纵弯复合模式多自由度超声电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电超声电机是近年迅速发展起来的一种新型电机。它是以超声振动为动力源的一种驱动装置,通常由超声振动的振子(定子)与转子组成。定子产生超声振动,依靠转子与定子间的摩擦耦合来驱动转子产生旋转和直线运动。这种电机的新颖之处在于突破了传统电磁电机的概念,没有磁极绕组和磁路,不是依靠电磁相互作用来传递能量,而是利用压电材料的逆压电效应所产生的超声振动,通过采用合理的结构,将材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。在这种全新结构的电机中,作为定子的压电振子(压电陶瓷和弹性体)代替了传统电磁电机中成千上万圈的铜丝。与传统的电磁电机相比,超声电机除了具有结构简单,重量轻的优点,还具有惯性小,响应快,控制特性好,不受磁场影响,运动准确,成本低等特点。特别是它具有重量轻,结构简单,效率高,噪音小,低速大转矩以及直接驱动负载等特性。由于电机具有几转一几百转/分的转速,所以不需要附加齿轮变速,避免了引用齿轮变速箱而产生的振动、冲击、噪声、低效率、难以控制等一系列问题,它的出现是对延续数百年来的杠杆和涡轮系统占统治地位的机械转动的突破和有利补充。
     纵弯复合模式超声电机因具有可控性好,输出功率高,转矩大,正反转特性一致,低速稳定性好等特性而受到国内外人士的高度重视。本文以纵弯复合模式压电超声电机为研究对象,在前人研究的基础上,对纵弯复合模式多自由度超声电机进行了研究,设计了电机实体模型,提出了纵弯振动频率计算及修正方法,并在电机法兰盘结构设计等方面进行了系统的研究,主要工作如下:
     (1)通过有限元仿真,设计纵弯复合模式多自由度超声电机,并加工了超声电机的实体模型。
     采用有限元分析软件,建立了纵弯复合模式多自由度超声电机的模型,进行了多自由度超声电机的振动模态分析,通过改变电机尺寸,找到两个振动模态耦合的振动频率,获得两种振动模式都可以被有效激励的电机工作频率。以此为依据,设计出纵弯复合模式多自由度超声电机,进行原型电机的实际加工。
     (2)建立纵弯复合模式多自由度超声电机的等效电路模型。
     纵弯复合模式模式多自由度超声电机是通过将两种及以上振动以一定的方式组合来完成转子的多自由度转动。建立具有多种振动模式电机的等效电路将是分析此类电机性能的一种有效方法。根据设计的纵弯复合模式多自由度超声电机的实际结构,建立了电机的等效电路,应用等效电路模型,获得压电元件的各种参数对电机工作性能的影响,考虑电机的实际设计对电机振动频率的影响,对电机的等效电路进行了修正,通过数值方法,计算了电机的振动频率,并与有限元仿真频率进行了比较,从而给出电机工程设计中用等效电路方法计算电机振动频率的方法。
     (3)理论推导了电机纵弯振动模式的频率方程,并结合电机的实际振动模式对电机振动频率进行了修正。
     根据电机的振动模式,理论推导了电机的纵弯模式振动频率方程,考虑电机的实际振动模式之间的相互影响,提出了有效质量的概念。根据电机的弯曲振动对电机的纵向振动的影响,对纵向振动频率进行了修正;考虑电机的纵向振动对电机的弯曲振动的影响,对弯曲振动频率进行了修正,并对修正后的计算值与测量值进行比较,验证了多自由度超声电机设计中频率修正方法正确性。
     (4)测量了纵弯复合模式多自由度超声电机的振动模态,并设计了电机的法兰盘结构。
     为了实现超声电机的工业应用,根据超声电机的纵弯振动模式及工作机理,应用有限元仿真的方法确定电机的纵弯振动位移曲线,根据位移的分布特点设计了电机的法兰盘结构,并对电机加法兰盘前后纵弯振动频率及测量值进行了比较,证明法兰盘结构对电机的振动特性影响不大,法兰盘设计对电机工业应用提供了方便。
Piezoelectric ultrasonic motor is a new type of motor which developed rapidly in recent years. It is a driving device with ultrasonic vibration as the power source. It consists of the vibrator (stator) of ultrasonic vibration and the rotor which attached to stator. The stator generates ultrasonic vibration, which drives the rotor to generate rotary and linear motion by relying on the friction coupling between the rotor and the stator. The motor is characterized by that breaks through the concept of traditional electromagnetic motor, no magnetic pole windings and magnetic circuit. Instead of relying on the electromagnetic interaction to transmit energy, ultrasonic motor uses the ultrasonic vibration generated by the converse piezoelectric effect of piezoelectric material. Through the reasonable structure, the material microscopic deformation is switched to macroscopic movement of the rotor or the slider by resonance amplifier and friction coupling. In this kind of new structure of motor, instead of thousands upon thousands of copper wires, piezoelectric vibrato acts as the stator. Compared with traditional electromagnetic motors, ultrasonic motors not only have the advantages of simple structure and light weight, but also have characteristics of small inertia, fast response, good control, not affected by magnetic fields, motion accuracy, low cost etc. Especially, it has the characteristics of light weight, simple structure, high efficiency, low noise, low speed high torque and directly drive the load characteristics. The motor can reach the speed of hundreds of RPM (revolutions per minute), so that there is no need for additional gear, therefore to avoid a series of problems, such as vibration, shock, noise, low efficiency, difficult to control which are generated by transmission gear box. To mechanical rotation which dominated by lever and turbine system for hundreds of years, its appearance is a beneficial supplement, a significant breakthrough..
