresultsshowthatwhenthedrivingvoltageis120V_(p-p) atfrequencyof232Hz,the pump can pump stilled water at a flow rate up to 7.7ml/min under a backpressureof 2.0kPa. With a driving voltage of 120V_(p-p) at 233.2Hz, the pump can pump stilledwater at a maximum flow rate of 8.6ml/min and sustain a maximum backpressure of5.4kPa, respectively.
     Based on the above researches, the following points are pioneering work of thisdissertation: (1)ThepiezoelectriccoefficientsandYoung’smodulusmatrixofthetubu-lar composites were discussed in detail, together with the stress and electric potentialdistribution under different loads. (2) Actuator made from four tubular composites issuperior to the traditional single-tube actuator with quartered electrodes, which can bereplaced in scanning tunneling microscope. (3) A two phase traveling wave piezoelec-tric motor was developed using eight tubular composite actuator. It usually outputslarger torque than the piezoelectric motors based on single tube actuator. (4) A nov-el centrifugal piezoelectric pump using piezoelectric tubular composite actuator is de-signed and it has advantages of simple structure, convenient control, stable output andhigh frequency operation.
     The results in this paper have both theoretical and practical value for optimized de-signofpiezoelectrictubularcompositeactuators, thepropertiesanalysisoftheactuatorsand exploration of applications of piezoelectric actuating technology.
引文
[1] D. P. Skinner, R. E. Newnham, and L. E. Cross. Flexible composite transducers. Materials Research Bulletin,13:599–607, 1978.
    [2] R. E. Newnham, D. P. Skinner, and L. E. Cross. Connectivity and piezoelectric-pyroelectric composites.Materials Research Bulletin, 13:525–536, 1978.
    [3] Q.M.Zhang, J.Chen, H.Wang, J.Zhao, L.E.Cross, andM.C.Trottier. Newtransversepiezoelectricmode2-2 piezocomposite for underwater transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 42:774–781, 1995.
    [4] Thomas R. Howarth and Robert Y. Ting. Electroacoustic evaluations of 1-3 piezocomposite sonopaneltmmaterials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47:886–894, 2000.
    [5] M. M. Maior, I. P. Prits, and Yu M. Vysochanskii. Piezoelectric composite with high hydrostatic piezoelectricsensitivity. Ferroelectrics, 266:247–257, 2002.
    [6] R. Ramesh, H. Kara, and C. R. Bowen. Characteristics of piezoceramic and 3-3 piezocomposite hydrophonesevaluated by finite element modelling. In Theory, Modeling and Simulation of Materials for Advanced, De-cember 7, 2003 - December 12, 2003, volume 30 of Computational Materials Science, pages 397–403. Else-vier.
    [7] B. Su, T. W. Button, A. Schneider, L. Singleton, and P. Prewett. Embossing of 3d ceramic microstructures.volume 8 of Microsystem Technologies, pages 359–362. Springer Verlag.
    [8] CA) Ayter Sevig (Cupertino CA) Mohr III John P. (Los Altos Hills CA) Sliwa Jr., John W. (Palo Alto. Methodfor making piezoelectric composites. United States Patent 5239736, 1993.
    [9] LeslieJ.BowenandKennethW.French. Fabricationofpiezoelectricceramic/polymercompositesbyinjectionmolding. Technical report, 1993.
    [10] Yong-Qiu Zhuang, Yuan-Guang He, and Qi-Chang Xu. Sandwich pzt/polymer composite transducer. Ferro-electrics, 49:241–249, 1983.
    [11]耿学仓,李明轩.检测超声换能器用1-3型压电pzt/环氧复合材料及换能器的研究.应用声学, 10(5):10–14, 1991.
    [12]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵. 2004.
    [13]朱嘉林,王丽坤,张福学. 0-3型压电复合材料的硬球无规堆积模型.压电与声光, 22(4), 2000.
