纵弯复合平面超声电机及驱动系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声电机(Ultrasonic Motor,简称USM)是近三十年来发展起来的一种新型压电驱动器。它利用压电陶瓷的逆压电效应将电能转化成超声频微观振动,进一步通过定子将微观机械振动共振放大、叠加,然后摩擦驱动转子(或动子)宏观转动(或直线运动)。同传统式电磁电机相比,超声电机具有结构简单、设计灵活、大力矩度大、低速、响应速度快、定位精度高、断电自锁和无电磁干扰等特点,所以在航空航天、光学仪器、机器人、半导体制造、医疗器械、办公自动化和汽车等领域具有广阔应用前景。目前实际应用的超声电机多是单自由度旋转或直线超声电机,对多自由度超声电机的研究尚属探索性阶段。本文研制了一种新型平面多自由度超声电机及其电学匹配和驱动系统。
     本文提出了一种新型纵弯复合模态平面多自由度超声电机结构,分析了其驱动机理。它以十字正交聚能器作为驱动器,由同一频率下的两路纵振和一路弯振在单一驱动足上叠加,使驱动足产生所需要的驱动轨迹,能够驱动电机在xOy平面内沿任意方向直线运动。以驱动足作为研究对象,建立了多自由度刚体驱动轨迹解析模型,分析了其在xOy平面各方向上产生直线驱动的输入方式。
     对驱动器结构参数进行了综合分析,得到各结构参数对纵振和弯振特征频率的影响趋势,进行纵弯模态特征频率简并。采用有限元分析方法,在刚体驱动足驱动轨迹解析模型指导下,针对硬铝材质的驱动足进行振动形态仿真。在驱动足的驱动表面取八个质点,建立了典型驱动方式下八个驱动质点的轨迹图谱,分析各种驱动情况下,驱动效果的一致性。
     研制了一种单驱动足纵弯复合模态换能器驱动的多自由度平面超声电机样机。对换能器进行了阻抗检测和振动检测,对样机进行了实验研究和测试,验证了纵弯复合模态平面超声电机理论分析与仿真研究的正确。实测电机最大速度达960mm/s、最大推力达100N。
     提出了超声电机谐振频率分离式电学匹配方法。以开关电源驱动的超声电机为了避免激发出电机的非工作模态振动,需要串联电感滤除高次谐波。串联电感又会与电学上容性的超声电机产生谐振影响超声电机上电压的高低。谐振频率分离式电学匹配方法可以在保证滤波效果的同时,通过调节匹配电容、电感值,按需要设计电机的谐振升压幅度,确保电机工作的稳定、安全。设计了基于数字信号处理器的超声电机驱动控制系统,以数字波合成器作为超声信号发生器,以全桥逆变器为功放。相位调节范围0o~360o,调相精度小于1o;频率调节范围15kHz~150kHz,调频精度不大于1Hz。设计输出功率500W。
Ultrasonic motor (USM) is a new type piezoelectric actuator developed during recent three decades. It converts electrical energy to ultrasonic micro vibration using converse piezoelectric effect. The micro vibration then drive rotators (or movers) to rotate (or straightly move) via friction after being resonant amplified and superimposed. Comparing to traditional electromagnetic motor, USM has advantages on simple structure, flexible design, large torque, low speed, fast response, high positioning accuracy, self-lock at power off, and without electromagnetic radiation. Therefore it can be applied widely in many fields, such as aeronautics & astronautics, optical instrument, robotics, semiconductor manufacture, medical apparatus, office automation, and auto industry. At present, almost all the practically used USM have only one degree of freedom (DOF) like linear or rotary movement, and the research on the structure and application on the multi-DOF USM is still in the early stage. This dissertation developed a novel multi-DOF plane liner USM and the relevant electrical match and driving system.
     A new type multi-DOF plane liner USM based on longitudinal and bending modes was proposed and its motion mechanism was analyzed. Driven by cross orthogonal horn, two channels of longitudinal vibrations and one channel of bending vibration superimposed on one single driving foot, and supply the trajectories for the motor, which could then move straightly in any direction on the xOy plane. Taking the driving foot as the research target, an analytical model of the rigid multi-DOF driving foot trajectories has been developed, and the liner driving input method in every directions of xOy plane has been analyzed.