     Owing to longitudinal-flexural composite mode ultrasonic motor has characterist-ics of better controllability, higher output power, bigger torque, consistent positive inversion characteristics, low-speed stability, it is valued highly by the people at home and abroad. In this paper, the longitudinal-flexural composite mode piezoelectric ultrasonic motor is studies. On the basis of previous studies, the longitudinal-flexural composite mode ultrasonic motor with multi-DOF (multi degree of freedom) is investigated and discussed in this paper. Designing of the motor entity model, calculating and correcting the longitudinal and bending vibration frequency, designing the flange structure of the electric motor and other aspects of the system theory, these are all the research tasks of this thesis. It can provide the theoretical basis for design of the industry motor and promote the industrialization development of the motor. The main works of this thesis are given as follows:
     (1)Designing the longitudinal-flexural composite mode ultrasonic motor with multi-DOF and matching its entity model by means of finite element simulation.
     In this thesis, through finite element analysis, the model of longitudinal-flexural composite mode ultrasonic motor with multi-DOF is established accurately. The vibration model is analyzed in detail. The vibration frequency of two vibration model coupling is fond out by changing the size of the motor, the motor working frequency which can effective two vibration modes is obtained. According to these, the principle structure diagram of the longitudinal-flexural composite mode ultrasonic motor with multi-DOF is designed and the prototype motor is matching in practice.
     (2) Establish the equivalent circuit model of longitudinal-flexural composite mode ultrasonic motor with multi-DOF.
     Longitudinal flexural composite mode ultrasonic motor with multi-DOF completes multiple degree of freedom rotation of rotor through two or more vibration in a certain way combination. Setting up the equivalent circuit of multiple vibration modes motor is a kind of effective method to analysis the performances of this kind of motor. According to the actual motor structure, the electrical equivalent circuit is established, therefore the influences of various parameters of piezoelectric element which act on the operating performance are achieved by the application of model of equivalent circuit. Considering the influences of the actual motor design of motor to vibration frequency, the equivalent circuit of electrical motor is amended. The motor's vibration frequency is calculated through numerical simulation and compared with the frequency achieved by finite element analysis. This gives the method for the calculation of motor vibration frequency using equivalent circuit in the design of motor engineering.
     (3)Give the theoretical derivation of frequency equation of motor longitudinal flexural vibrating mode and amend the vibration frequency of motor by combining with the actual vibration mode.
     According to the vibration model of the motor, the theoretical derivation of vibration frequency equations of longitudinal-bending mode is given. Considering the mutual influences between actual vibration modes of motor, the effective mass is proposed. The longitudinal vibration of the motor is correct using bending vibration of motor. The bending vibration is correct using the longitudinal vibration of motor. Compare the revised values with measured values, the correct method of frequency in the design of ultrasonic motor with multi-DOF is put forward.
     (4) Measure the vibration mode of longitudinal-flexural composite mode ultrasonic motor with multi-DOF and design the flange structure of motor.
