四驱动足纵振复合超声驱动器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声电机由于结构灵活、高精度、响应速度快、无电磁干扰等诸多优点,已成为国内外学者的关注热点。目前理论比较成熟、最具有实用化潜力的旋转超声电机是传统的贴片式行波超声电机和新兴起的换能器式行波超声电机,但二者由于工作原理的限制和结构的缺陷,均存在一定的局限性。
     本文在分析了上述两类电机弊端的基础上,提出了一种新型的四驱动足纵振复合超声驱动器。该驱动器力求在保留换能器式超声电机利用压电陶瓷d33工作模式的高效率的同时,在结构上突破旋转电机由环形行波驱动的传统思维,将驱动器设计为四个换能器的组合结构,直接在换能器端点设置驱动足驱动转子。该驱动器不仅结构更简单紧凑,而且具备更高的能量转换效率和更大的驱动力矩。
     对提出的驱动器构型进行理论分析,以考察方案的可行性。从模态分析到模态综合的思路分析了驱动器的复合工作模态;分析了工作模态的激励原理,推导了驱动足质点运动方程,验证了具备良好驱动能力的椭圆轨迹的存在;结合工作模态和驱动足的运动轨迹来考察驱动器在一个振动周期内的致动机理,验证了所有驱动足具备协调一致的驱动能力,从理论上证明了驱动器方案的可行性。
     借助有限元分析软件进行仿真研究,以确定驱动器的精确尺寸。在理论分析的基础上,通过对纵振换能器的模态分析和瞬态分析,确定其尺寸参数;设计了能满足结构和预紧要求的锯齿形弹簧块,通过静态分析,确定其锯齿参数;最后建立整个驱动器的有限元模型,进行模态分析、瞬态分析、谐响应分析,通过仿真结果确定驱动器各部分的最终尺寸。
     本文制作了实验样机,并对其进行了阻抗匹配,搭建了实验测试平台,对样机的各项性能进行测试,验证了理论分析和仿真设计的正确性,并针对测量结果与理论和仿真分析的偏差,分析了其原因。
The ultrasonic motor(USM) is due to the structure, high precision and quick response and no electromagnetic interference, and many other advantages, has become the attention of scholars at home and abroad. Currently, the most mature and practical motor, the traditional patch-type traveling wave USM and the fashioned traveling wave USM using ceramic transducer, due to the limitations of working principle and unreasonable structure, have certain defects.
     This paper analyzes the disadvantages of the two kinds of afore-mentioned motor, puts forward a new kind of ultrasonic driver composed by four longitudinal transducer and four driving feet located of both the end points of transducer. The ultrasonic driver retains the efficient d33 coupling mode. Breaking through the traditional thinking of motor is driven by circular wave, the ultrasonic driver is designed based on four transducer composite structure, with four feet driving the rotor directly. The ultrasonic driver not only have more simple and compact structure, also have higher energy conversion efficiency and stronger driving torque.
     To examine the feasibility of the scheme, this paper theoretically analysis on ultrasonic driver. According to the idea of from the modal analysis to the modal synthesis, this paper discusses composite work modal of the ultrasonic driver, explores the principle of stimulating this work modal, motion equation, deduces the motion equation of the particle on driving foot, verify the oval tracks which have good ability to drive rotor, combining the working mode and driving foot trajectory to investigate the vibration of ultrasonic driver in a cycle of motivation, confirms that all driving feet have driving ability in phase, proved the feasibility of the ultrasonic driver scheme in theory.
     Based on the finite element analysis software, simulation research is conducted to determine the exact dimensions of the ultrasonic driver. On the basis of theoretical analysis, through the modal analysis and transient analysis of longitudinal transducer, its size parameters are determined; To meet the requirement of special structure and pre-tightening, the saw-tooth-shaped spring pieces are designed, and by static analysis, all its serrated parameters can be determined; Finally, establish the finite element model of the ultrasonic driver, and produce modal analysis, transient analysis, and the harmonic response analysis. Simulation results determine the sizes of each part of ultrasonic driver eventually.
     This paper makes a prototype, and analyses the impedance matching, build a simple test platform for measuring the various mechanical characteristics of prototype, verifies the correctness of theory analysis and simulation, and according to the deviation of measurement results and theoretical analysis and simulation, discusses the reasons.