     Comprehensive analysis was carried out on structure parameters of the actuator, and the parameters’influence tendency towards the eigenfrequencies was got to realize the longitudinal-bending vibration modal degeneration. By means of the finite element method, combining with the analytical model of the rigid multi-DOF driving foot trajectories, the simulation study on vibration mode of the duralumin driving foot was conducted. Eight driving points on the surface of driving foot was extracted and there trajectories under typical driving method were constructed. The consistency of driving effect under several driving methods was also analyzed.
     Based on the result of vibration modal eigenfrequencies’degeneration and FEM analysis, a multi-DOF USM with single vibrator driven by longitudinal-bending transducer was proposed and fabricated. The prototype experiment on impedance and vibration showed the validity and reliability of the theoretical analysis and simulation research. The fastest speed was 960mm/s and The most large output force was 100 N.
     The separation mode electrical match method for the resonant frequencies of USM was presented. To avoid the vibration under non-working modes, inductors should be connected in series to the USM, which is driven by switched-supply power. Meanwhile, since the USM is capacitive, its voltage would be interfered by resonant excited by the inductors. Through adjusting the values of capacitors and inductors, the separation mode electrical match method could arbitrarily obtain the necessary value of voltage to ensure the stability and security of motor, and guarantee the wave filtering effect at the same time.
     The USM driving control system based on digital signal processor was designed. The digital wave synthesizer was used as the signal generator, and the full-bridge inverter was used in power amplifier. The phase-adjust range is 0o~360o, and adjust resolution is less than 1o; frequency-adjust range is 15 kHz~150 kHz, and adjust resolution is less than 1 Hz. The output power is 500W.
引文
1赵淳生.超声电机技术与应用.科学出版社, 2007
    2赵淳生.面向21世纪的超声电机技术.中国工程科学. 2002, 4(02): 86-90
    3赵淳生,朱华.超声电机技术的发展和应用.机械制造与自动化. 2008, 37 (3): 1-9
    4赵淳生.世界超声电机技术的新进展.振动、测试与诊断. 2004, 24(01): 1-5
    5 T.Kenji, T.Sashida. An Introductin to Ultrasonic Motor. Clarendon Press. 1993, 24-37
    6张东华.新型行波超声电机机理与实验研究.哈尔滨工业大学博士论文. 2006
    7 Williams A L W, Brown W J. Piezoelectric Motor. 1948, 2439499
    8 Barth H V. Ultrasonic Driven Motor, in IBM Tech. Disclosure Bull. 1973: 2263.
    9 Vishnewski V, Kartashev I, Kavertsev V, Lavrinenko V, Nekrasov M, Prez A. Ultrasonic Motor. 1975, 4019073
    10上羽贞行,富川义郎(扬志刚译).超声波马达理论与应用.上海科学技术出版社, 1998
    11 P. Muralt G. A. Racine. Flexural-Standing-Wave Elastic Force Motor Usingzno and Pzt Thin Film on Micromachined Silicon Membranes for Wristwatch Applications. Smart materials Structure. 1998, (7): 404-416