     In order to popularize industrial application of motor better, the displacement curve of flexural and longitudinal vibration is achieved by finite element analysis according to the flexural and longitudinal vibration mode of ultrasonic motor and the working mechanism. Furthermore, flange structure of the motor is designed. In addition, the vibration frequency of longitudinal-bending model before and after adding the flange plate are compared with corresponding measured values, the flange design provides a convenient for industrial applications of motor.
引文
[1]赵淳生.世界超声电机技术的新进展[J].振动、测试与诊断,2004,24(1).1-5.
    [2]李志荣,黄卫清,赵淳生.多自由度超声电机研究的一些新进展[J],振动、测试与诊断,2003,23(3):161-164.
    [3]刘俊标,黄卫清,赵淳生,多自由度球形超声电机的发展和应用[J], 振动测试与诊断,2001,21(2):85-89
    [4]朱华,赵淳生.微型旋转超声电机的发展和现状[J],压电与声光,2005,06-0627-04.
    [5]张小凤,张光斌,多自由度超声电机的研究现状与展望[J],物理,2009,38(1):41-45.
    [6]赵淳生,李朝东.日本超声电机的产业化、应用和发展[J].振动、测试与诊断,1999,19(1):1-7.
    [7]赵淳生,朱华.超声电机技术的发展和应用[J].机械制造与自动化,2008,37(3):1-9.
    [8]金龙,朱美玲,赵淳生.国外超声马达的发展与应用[J].振动、测试与诊断,1996,16(1):1-7.
    [9]周铁英,张立群.扭纵超声马达振动频率系统共振频率简并的研究[J],压电与声光,2000,21(2):150-152.
    [10]李志荣,赵淳生,黄卫清.圆柱形多自由度超声电机的特性试验研究[J],中国机械工程,2005,16(17):1567-1568.
    [11]Zhang X, Nakakmura K, Ueha S. Two joint robot finger design based on mult-DOF ultrasonic motors[J]. Acoustical Science and Technology, 2009,30(1):42-48.
    [12]赵学涛,陈维山,郝铭.纵弯复合多自由度超声电机的研究[J],西安交通大学学报,2009,43(8):107-124.
    [13]张小凤,张光斌,多自由度超声波电机及其转子支持机构研究[J],陕西师范大学学报:自然科学版,2010,38(5):33-36.
    [14]杜功焕、朱哲民、龚秀芬.声学基础[M],2009,132-147.
    [15]Takemura K,Park S,maeno T.Control of multi2DOF ultrasonic motor for dexterous surgical instrument [J]. Acoustical Science and Vibration,2008, 311:652-666.
    [16]Kawano H,Ando H,H irahara T,et al.Application of a mult-DOF uitrasonic servomotor in an auditory tele2existence robot[J].IEEE Trans on Robotics,2005,21 (5):79-82.
    [17]刘艳,吴一非.Matlab语言与控制系统仿真[J].抚顺石油学院学报,1999,19:125-127.
    [18]王国强.使用工程数模拟值技术及其在ANSYS上的实践.西安:西北工业出版社.1999.30-120.
    [19]周福洪,水声换能器及基阵[M],哈尔滨工程大学翻印,1996,62-67
    [20]张云电,夹心式压电换能器及应用[M],科学出版社,2006,59-66
    [21]S. Toyama, S. Hatae, M. Nonaka, Multi-degree-of-freedom spherical ultrasonic motor[J], Proc. Int. Conf. Robotics and Automation,1995,2935-2940
    [22]S. Toyama, S. Sugitani, G. Zhang, Y. Miyatani, K. Nakamura, Multi degree of freedom spherical ultrasonic motor[J], IEEE Intel. Conf. on Robotics and Automation,1995,2935-2940
    [23]林书玉,超声换能器原理及设计[M],科学出版社,2004,179-185.
    [24]杜功焕、朱哲民、龚秀芬,声学基础[M],2009,132-147
    [25]曹辉、林书玉,纵扭复合振动马达谐振频率的理论研究[J],西北大学学报,2006.10,57-60.
    [26]曹辉、叶发根、林书玉,纵扭复合超声马达共振频率研究[J],压电与声光,2010.10,45-47.
    [27]曹辉.纵扭复合压电超声马达的研究[D],博士论文,2004.4
    [28]林书玉,弯曲振动超声换能器的振动特性及辐射声场研究[J],陕西师大学报2003.9,34-36.