引文
1赵淳生.超声电机技术与应用.科学出版社, 2007
    2赵淳生.对发展我国超声电机技术的若干建议.微电机. 2006(02): 64~67
    3周铁英,陈宇.超声电机的发展与展望.第十二届中国小电机技术研讨会,中国上海, 2007: 114~123
    4 Iula A, apalardo M. A high-power traveling wave ultrasonic motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006, 53(7): 1344~1351
    5 Roh Y, Kwon J. Development of a new standing wave type ultrasonic linear motor. Sensors and Actuators a-Physical, 2004, 112(2-3): 196~202
    6 Y. Roh, J. Kwon. Development of A New Standing Wave Type Ultrasonic Linear Motor. Sensors and Actuators. 2004, 112(2-3):196~202
    7上玉正兴,富川一郎(杨志刚译).超声波马达理论与应用.上海科学技术出版社, 1998
    8 Gong, H. X. Guo, X. Liu, K. H. Ji. Force transfer model and characteristics of hybrid transducer type ultrasonic motors. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(4): 387-395
    9 Y. Tomikawa, T. Takano and H. Umeda. Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes. Japanese Journal of Applied Physics. 1992, 31(9B): 3073~3076
    10 T. S. Glenn. Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device. Massachusetts Institute of TechnologyDoctor Thesis. 2002.
    11 Lin Shuyu. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite xibrational mode. Ultrasonics. 2006, 44: 109-114
    12 B. Koc, P. Bouchilloux and K. Uchino. Piezoelectric Micromotor Using a Metal-Ceramic Composite Structure. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2000, 47(4): 836~843
    13石胜君,陈维山.基于夹心弯振换能器的双向驻波超声直线电机.微特电机. 2007, 35(7): 25~27
    14苏鹤玲,赵向东,赵淳生.单相驱动旋转型驻波超声电机的运动机理.压电与声光. 2001, 23(04): 306-312
    15郑伟,朱春玲,卢丹,等.高温环境下旋转型行波超声电机性能研究.中国电机工程学报. 2008, 28(21): 85-89
    16曲建俊,周铁英,姜开利,袁世明.行波超声马达定子和转子接触状态实验研究.声学学报(中文版). 2003, 28(3): 217~222
    17陈宇,刘庆利,周铁英.大力矩行波超声电机的性能.清华大学学报(自然科学版). 2006, 46(3): 396~398
    18 S. Cagatay, B. Koc and K. Uchino. A 1.6-Mm, Metal Tube Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(7): 782~786
    19鹿存跃,李洁,赵淳生,周铁英.纵扭型超声电机的实验研究.清华大学学报(自然科学版), 2006, 46(6): 851-854
    20 S. X. Dong, J. D. Zhang, H. W. Kim, M. T. Strauss, K. Uchino and D. Viehland. Flexural Traveling Wave Excitation Based on Shear-Shear Mode. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(10): 1240~1246
    21郝铭.纵弯复合平面超声电机及驱动系统的研究.哈尔滨工业大学博士论文. 2009
    22 L. Petit and P. Gonnard. Industrial Design of a Centimetric "Twila" Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 120(1): 211~224
    23 S. Manuspiya, P. Laoratanakul and K. Uchino. Integration of a Piezoelectric Transformer and an Ultrasonic Motor. Ultrasonics. 2003, 41(2): 83~87
    24 E. Vyshnevskyy, S. Kovalev and W. Wischnewskiy. A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(11): 2047~2053
    25 R. Carotenuto, G. Caliano, A. Caronti, A. Savoia and M. Pappalardo. Flexible Acoustic Fiber Ultrasound Motor Modeling Using Impedance and Transmission Matrices. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006, 53(7): 1381~1386
    26 L. Petit and P. Gonnard. Inter-Phases Mechanical Coupling in Ultrasonic Motors. Sensors and Actuators a-Physical. 2004, 116(3): 492~500
    27 R. Carotenuto, G. Caliano, A. Caronti, A. Savoia and M. Pappalardo. Fast Scanning Probe for Ophthalmic Echography Using an Ultrasound Motor. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(11): 2039~2046
    28 A. Iula and M. Pappalardo. A General Model of the Axle Vibration in Piezoelectric Motors. Ultrasonics. 2004, 42(1-9): 291~296