    [14]王光灿,王丽坤,李光,栾桂冬张福学. Cymbal换能器结构参数与机电性能的研究.压电与声光, 27(3), 2005.
    [15]杜善义,王彪.复合材料细观力学. 1998.
    [16]郭栋.用凝胶注模成型制备压电陶瓷体及其电学性能研究.无机材料学报, 18(5), 2003.
    [17] C. Dias, D. K. Das-Gupta, Yolanda Hinton, and R. J. Shuford. Polymer/ceramic composites for piezoelectricsensors. Sensors and Actuators, A: Physical, 37-38:343–347, 1993.
    [18]陈洁,严继康,张建成.串联2-2复合材料的介电性和压电性.压电与声光, 6, 1998.
    [19] E. Koray Akdogan, Mehdi Allahverdi, and Ahmad Safari. Piezoelectric composites for sensor and actuatorapplications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52:746–775, 2005.
    [20] Q.M.Zhang, J.Chen, H.Wang, J.Zhao, L.E.Cross, andM.C.Trottier. Newtransversepiezoelectricmode2-2 piezocomposite for underwater transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 42:774–781, 1995.
    [21] http://www.smart-material.com.
    [22] N. W. Hagood and A. A. Bent. Development of piezoelectric fiber composites for structural actuation. In 34thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 19, 1993 -April 22, 1993, Collection of Technical Papers - AIAA/ASME Structures, Structural Dynamics and MaterialsConference, pages 3625–3638. Publ by AIAA.
    [23] Aaron A. Bent and Nesbitt W. Hagood. Improved performance in piezoelectric fiber composites using inter-digitated electrodes. In Smart Structures and Materials 1995: Smart Materials, Febrary 27, 1995 - Febrary28, 1995, volume 2441 of Proceedings of SPIE - The International Society for Optical Engineering, pages196–212. Society of Photo-Optical Instrumentation Engineers.
    [24] Bent. Active fiber composites for structure actuation. Doctor of Philosohy Thesis,MIT, 1997.
    [25] Andreas J. Schonecker, Thomas Daue, Bent Bruckner, Christian Freytag, Ludwig Hahne, and Thomas Rodig.Overview on macro fiber composite applications. In Smart Structures and Materials 2006 - Active Materials:Behavior and Mechanics, Febrary 27, 2006 - March 2, 2006, volume 6170 of Proceedings of SPIE - TheInternational Society for Optical Engineering, page SPIE; ASME. SPIE.
    [26]周静,徐玲芳,陈文. 1-3型压电复合材料研究现状与展望.陶瓷学报, 27(1), 2006.
    [27] BIGGERS J. V. KLICKER, K. A. and R. E. NEWNHAM. Composites of pzt and epoxy for hydrostatictransducer applications. Journal of the American Ceramic Society, 64(1):5–9, 1981.
    [28] B.A.Auld, H.A.Kunkel, Y.A.Shui, andY.Wang. Dynamicbehaviorofperiodicpiezoelectriccomposites. In1983UltrasonicsSymposiumProceedings.,volume1ofUltrasonicsSymposiumProceedings,pages554–558.IEEE.
    [29] Wallace Arden Smith and Bertram A. Auld. Modeling 1-3 composite piezoelectrics: Thickness-mode oscil-lations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 38:40–47, 1991.
    [30] R. Gentilman, D. Fiore, W. Serwatka, H. Pham, B. Pazol, C. Near, and L. Bowen. Sonopanel 1-3 piezocom-posite hydrophone-actuator panels. In Proceedings of the 1995 MTS/IEEE Oceans Conference. Part 1 (of3), October 9, 1995 - October 12, 1995, volume 3 of Oceans Conference Record (IEEE), pages 2032–2037.IEEE.
    [31] Jr Richard J. Meyer, Shoko Yoshikawa, and Thomas R. Shrout. Processing and properties of 15-70 mhz 1-3pzt fiber/polymer composites. Materials Research Innovations, 3:324–331, 2000.