    12 A. Endo., N.Sasaki. Investigation of Frictional Material for Ultrasonic Motor. Proceedings 7th Symp. On ultrasonic Electronics. 1986, Kyoto, Japan: 197-199
    13 Takashi Maeno, Takayuki Tsukimoto, Akira Miyake. Finite-Element Analysis of the Rotor/Stator Contact in a Ring-Type Ultrasonic Motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992, 39 (6): 668-674
    14 Takashi Maeno, David B. Bogy. Effect of the Rotor/Stator Interface Condition Including Contact Type, Geometry, and Material on the Performance of Ultrasonic Motor. Journal of Tribology, Transactions of the ASME. 1994, 116 (4): 726-732
    15 T. Yamamoto. Effect of the Rotor-Stator Interface Condition Including Contact Type, Geometry, and Material on the Performance of Ultrasonic Motor. International Symposium on Micro-mechatronics and Human Science. 2000: 107-112
    16 Y. Tomikawa T. Takano, T. Ogasawara, H. Hirata. Constructions andCharacteristics of Ultrasonic Motors Using a Piezo-Ceramic Annular Plate. Ultrasonics Symposium 1989 proceedings IEEE. 1989, (2): 735-738
    17 N. W. Hagood, A. J. Mcfarland. Modeling of a Piezoelectric Rotary Ultrasonic Motor. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42 (2): 210-224
    18周铁英,陈宇.超声电机的发展与展望.第十二届中国小电机技术研讨会. 2007: 114-123
    19 A. Yabuki, M. Aoyagi, Y. Tomikawa, T. Takano. Piezoelectric Linear Motors for Driving Head Element of Cd-Rom. Japanese Journal of Applied Physics. 1994, 33(9B): 5365-5369
    20 N. W. Hagood, A. J. Mcfarland. Modeling of a Piezoelectric Rotary Ultrasonic Motor. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(2): 210-224
    21 B. Koc, P. Bouchilloux, K. Uchino. Piezoelectric Micromotor Using a Metal-Ceramic Composite Structure. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2000, 47(4): 836-843
    22 T. Kunioka, Y. Takeda, T. Matsuda, N. Shimazu, Y. Nakayama. Xy Stage Driven by Ultrasonic Linear Motors for the Electron-Beam X-Ray Mask Writer Eb-X3. Journal of Vacuum Science & Technology B. 1999, 17(6): 2917-2920
    23 V. N. Yakimov. Scanning Tunneling Microscope with a Rotary Piezoelectric Stepping Motor. Review of Scientific Instruments. 1996, 67(2): 384-386
    24 J. Lee, J. Chae, C. K. Kim, H. Kim, S. Oh, Y. Kuk. Versatile Low-Temperature Atomic Force Microscope with in Situ Piezomotor Controls, Charge-Coupled Device Vision, and Tip-Gated Transport Measurement Capability. Review of Scientific Instruments. 2005, 76(9): 1-5
    25 Takeshi Morita. Miniature Piezoelectric Motors.Sensors and Actuators. A: Physical. 2003, 103(3): 291-300
    26 P. Bouchilloux B. Koc, and K. Uchino. Piezoelectric Micromotor Using a Metal-Ceramic Composite Structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2000, 47(4): 836-843