    29石胜君.压电-金属纵向叠加复合梁结构直线超声电机的研究.哈尔滨工业大学博士学位论文, 2007
    30许海,赵淳生.双足型直线超声电机的实验研究.机械科学与技术, 2007, 26(11) 1498~1500
    31 J. L. Pons, H. Rodriguez, J. F. Fernandez, M. Villegas and F. Seco. Parametrical Optimisation of Ultrasonic Motors. Sensors and Actuators a-Physical. 2003, 107(2): 169~182
    32 J. Kim and J. H. Lee. Self-Moving Cell Linear Motor Using Piezoelectric Stack Actuators. Smart Materials & Structures. 2005, 14(5): 934~940
    33 K. J. Lim, S. H. Kang, J. S. Lee, S. H. Park, Y. J. Yun and H. H. Kim. The Design and Characterization of Ultrasonic Motor for Optical Zooming of Camera in Mobile Phones. Ferroelectrics. 2006, 338: 1465~1472
    34 Y. H. Kim and S. K. Ha. Analysis of a Disk-Type Piezoelectric Ultrasonic Motor Using Impedance Matrices. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(12): 1667~1677
    35赵学涛,陈维山,刘军考.三种基于夹心换能器驱动的球形超声马达设计.组合机床与自动化加工技术. 2006, 7): 11~14
    36 C. S. Zhao, Z. R. Li and W. Q. Huang. Optimal Design of the Stator of a Three-Dof Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 121(2): 494~499
    37 J. F. Guo, S. J. Gong, H. X. Guo, X. Liu and K. H. Ji. Force Transfer Model and Characteristics of Hybrid Transducer Type Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(4): 387~395
    38 T. Y. Zhou, K. Zhang, Y. Chen, H. Wang, J. G. Wu, K. L. Jiang and P. Xue. A Cylindrical Rod Ultrasonic Motor with 1 Mm Diameter and Its Application in Endoscopic Oct. Chinese Science Bulletin. 2005, 50(8): 826~830
    39 Shyh-Shiuh Lih,Yoseph Bar-Cohen. Rotary ultrasonic motors actuated by traveling flexural waves. SPIE, 2004, 3041: 912~917
    40 Lionel Petit, Paul Gonnard. A multilayer TWILA ultrasonic motor, Sensors and Actuators A, 2009, 149: 113~119
    41 F. Zhang, W. S. Chen, J. A. Liu and Z. S. Wang. Bidirectional Linear Ultrasonic Motor Using Longitudinal Vibrating Transducers. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 134~138
    42 R. J. Wai and C. H. Tu. Design of Total Sliding-Mode-Based Genetic Algorithm Control for Hybrid Resonant-Driven Linear Piezoelectric Ceramic Motor. IEEE Transactions on Power Electronics. 2007, 22(2): 563~575
    43 J. J. Qu, F. Y. Sun and C. S. Zhao. Performance Evaluation of Traveling Wave Ultrasonic Motor Based on a Model with Visco-Elastic Friction Layer on Stator. Ultrasonics. 2006, 45(1-4): 22~31
    44 Erdal Bekeroglu, Ultrasonic motors: Their models, drives, controls and applications. Journal of Electroceramics, 2008, 20: 277~286
    45 F. J. Lin and P. H. Shieh. Recurrent Rbfn-Based Fuzzy Neural Network Control for X-Y-Theta Motion Control Stage Using Linear Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2006, 53(12): 2450~2464
    46 S. X. Dong, L. Yan, N. G. Wang, D. Viehland, X. N. Jiang, P. Rehrig, W. Hackenberger. A small, linear, piezoelectric ultrasonic cryomotor. Applied Physics Letters. 2005, 86(5)
    47张敏.纵振夹心换能器式圆筒型行波超声电机理论与实验研究.哈尔滨工业大学硕士论文. 2008
    48李培.内嵌PZT陶瓷环形行波超声电机的研究.哈尔滨工业大学硕士论文. 2009
    49李有光,陈在礼,陈维山,谢涛,刘军考.柱面驱动新型行波超声电机研究.西安交通大学学报. 2008, 42(11):1391-1393
    50 Chen Weishan, Shi Shengjun. A Bidirectional Standing Wave Ultrasonic Linear Motor Based on Langevin Bending Transducer. Ferroelectrics. 2007, 350(5): 102~110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700