    [32] T. Hauke, R. Steinhausen, W. Seifert, H. Beige, and M. Kamlah. Modeling of poling behavior of ferroelectric1-3 composites. Journal of Applied Physics, 89:5040–5040, 2001.
    [33] Jeremy Bennett and Gordon Hayward. Design of 1-3 piezocomposite hydrophones using finite element anal-ysis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44:565–574, 1997.
    [34] R.HamiltonandG.Hayward. Themodellinganddesignofcontrollablecompositetransducers. InProceedingsof the IEEE 1990 Ultrasonics Symposium, December 4, 1990 - December 7, 1990, volume 1 of UltrasonicsSymposium Proceedings, pages 393–396. Publ by IEEE.
    [35] V. F. Janas, S. M. Ting, S. S. Livneh, F. R. Walker, R. Schaeffer, T. F. McNulty, and A. Safari. Fine-scale, largearea piezoelectric fiber/polymer composites for transducer applications. In Applications of Ferroelectrics,1994.ISAF’94., Proceedings of the Ninth IEEE International Symposium on, pages 295–298.
    [36] Helen Lai Wah Chan and Joseph Unsworth. Simple model for piezoelectric ceramic/polymer 1-3 compositesused in ultrasonic transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl, 36:434–441, 1989.
    [37] Y. A. shui. The modeling of piezocomposite material with 2-2 and 1-3 connectivity. 8th International Work-shop on Modern Acoustics, A-8, 2000.
    [38]李明轩,刘殿峰. 1-3型压电复合材料非均匀振动换能器的研究.应用声学, 17(1):11–14, 1998.
    [39]李光,李邓化. 1-3型压电复合材料的机械品质因素.功能材料与器件学报, 10(1):71–74, 2004.
    [40]于新胜,葛骑岐.用1-3压电复合材料设计低旁瓣水声换能器.青岛海洋大学学报, 33(5):747–752,2003.
    [41]李坤,李金华,李锦春,陈王丽华. Plzt陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究.无机材料学报, 19(2):361–366, 2004.
    [42]杨凤霞,王四德,兰从庆. 1-3型pzt/polym er压电复合材料性能分析.压电与声光, 23(1):49–55, 2001.
    [43] Q. M. Zhang, Wenwu Cao, H. Wang, and L. E. Cross. Characterization of the performance of 1-3 typepiezocomposites for low-frequency applications. Journal of Applied Physics, 73:1403–1403, 1993.
    [44] R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross. Composite piezoelectric transducers. Interna-tional journal of materials in engineering applications, 11:93–106, 1980.
    [45] Wallace Arden Smith. Modeling 1-3 composite piezoelectrics:hydrostatic response. IEEE transactions onultrasonics ferroelectrics and frequency control, 40(1):41–49, 1993.
    [46] T.R.Gururaja,WalterA.SchulzeJr,LeslieE.Cross,RobertE.Newnham,BertramA.Auld,andYuzhongJuneWang. Piezoelectric composite materials for ultrasonic transducer applications - i: Resonant modes of vibra-tion of pzt rod-polymer composites. IEEE transactions on sonics and ultrasonics, SU-32:481–498, 1985.
    [47]李明轩,党长久. 1-3型压电复合材料.应用声学, 14(1):2–7, 1994.
    [48] Y. Wang and B. A. Auld. Acoustic wave propagation in one-dimensional periodic composites. In IEEE 1985Ultrasonics Symposium - Proceedings., Ultrasonics Symposium Proceedings, pages 637–641. IEEE.
    [49] T. R. Gururaja, W. A. Schulze, L. E. Cross, B. A. Auld, Y. A. Shui, and Y. Wang. Resonant modes of vibrationin piezoelectric pzt-polymer composites with two dimensional periodicity. Ferroelectrics, 54:523–526, 1983.