    27 S. P. Lim S. Dong, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino. Piezoelectric Ultrasonic Micromotor with 1.5 Mm Diameter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2003, 50(4): 361-367
    28 A Kobayashi, T Kanda, K Suzumori. Driving Performance of a Cylindrical Micro Ultrasonic Motor. IROS 2007. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007: 3809 - 3814
    29 T.George. Mems/Nems Development for Space Applications at Nasa/Jpl.Proceedings of SPIE - The International Society for Optical Engineering. 2002:556-567
    30 S.Rodgers V.Kaajakari, A.Lal. Ultrasonically Driven Surface Micromachined Motor. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). 2000: 40-45
    31 Ilene Schneider. Microtools for Medicine. Genetic Engineering News. 2003, 23(12): 68-69
    32 Yu Sun B. J. Nelson. Micro Robo Tics and Mems Technology for Biological Cell Research Robo tics and Machine Perception. 2002: 7- 13
    33 B. J. Nelson Y. Sun. A Utonomous Injection of Biological Cells Using Visual Servoing. Int’1 Symp. On Experimental Robotics ( ISER ) 2000: 175- 184
    34 Jung-Moo Seo, Jin Hur, Ha-Gyung Sung. A Novel Ultrasonic Motor Using Orthogonal Bimorphs. IEEE Transactions on Magnetics. 2007, 43(4): 1413 - 1416
    35 Jiamei Jin, Chunsheng Zhao. A Vibrators Alternation Stepping Ultrasonic Motor. Ultrasonics. 2006, 44(12): e565-e568
    36 Ville Kaajakari, Amit Lal. Micromachined Ultrasonic Motor Based on Parametric Polycrystalline Silicon Plate Excitation. Sensors and Actuators A: Physical. 2007, 137(12): 120-128
    37孙力群.超声波电机.电视技术. 1984, 2(01): 12-13
    38王大春.表面波型电机(一).压电与声光. 1986, 8(1): 185-188
    39刘一声.压电超声电机及其应用.压电与声光. 1988, 10(06): 69-71
    40周铁英,董蜀湘,刘呈贵.压电超声马达简介.物理. 1991, 20(05): 298-302
    41周铁英,董蜀湘,刘小萍,李龙土,张孝文.超声振子箝位压电直线微动马达研究.声学学报(中文版). 1993, 18(01): 29-33
    42董蜀湘,周铁英.直线微动马达箝位超声换能器(Pgut)研究.声学学报(中文版). 1993, 18(01): 19-28
    43李东林.一种环状行波超声马达.应用声学. 1992, 11(04): 32-37
    44赵淳生. 21世纪超声电机技术展望.振动.测试与诊断. 2000, 21(01): 7-12
    45赵淳生.对发展我国超声电机技术的若干建议.微电机. 2006, 39(02): 64-67
    46赵向东.旋转型行波超声电机动力学模型及性能仿真的研究.南京航空航天大学博士论文. 2000
    47赵向东,陈波,赵淳生.行波超声波电动机性能分析及其优化设计.微特电机. 2003, (5): 13-15
    48 Zhihua Chen, Chunsheng Zhao, Weiqing Huang. An Effective Frequency Tracking Control and Balancing Compensation. Between Cw & Ccw RotationSpeed Techniques for Ultrasonic Motor, in IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference. 2004, Canada.
    49 Chunsheng Zhao, Jiakui Zu. Research on Resonance and Antiresonance States of Free Stator of Traveling Wave Ultrasonic Motors. Chinese Joural of Acoustics. 2004, 23(4): 289-301
    50李华峰,马春苗,冒俊.维持超声电机工作状态恒定的驱动控制器.中国电机工程学报. 2008, 28(36): 93-97
    51展凤江,孟令智,刘俊标,赵淳生.圆柱2球体三自由度超声电机矢量控制.压电与声光. 2008, 30(5): 624-630
    52赵向东,袁义坤,赵淳生.超声电机定子有限元分析及其模态混叠现象.振动工程学报. 2004, 17(增): 866-868
    53张健滔,朱华,赵淳生.超声电机定子模态频率的调节.光学精密工程. 2008, 16(12): 2407-2413
    54周斌,李志钧,赵淳生.基于dds的超声电机驱动电源.压电与声光. 2002, 24(03): 202-204
    55赵向东,刘长青,赵淳生.圆柱体弯曲行波压电超声电机运动机理的研究.应用力学学报. 2000, 17(03): 120-123