    [50] S.W.OrandH.L.W.Chan. Modecouplinginleadzirconatetitanate/epoxy1-3piezocompositerings. Journalof Applied Physics, 90:4122–4122, 2001.
    [51] DominiqueCerton, FredericPatat, FranckLevassort, GuyFeuillard, andBrynjarKarlsson. Lateralresonancesin 1-3 piezoelectric periodic composite: modeling and experimental results. Journal of the Acoustical Societyof America, 101:2043–2043, 1997.
    [52] John A. Hossack and Gordon Hayward. Finite-element analysis of 1-3 composite transducers. IEEE Trans-actions on Ultrasonics, Ferroelectrics, and Frequency Control, 38:618–629, 1991.
    [53] R.Steinhausen,T.Hauke,W.Seifert,H.Beige,W.Watzka,S.Seifert,D.Sporn,S.Starke,andA.Schoenecker.Finescaled piezoelectric 1-3 composites: properties and modeling. Journal of the European Ceramic Society,19:1289–1294, 1999.
    [54] P. Reynolds, J. Hyslop, and G. Hayward. Analysis of spurious resonances in single and multi-element piezo-composite ultrasonic transducers. In 2003 IEEE Ultrasonics Symposium - Proceedings, October 5, 2003 -October 8, 2003, volume 2 of Proceedings of the IEEE Ultrasonics Symposium, pages 1652–1653. Instituteof Electrical and Electronics Engineers Inc.
    [55] T. R. Gururaja, Walter A. Schulze Jr, Leslie E. Cross, and Robert E. Newnham. Piezoelectric compositematerials for ultrasonic transducer applications - ii: Evaluation of ultrasonic medical applications. IEEEtransactions on sonics and ultrasonics, SU-32:499–513, 1985.
    [56] Wallace Arden Smith. The application of 1-3 piezocomposites in acoustic transducers. In 1990 IEEE 7thInternational Symposium on Applications of Ferroelectrics, June 6, 1990 - June 8, 1990, pages 145–152. Publby IEEE.
    [57] Thomas R. Howarth and Robert Y. Ting. Electroacoustic evaluations of 1-3 piezocomposite sonopaneltmmaterials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47:886–894, 2000.
    [58] http://www.matsysinc.com/. .
    [59] Sonar application examples. Mterials systems Inc., .
    [60] Kim C. Benjamin and Sheridan Petrie. The design, fabrication, and measured acoustic performance of a 1-3piezoelectric composite navy calibration standard transducer. Journal of the Acoustical Society of America,109:1973–1978, 2001.
    [61] KimC.Benjamin. Recentadvancesin1-3piezoelectricpolymercompositetransducertechnologyforauv/uuvacoustic imaging applications. Journal of Electroceramics, 8:145–154, 2002.
    [62] Aaron A. Bent, Nesbitt W. Hagood, and John P. Rodgers. Anisotropic actuation with piezoelectric fibercomposites. Journal of Intelligent Material Systems and Structures, 6:338–349, 1995.
    [63] Robert C. Derham and Nesbitt W. Hagood. Rotor design using smart materials to actively twist blades. InProceedings of the 1996 52nd Annual Forum. Part 1 (of 3), June 4, 1996 - June 6, 1996, volume 2 of AnnualForum Proceedings - American Helicopter Society, pages 1242–1252. American Helicopter Soc.
    [64] Peter Wierach. Mfc-actuators for active twist control of a model rotor blade. ISMA 2005 September 27th -28th 2005, Dresden, 2005.
    [65] W. Keats Wilkie. Nasa mfc piezocomposites: A development history. 2005.
    [66] Surya Kiran Parimi, Woosoon Yim, and Mohamed B. Trabia. Design and control of a smart fin using piezo-electric actuators. 2005.
    [67] W. Keats Wilkie, Robert G. Bryant, James W. High, Robert L. Fox, Richard F. Hellbaum, Antony Jalink,Bruce D. Little, and Paul H. Mirick. Low-cost piezocomposite actuator for structural control applications.SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, 2000.