    56黄卫清,马相林,董迎晖,赵淳生.杆式行波超声电机运动机理的研究.振动与冲击. 2004, 23(02): 48-51
    57朱华,曾劲松,赵淳生.杆式超声电机定子的动力学分析与优化设计.中国机械工程. 2008, 19(21): 2627-2632
    58朱华,陈超,赵淳生.行波型杆式超声电机的动力学分析与性能仿真.振动与冲击. 2008, 27(6): 400-404
    59 Zhirong Li, Chunsheng Zhao, Weiqing Huang, Zhao-Liang Li. Several Key Issues in Developing of Cylinder Type 3-Dof Ultrasonic Motor. Sensors and Actuators A: Physical. 2007, 136(2): 704-709
    60李志荣,黄卫清,赵淳生.圆柱形三自由度超声电机输出性能的仿真设计.光学精密工程. 2008, 16(12): 2352-2357
    61郑伟,赵淳生.高温环境下超声电机的机械性能测试.光学精密工程. 2008, 16(12): 2313-2319
    62郑伟,赵淳生.旋转型行波超声电机寿命试验研究.压电与声光. 2008, 30(2): 90-93
    63芦丹,郑伟,赵淳生.真空环境下超声电机的速度测试与控制.光学精密工程. 2008, 16(7): 9121-2221
    64芦丹,苏娜,朱春玲,赵淳生,黄卫清.超声电机振动环境实验研究.中国电机工程学报. 2008, 28(18): 79-82
    65郑伟,朱春玲,芦丹,丁庆军,赵淳生.高温环境下旋转型行波超声电机性能研究.中国电机工程学报. 2008, 28(21): 85-89
    66 Cunyue Lu, Tian Xie, Tieying Zhou, Yu Chen. Study of a New Type Linear Ultrasonic Motor with Double-Driving Feet. Ultrasonics. 2006, 44(22): 585-e589
    67胡金云,鹿存跃,陈宇,周铁英.双振子型直线超声电机.清华大学学报(自然科学版). 2008, 48(8): 1236-1239
    68 T. Zhou, L. Y. Chai, C. X. He, Y. B. He, A. X. Kuang. A Standing Wave Type Ultrasonic Motor. Ferroelectrics. 1999, 232(1-4): 1133-1137
    69 T. Y. Zhou, K. Zhang, Y. Chen, H. Wang, J. G. Wu, K. L. Jiang, P. Xue. A Cylindrical Rod Ultrasonic Motor with 1 Mm Diameter and Its Application in Endoscopic Oct. Chinese Science Bulletin. 2005, 50(8): 826-830
    70陈宇,刘庆利,周铁英.大力矩行波超声电机的性能.清华大学学报(自然科学版). 2006, 46(03): 396-398
    71曲建俊,周铁英,姜开利,袁世明.行波超声马达定子和转子接触状态实验研究.声学学报(中文版). 2003, 28(03): 217-222
    72严仁博,褚祥诚,桂治轮,李龙土.一种旋转方向可控的驻波超声马达.压电与声光. 2005, 27(06): 646-648
    73褚祥诚,袁松梅,李龙土.一种新型中空结构的行波压电电机.压电与声光. 2005, 27(06): 640-642
    74龚文,褚祥诚,李龙土.行波超声马达摩擦材料的研究.压电与声光. 2003, 25(04): 305-307
    75赵炎彤.超声波马达的研究.哈尔滨工业大学硕士论文. 1993
    76陈晶.超声波直线马达的研究.哈尔滨工业大学硕士论文. 1994
    77陈维山.行波超声波马达的理论与实验研究.哈尔滨工业大学博士论文. 1996
    78 Weishan Chen, Siyuan He, Zaili Chen. Free Transverse Vibrations of Composite Annular Plates: Modeling for the Stator of a Rotary Ultrasonic Motor. Journal of Harbin Institute of Technology. 1997, E4(1): 34-38
    79 S.Y. He, W.S. Chen, Z.L. Chen.Chen. A Uniformizing Method for the Free Vibration Analysis of Metal-Piezoceramic Composite Thin Plates. Journal of Sound and Vibration. 1998, 217(2): 261-281
    80 S.Y. He, W.S. Chen, X. Tao, Z.L. Chen. Standing Wave Bi-DirectionalLinearly Moving Ultrasonic Motor. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1998, 45(5): 1133-1139
    81 F. Zhang, W. S. Chen, J. A. Liu, Z. S. Wang. Bidirectional Linear Ultrasonic Motor Using Longitudinal Vibrating Transducers. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 134-138
    82赵学涛,陈维山,刘军考,石胜君.三种基于夹心换能器驱动的球形超声马达设计.组合机床与自动化加工技术. 2006, (07): 11-14
    83曲建俊,程显敏,罗云霞,于佳庆.超声波马达的真空和温度特性研究.光学精密工程. 2005, 13(03): 324-330
    84 J.J. Qu, F. Y. Sun, C. S. Zhao. Performance Evaluation of Traveling Wave Ultrasonic Motor Based on a Model with Visco-Elastic Friction Layer on Stator. Ultrasonics. 2006, 45(1-4): 22-31
    85 J.J. Qu, X. Tian, N.N. Zhou. Characteristics of Traveling Wave Ultrasonic Motor under Atmosphere and Vacuum Cycle Condition. Vacuum. 2008, 82(11): 1302-1305
    86曲建俊,田秀.非常态环境下的超声电机研究与应用.第十三届中国小电机技术研讨会论文集. 2008: 212-220
    87曲焱炎,曲建俊.超声电机各向异性摩擦材料制备及驱动试验.第十三届中国小电机技术研讨会论文集. 2008: 331-336
    88刘建芳,杨志刚,程光明,华顺明.压电驱动精密直线步进电机研究.中国电机工程学报. 2004, 24(04): 102-107
    89赵宏伟,吴博达,程光明,刘国嵩,张宏壮,杨志刚.基于压电驱动的精密步进旋转电机.中国电机工程学报. 2006, 26(10): 166-171
    90程光明,吴博达,杨志刚,曾平,鲁勇,刘景全,铃木胜义,广濑精二.行波非接触压电马达的声波传播分析.压电与声光. 1999, 21(04): 291-294
    91杨志刚,何文地,曾平,周翔.二维弯曲矩形板压电振子型超声马达研究.压电与声光. 1995, 17(04): 29-34
    92金龙,顾菊平,胡敏强,王心坚.圆柱定子3自由度球转子超声波电机驱动控制技术的研究.中国电机工程学报. 2004, 24(09): 163-166
    93金龙,褚国伟,胡敏强,王心坚,徐志科,顾菊平.超声波电机速度与定位控制系统.中国电机工程学报. 2005, 25(01): 131-136
    94徐晨,顾菊平,胡敏强.基于多芯片集成技术的超声波电机驱动控制电源研究.微电机. 2005, 38(06): 72-73
    95 Cai Yue, Hu Min-qiang, Jin Long, W Wang Xin-jian; Du. Revolving Speed Control of Ultrasonic Motor Based on Feedback of Piezoelectric Sensor. UPEC2007. 42nd International Universities Power Engineering Conference. 2007: 167 - 169
    96徐志科,胡敏强,金龙,顾菊平,王心坚.基于有限元法的行波型超声波电机阻抗特性分析.中国电机工程学报. 2005, 25(18): 131-134
    97莫岳平,金龙,胡敏强,徐志科.短柱型超声波电机两相振动频率的简并.中国电机工程学报. 2004, 24(08): 115-118
    98顾菊平,金龙,胡敏强,费树岷.圆柱定子三自由度球转子超声波电机的轨迹运动方程.中国电机工程学报. 2005, 25(10): 154-158
    99 Chen Qiang, Hu Minqiang, Jin Long, Zhang Yu, Xu Zhike, Gu Juping. Force Transmission Model of a Cylindrical Linear Ultrasonic Motor. ICEMS. International Conference on Electrical Machines and Systems. 2007: 1623 - 1628
    100郭吉丰,龚书娟,刘晓,纪科辉.纵扭复合型超声波电机的特性研究.声学学报(中文版). 2004, 29(4): 334-340
    101 J. F. Guo, S. J. Gong, H. X. Guo, X. Liu, K. H. Ji. Force Transfer Model and Characteristics of Hybrid Transducer Type Ultrasonic Motors. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(4): 387-395
    102丁敬,周广睿,傅平,郭吉丰.基于dsp的超声波电机瞬态特性测试系统.机电工程. 2006, 23(07): 15-17
    103向馗,郭吉丰,蒋静坪.基于hht的超声电机噪声源分析.振动工程学报. 2005, 18(02): 200-203
    104郭吉丰,傅平.多自由度球形超声波电机的研究进展.电工电能新技术. 2005, 24(02): 65-68
    105傅平,郭吉丰,沈润杰,帅光举,鹿存跃.二自由度行波型超声波电机的驱动和运动姿态控制.电工技术学报. 2008, 23(2): 25-30
    106纪科辉,郭吉丰,刘晓.超声波电机的步进特性和步进定位控制.中国电机工程学报. 2004, 24(01): 71-75
    107 R. J. Wai, C. H. Tu. Design of Total Sliding-Mode-Based Genetic Algorithm Control for Hybrid Resonant-Driven Linear Piezoelectric Ceramic Motor. IEEE Transactions on Power Electronics. 2007, 22(2): 563-575
    108 F. J. Lin, P. H. Shieh. Recurrent Rbfn-Based Fuzzy Neural Network Control for X-Y-Theta Motion Control Stage Using Linear Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006, 53(12): 2450-2464
    109 R.J. Wai, C.M. Lin, Y.F. Peng. Adaptive Hybrid Control for LinearPiezoelectric Ceramic Motor Drive Using Diagonal Recurrent Cmac Network. Ieee Transactions on Neural Networks. 2004, 15(6): 1491-1506