    [68] Marc R. Schultz. Piezocomposite actuators for shape control of multistable structures. 1st InternationalSymposium on Macro Fiber Composite Applications, 2005.
    [69] Herfried Lammer. Head’s tennisracket is.18 chipsystem and ski ic.300 chipsystem smart materials for serialapplication. HEAD Sport AG; 6921 Kennelbach, Austria, 2005.
    [70] J. F. Fernandez, A. Dogan, Q. M. Zhang, J. F. Tressler, and R. E. Newnham. Hollow piezoelectric composites.Sensors and Actuators, A: Physical, 51:183–192, 1995.
    [71] Diann Brei and Bryan J. Cannon. Piezoceramic hollow fiber active composites. Composites Science andTechnology, 64:245–261, 2004.
    [72] B. J. Cannon and D. Brei. Feasibility study of microfabrication by coextrusion (mfcx) hollow fibers for activecomposites. Journal of Intelligent Material Systems and Structures, 11:659–670, 2000.
    [73] C. Marcheselli and T. A. Venkatesh. Electromechanical response of 1-3 piezoelectric composites with hollowfibers. Applied Physics Letters, 93, 2008.
    [74] RobertBrettWilliams. Nonlinearmechanicalandactuationcharacterizationofpiezoceramicfibercomposites.Doctor of Philosophy, 2004.
    [75] B.J Maclean and S.C. Jacobsen. Active fibers for development of adaptive structures. ARPA Actuator IssuesWorkshop, 1995-96.
    [76] T. Sashida. Mech. Automation of Jpn, 15(2), 1983.
    [77] Raji Krishnamoorthy Mali, Thomas G. Bifano, and Nelsimar Vandelli. Development of microelectromechan-ical deformable mirrors for phase modulation of light. Optical Engineering, 36(2):542–548, 1997.
    [78] H. Wang, Q. M. Zhang, L. E. Cross, and C. M. Trottier. Tailoring material properties by structure design -radially poled piezoelectric cylindrical tube. Ferroelectrics, 173:181–189, 1995.
    [79] Q. M. Zhang, H. Wang, and L. E. Cross. Piezoelectric tubes and tubular composites for actuator and sensorapplications. Journal of Materials Science, 28:3962–3968, 1993.
    [80] http://baike.baidu.com/view/70776.htm.
    [81] M. W. Hyer. Stress analysis of fiber-reinforced composite materials. The McGraw-Hill Companies, Inc., NewYork., 1998.
    [82] Aaron A. Bent and Nesbitt W. Hagood. Piezoelectric fiber composites with interdigitated electrodes. Journalof Intelligent Material Systems and Structures, 8:903–919, 1997.
    [83] G Binnig and D. P. E. Smith. Single-tube three-dimensional scanner for scanning tunneling microscopy.Review of Scientific Instruments, 57(8):1688–1689, 1986.
    [84] J. S. Yang and H. Y. Fang. A new ceramic tube piezoelectric gyroscope. Sensors and Actuators, A: Physical,107:42–49, 2003.
    [85] Shih-Hui Chao, Joseph L. Garbini, William M. Dougherty, and John A. Sidles. The design and control ofa three-dimensional piezoceramic tube scanner with an inertial slider. Review of Scientific Instruments, 77,2006.
    [86] Hiroyuki Hashiguchi, Yoshiya Egashira, Hiroyuki Furukawa, Taishi Endo, Tetsuya Kosaka, Koji Kosaka,KiyohikoUozumi,MasayukiWatanabe,TakahiroYamakawa,NoboruMiyata,AkiraNakada,HiroshiKubota,and Tadahiro Ohmi. Highly reliable piezoelectric actuator for precision stage system. Japanese Journal ofApplied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 44:3307–3312, 2005.
    [87] A.S.Putra, HuangSunan, TanKok Kiong, S.K.Panda, andLeeTongHeng. Design, modeling, andcontrolofpiezoelectric actuators for intracytoplasmic sperm injection. Control Systems Technology, IEEE Transactionson, 15(5):879–890, 2007.
    [88] Takeshi Morita, Minoru Kuribayashi Kurosawa, and Toshiro Higuchi. Cylindrical micro ultrasonic motorutilizing bulk lead zirconate titanate (pzt). Japanese Journal of Applied Physics, Part 1: Regular Papers andShort Notes and Review Papers, 38:3347–3350, 1999.
    [89] Shengyuan Yang and Wenhao Huang. Transient responses of a piezoelectric tube scanner. Review of ScientificInstruments, 68:4483–4487, 1997.
    [90] S. O. Reza Moheimani. Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trendsand future challenges. Review of Scientific Instruments, 79, 2008.
    [91] Sun Qiao and Robert A. Wolkow. Three-dimensional displacement analysis of a piezoelectric tube scannerthrough finite element simulations of a tube assembly. Review of Scientific Instruments, 77, 2006.
    [92] C. Julian Chen. Electromechanical deflections of piezoelectric tubes with quartered electrodes. AppliedPhysics Letters, 60:132–132, 1992.
    [93] Jan G. Smits and Arthur Ballato. Dynamic admittance matrix of piezoelectric cantilever bimorphs. Journalof Microelectromechanical Systems, 3:105–112, 1994.
    [94] W. F. Riley, L. D. Sturges, and D. H. Morris. Mechanics of materials. Wiley, San Francisco, 2006.
    [95] Shengyuan Yang and Wenhao Huang. Three-dimensional displacements of a piezoelectric tube scanner. Re-view of Scientific Instruments, 69:226–226, 1998.
    [96] Yu Chen, Kai Lu, Tieying Zhou, Tao Liu, and Cunyue Lu. Study of a mini-ultrasonic motor with square metalbar and piezoelectric plate hybrid. Japanese Journal of Applied Physics, Part 1: Regular Papers and ShortNotes and Review Papers, 45:4780–4781, 2006.
    [97] S. O. Reza Moheimani and Yuen K. Yong. Simultaneous sensing and actuation with a piezoelectric tubescanner. Review of Scientific Instruments, 79, 2008.
    [98] Johannes Maess, Andrew J. Fleming, and Frank Allgower. Simulation of dynamics-coupling in piezoelectrictube scanners by reduced order finite element analysis. Review of Scientific Instruments, 79, 2008.
    [99] J. P. Den Hartog. Mechanical vibrations. Dover, New York, 1985.
    [100] Jonathan D. French, Gregory E. Weitz, John E. Luke, Richard B. Cass, Bahram Jadidian, Victor Janas, andAhmad Safari. Production of continuous piezoelectric fibers for sensor/actuator applications. In Proceedingsof the 1996 10th IEEE International Symposium on Applications of Ferroelectrics, ISAF. Part 1 (of 2), August18, 1996 - August 21, 1996, volume 2 of IEEE International Symposium on Applications of Ferroelectrics,pages 867–870. IEEE.
    [101] F Meister, D Vorbach, F Niemz, T. Schulze, and E. Taeger. Functional high-tech-cellulose materials by thealcer (r) process. Materialwissenschaft und Werkstofftechinik, 34(3):262–266, 2003.
    [102] Aaron T. Crumm and John W. Halloran. Fabrication of microconfigured multicomponent ceramics. Journalof the American Ceramic Society, 81:1053–1057, 1998.
    [103] Kenji Uchino. Piezoelectric actuators 2006 : Eeexpansion from it/robotics to ecological/energy applications.Journal of Electroceramics, 20:301–311, 2008.
    [104] K. Uchino, S. Cagatay, B. Koc, S. Dong, P. Bouchilloux, and M. Strauss. Micro piezoelectric ultrasonicmotors. volume 13 of Journal of Electroceramics, pages 393–401. Kluwer Academic Publishers.