    110 F. J. Lin, R. J. Wai, K. K. Shyu, T. M. Liu. Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001, 48(4): 900-913
    111 Tien-Chi Chen, Chih-Hsien Yu, Mi-Ching Tsai. A New Driver Based on Dual-Mode Frequency and Phase Control for Traveling-Wave Type Ultrasonic Motor. Energy Conversion and Management. 2008, 49(10): 2767-2775
    112 Tien-Chi Chen, Chih-Hsien Yu, Chun-Jung Chen, Mi-Ching Tsai. Neuro-Fuzzy Speed Control of Traveling-Wave Type Ultrasonic Motor Drive Using Frequency and Phase Modulation. ISA Transactions. 2008, 47(3): 325-338
    113许海,赵淳生.直线型超声电机的发展及应用.中国机械工程. 2003, 14(08): 715-717
    114 B. Zhang, Z. Q. Zhu. Developing a Linear Piezomotor with Nanometer Resolution and High Stiffness. Ieee-Asme Transactions on Mechatronics. 1997, 2(1): 22-29
    115 M Kuribayashi Kurosawa, O Kodaira, Y Tsuchitoi, T Higuchi. Transducer for High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators. Transactions on Ultrasonics, Ferroelectrics and Frequency Control IEEE 1998, 45(5): 1188 - 1195
    116赵淳生,时运来.直线型超声电机的发展及其应用.第十二届中国小电机技术研讨会. 2007: 5-12
    117孙雅洲,高强,梁迎春.超声电机在微小型机床进给系统中的应用.组合机床与自动化加工技术. 2006, 0(04): 11-14
    118刘落实,张铁民,张建桃.直线型超声电机在机床进给系统中的应用.组合机床与自动化加工技术. 2004, 0(05): 32-36
    119李玉宝,时运来,赵淳生,黄卫清.高速大推力直线型超声电机的设计与实验研究.中国电机工程学报. 2008, 28(33): 49-53
    120赵宏伟,吴博达,程光明,刘国嵩,刘建芳,杨志刚.高精度压电步进直线驱动器.吉林大学学报(工学版). 2006, 36(3): 152-153
    121赵宏伟,吴博达,杨志刚,程光明.尺蠖型压电直线驱动器的运动稳定性分析.纳米技术与精密工程. 2007, 5(3): 49-53
    122 M.Hu, H.Du, S.-F.Ling. A Piezoelectric Spherical Motor with Two Degree-of-Freedom. Sensors and Actuators. J.-K.Teo. A: Physical. 2001, 94(1-2): 113-116
    123 K. Takemura, Y. Ohno. Design of a Plate Type Multi-Dof Ultrasonic Motor andIts Self-Oscillation Driving Circuit. T. Maeno. IEEE/ASME Transactions on Mechatronics. 2004, 9(3): 474-480
    124 Motoyoshi Kawai. Research of a Spherical Motor with 3 Dof Driven by Ultrasonic Linear Actuators.精密工学会志(JSPE). 1993, 38(3): 405-410
    125 Purwanto Eko, Shigeki Toyama. Development of an Ultrasonic Motor as a Fine-Orienting Stage. IEEE Tans-actions on Robotics and Automation. 2001, 17(4): 464-471
    126 Brian Andersen. Method for Modelling of Piezomotors Analysis of Resonator, Contact and Experimental Investgations. Department of Control Engineering Aalborg University. Aalborg, Denmark, 2002: 496-507
    127 Aoyagi, Manaba, Steve P.Beeby. Anovei,Multi-Degree-of-Freedom Thick-Filmul Trasonic Motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2002, 49(2): 151-158
    128 E Purwanto, S Toyama, [A].[C].2003.132, 1326. Control Method of Aspheric of a Spherical Ultrasonic Motor. Proc.2003 IEEE/PASME Internation Conf.AnvancedI ntelligent Mechatronics. 2003, 1321-1326
    129 Manabu AOYAGI, Toshinori NAKAJIMA, Yoshiro TOMIKAWA, Takehiro TAKANO. Examination of Disk-Type Multidegree-of-Freedom Ultrasonic Motor. The Japan Society of Applied Physics. 2004, 43(5B): 2884-2890