    [105] Seung-Ho Park, Jose Agraz, Safakcan Tuncdemir, Young-Deog Kim, Richard E. Eitel, Amanda Baker,Clive A. Randall, and Kenji Uchino. Delta-shaped piezoelectric ultrasonic motor for two-dimensional po-sitioning. Japanese Journal of Applied Physics, 47:313–318, 2008.
    [106] Myung-Jin Chung, Yang-Hee Yee, and Dong-Hyuk Cha. Development of auto focus actuator for cameraphone by applying piezoelectric single crystal. In Optomechatronic Actuators and Manipulation III, October8, 2007 - October 10, 2007, volume 6715 of Proceedings of SPIE - The International Society for OpticalEngineering. SPIE.
    [107] David Peichel, David Marcus, Raed N. Rizq, Aurthur G. Erdmann, William P. Robbins, and Dennis L. Polla.Silicon fabricated submicrometer stepper motor for microsurgical procedures. Journal of Microelectrome-chanical Systems, 11:154–160, 2002.
    [108]赵向东,刘长青,赵淳生.圆柱体弯曲行波压电超声电机运动机理的研究.应用力学学报, 17(3):120–124, 2000.
    [109]清水吉田.超声波电子学-新的压电应用.第25届东北大通学术研讨会, ?- 6 , (4), 1989.
    [110] Serra Cagatay, Burhanettin Koc, Paul Moses, and Kenji Uchino. A piezoelectric micromotor with a stator of =1.6mm and l = 4mm using bulk pzt. Japanese Journal of Applied Physics, Part 1: Regular Papers and ShortNotes and Review Papers, 43:1429–1433, 2004.
    [111]张辉. 1 mm压电陶瓷管式微型超声马达研究.自然科学进展, 15(12), 2005.
    [112]周铁英. 1mm圆柱式超声电机的研制及在oct内窥镜中的应用.科学通报, 50(7), 2005.
    [113]羊全钢,张凯,周铁英,姜开利.弯曲旋转超声电机接触界面锥形角的分析与实验.声学学报, 27(5):413–419, 2002.
    [114] GaelSebald, JinhaoQiu, DanielGuyomar, andDaisukeHoshi. Modelingandcharacterizationofpiezoelectricfibers with metal core. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes andReview Papers, 44:6156–6163, 2005.
    [115] Jinhao Qiu, Junji Tani, Naoki Yamada, and Hirofumi Takahashi. Fabrication of piezoelectric fibers with metalcore. InPROCEEDINGSOFSPIESPIE-TheInternationalSocietyforOpticalEngineering: SmartStructuresandMaterials2003ActiveMaterials: BehaviorandMechanics, March3, 2003-March6, 2003, volume5053of Proceedings of SPIE - The International Society for Optical Engineering, pages 475–483. SPIE.
    [116] D. J. Laser and J. G. Santiago. A review of micropumps. Journal of Micromechanics and Microengineering,14:R35–R64, 2004.
    [117] Peter Woias. Micropumps - past, progress and future prospects. Sensors and Actuators, B: Chemical, 105:28–38, 2005.
    [118] David A. Henderson. Novel piezo motor enables positive displacement microfluidic pump. In 2007 NSTINanotechnology Conference and Trade Show - NSTI Nanotech 2007, May 20, 2007 - May 24, 2007, volume 3of 2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings,pages 272–275. Nano Science and Technology Institute.
    [119] S. B. Choi, J. K. Yoo, M. S. Cho, and Y. S. Lee. Position control of a cylinder system using a piezoactuator-driven pump. Mechatronics, 15:239–249, 2005.
    [120] Eric G. Chapman, Scott L. Herdic, Chaz A. Keller, and Christopher S. Lynch. Development of miniaturizedpiezo-hydraulic pumps. In Smart Structures and Materials 2005 - Industrial and Commercial Applications ofSmart Structures Technologies, March 7, 2005 - March 9, 2005, volume 5762 of Proceedings of SPIE - TheInternational Society for Optical Engineering, pages 299–310. SPIE.
    [121] H.T.G.VanLintel, F.C.M.VanDePol, andS.Bouwstra. Piezoelectricmicropumpbasedonmicromachiningof silicon. Sensors and actuators, 15:153–167, 1988.
    [122] Lisa MauckandChristopher S. Lynch. Piezoelectric hydraulicpump. ProceedingsofSPIE -The InternationalSociety for Optical Engineering, 3668:844–852, 1999.
    [123] Myunghoon Seong, K. P. Mohanchandra, Yohan Lin, and Gregory P. Carman. Development of a high flow-rate/high operating frequency nitinol mems valve. In Sensors and Smart Structures Technologies for Civil,Mechanical, and Aerospace Systems 2008, March 10, 2008 - March 13, 2008, volume 6932 of Proceedingsof SPIE - The International Society for Optical Engineering, page The International Society for Optical Engi-neering (SPIE); American Society of Mechanical Engineers. SPIE.
    [124] A. M. Cardenas-Valencia, J. Dlutowski, J. Bumgarner, C. Munoz, W. Wang, R. Popuri, and L. Langebrake.Development of various designs of low-power, mems valves for fluidic applications. Sensors and Actuators,A: Physical, 136:374–384, 2007.
    [125] I. Chakraborty, W. C. Tang, D. P. Bame, and T. K. Tang. Mems micro-valve for space applications. Sensorsand Actuators, A: Physical, 83:188–193, 2000.
    [126] Erik Stemme and Goran Stemme. Valveless diffuser/nozzle-based fluid pump. Sensors and Actuators, A:Physical, 39:159–167, 1993.
    [127] Fred K. Forster, Ronald L. Bardell, Martin A. Afromowitz, Nigel R. Sharma, and Alan Blanchard. Design,fabrication and testing of fixed-valve micro-pumps. In Proceedings of the 1995 ASME International Mechan-ical Congress and Exposition, November 12, 1995 - November 17, 1995, volume 234 of American Society ofMechanical Engineers, Fluids Engineering Division (Publication) FED, pages 39–44. ASME.
    [128] Ivano Izzo, Dino Accoto, Arianna Menciassi, Lothar Schmitt, and Paolo Dario. Modeling and experimen-tal validation of a piezoelectric micropump with novel no-moving-part valves. Sensors and Actuators, A:Physical, 133:128–140, 2007.
    [129]张建辉,黎毅力,夏齐霄. Y形流管无阀压电泵流量及流管流阻特性分析.机械工程学报, 43(11):136–141, 2007.
    [130] S. Matsumoto, A. Klein, and R. Maeda. Development of bi-directional valve-less micropump for liquid. InProceedings of the 1999 12th IEEE International Conference on Micro Electro Mechanical Systems, MEMS,January 17, 1999 - January 21, 1999, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),pages 141–146. IEEE.
    [131] B. Husband, M. Bu, V. Apostolopoulos, T. Melvin, and A. G. R. Evans. Novel actuation of an integratedperistaltic micropump. In Micro and Nano Engineering 2003, September 22, 2003 - September 25, 2003,volume 73-74 of Microelectronic Engineering, pages 858–863. Elsevier.
    [132] Shun-ichi Miyazaki, Takashi Kawai, and Muneki Araragi. A piezo-electric pump driven by a flexural pro-gressive wave. In Proceedings of the 1991 IEEE Micro Electro Mechanical Systems - MEMS’91, January30, 1991 - Febrary 2, 1991, Proceedings. IEEE Micro Electro Mechanical Systems, pages 283–288. Publ byIEEE.
    [133] Anders Persson. How do we understand the coriolis force? Bulletin of the American Meteorological Society,pages 1373–1385, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700