    130 Takemura K, Ohno Y, Maeno T. Design of a Plate Type Multi-Dof Ultrasonic Motor and Its Self-Oscillation Driving Circuit. IEEE-Asme Transactions on Mechatronics. 2004, 9 (3): 474-480
    131 P. Vasiljev, S. Borodinas, R. Bareikis , R. Luchinskis. The Square Bar-Shaped Multi-Dof Ultrasonic Motor. Journal of Electroceramics. 2008, 20(8): 231-235
    132李志荣,赵淳生,黄卫清.圆柱形多自由度超声电机特性的实验研究.中国机械工程. 2005, 16(17): 1567-1570
    133李志荣,黄卫清,赵淳生.圆柱-球体三自由度超声电机的研究.压电与声光. 2005, 27(05): 486-488
    134 Kenjiro Takemura, Dai Harada, Takashi Maeno. A Master-Slave System Using a Multi-Dof Ultrasonic Motor and Its Controller Designed Considering Measured and Simulated Driving Characteristics. Maui, HI, 2001: 1977-1982
    135金龙,胡敏强,顾菊平,莫岳平,徐志科,王心坚.一种新型圆柱定子3自由度球形压电超声电机.东南大学学报(自然科学版). 2002, 32(04): 620-623
    136曾平,程光明,杨志刚,吴博达,吴献威,陈西平.单振子多自由度压电马达研究.压电与声光. 2000, 22(05): 306-308
    137吴献威,程光明,杨志刚,吴博达,陈西平.圆环驻波型多自由度压电马达的研究.压电与声光. 2000, 22(02): 95-97
    138 Xu Zhike, Hu Minqiang, Jin Long, Gu Juping, Fei Shumin. A Novel 3-Dof Ultrasonic Motor with Two Cylinder Stators Clamped. Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International. 2007: 721 - 724
    139 Minghui Zhang, Wei Guo, Lining Sun. A Multi-Degree-of-Freedom Ultrasonic Motor Using in-Plane Deformation of Planar Piezoelectric Elements. Sensors and Actuators A: Physical. 2008, 148(1): 193-200
    140金家楣,张建辉,赵淳生.新型多轴旋转超声电机原理.振动、测试与诊断. 2008, 28(4): 369-372
    141 A. Ferreira, P. Minotti. Control of a Multidegree of Freedom Standing Wave Ultrasonic Motor Driven Precise Positioning System. Review of Scientific Instruments. 1997, 68(4): 1779-1786
    142曾平,韩邦成,程光明,杨志刚,王勇.平移式多自由度压电马达的研究.压电与声光. 2001, 23(8): 269-271
    143刘俊标,黄卫清,赵淳生.一种新型的二自由度直线型超声电机.压电与声光. 2001, 23(5): 346-348
    144 Li Chaodong. Design of an X-Y Multi-Degree-of-Freedom Ultrasonic Planar Actuator Using Contour and Flexural Vibrations of Square Thick Plate by Finite Element Modeling. The First International Workshop on Ultrasonic Motors and Actuators. 2005: 19-20
    145 Chaodong Li, Shi Xu, Runfeng Liu. Dynamic Analysis and Optimal Design of a Novel Small 2-D Planar Ultrasonic Motor. IEEE Ultrasonics Symposium. 2006: 2269-2272
    146 Sounkalo Demb′el′e, Karima Rochdi. A Three Dof Linear Ultrasonic Motor for Transport and Micropositioning. Sensors and Actuators A , 2006, 125(2): 486-493
    147 IEEE Std. Ieee Standards on Piezoelectricity. The Institute of Electrical and Electronics Engineers, 1987
    148韩西京赵淳生.超声马达的驱动与控制技术研究进展.振动、测试与诊断. 1999, Vol.19(6): 87-98
    149 Tierney J, Rader C M. A Digital Frequency Synthesizer. . IEEE Trans. On Audio and Electroacoustics. 1971, AU-19(3): 48-57
    150 M. Chiba, M. Takahashi, M. Kurosawa. Contact and Driving Condition of a Acoustic Wave Motor. Proc. Of IFAC Conf. on Control of Industrial System. 1997: 20-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700