    [29]原林,纵弯振动换能器共振频率特性及有限元仿真[J],甘肃联合大学学报,2008.11:98-100.
    [30]李志荣,圆柱形多自由度超声电机椭圆倾角和接触角的研究[J],中国机械工程,第18卷第22期,2007.11:112-114.
    [31]赵淳生,圆柱形多自由度超声电机特性的实验研究[J],中国机械工程,第16卷17期,2005,9:113-115.
    [32]张爱民.自动控制原理[M].北京:清华大学出版社,2006:94-97.
    [33]何东健,刘忠超,范灵燕.基于Matlab的PID控制器参数整定及仿真[J].西安科技大学学报,2006,26(4):511-523.
    [34]史敬灼,候义铭.超声波电机低成本驱动电路[J].电气传动,2007,37(1):62-64.
    [35]朱美玲,金龙,赵淳生,旋转型行波超声马达传动机理研究[J].应用力学学报,1996,13:13-77.
    [36]薛定宇.控制系统计算机辅助分析—Matlab语言及应用[M].北京:清华大学出版社,1996.
    [37]袁世明,周铁英.高性能超声电机驱动及控制电路的研制[J].自动化与仪器仪表,2003,4:32-34.
    [38]付志强,林书玉.大尺寸余弦形超声变幅杆设计[J],声学技术,2008,27:765-768.
    [39]TOMONOBU Senjyu,Mitsuru Nakamura,Naomitsu Urasaki.Mathematical Model of Ultrasonic Motors for Speed Control[J].IEEE Trans,1998,36(2):290-295.
    [40]Chunsheng Zhao, Development and applications of ultrasonic motors in China. The Second International Workshop on Piezoelectric Materials and Applications in Actuators. Paderborn,2005:22
    [41]SENBARU,Nishibara,Nakagami.Speed control of ultrasonic motors by adaptive controlwithasimplifiedmathematicalmodel[J].Electr.Apply,1998,145(3):180-183.
    [42]S. Toyama, S. Hatae, M. Nonaka, Advance Robotics[J],1991,1:55-57.
    [43]S. Toyama, S. Sugitani, etc., Multi degree of freedom spherical ultrasonic motor[J], IEEE International Conference on Robotics and Automation, Nagoya, 1995:29-35.
    [44]郭吉丰,傅平,多自由度行波型超声波电机的基础研究[]],电工电能新技术,2005,24(2):65-69.
    [45]傅平,郭吉丰,沈润杰,球形行波型超声波电机的驱动数学模型[J],中国电机工程学报,2006,26(23):115-117.
    [46]Amano,T. Ishii, K. Nakamura, A ultrasonic actuator with multi-degree-of-freedom using bending and longitudinal vibration of a single stator, IEEE, Ultrasonic Symposium. Miyagi,1998:667-669.
    [47]竹村研治郎,前野隆司,振动型激励器的控制装置、控制方法及系统[J],日本音響学会誌[J],2001,57(7):445-447.
    [48]林书玉,田华,径向复合压电陶瓷超声换能器的特性研究[J],2007,32(7):310-315.
    [49]K.Takemura,ShinsukPark,T.Maeno,Journalofsoundandvibration[J],2008,311 (1):65 2-655.
    [50]Hunsheng Zhao, Research on ultrasonic motors in NUAA, The First International Workshop on Ultrasonic Motors and Actuators, Yokohama,2005:9
    [51]刘俊标,黄卫清,赵淳生,多自由度球形超声电机的发展和应用[J].振动、测试与诊断,2001,21(2):85-88.
    [52]Zhirong Li, Chunsheng Zhao, Weiqing Huang, etc, Sensors and Actuator[J], A 2007,136:704-708.
    [53]金龙,顾菊平,胡敏强等,超声波电动机技术创新点的设定[J],中国电机工程学报,2004,24(9),163-165.
    [54]顾菊平,金龙,胡敏强等,圆柱定子三自由度球转子超声波电机的轨迹运动方程[J],中国电机工程学报,2005,25(10),154-157.
    [55]M. Aoyagi, S. Beeby, N. White, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control[J],2002,49(2):151-155.
    [56]M. Aoyagi, T. Nakajima, Y. Tomikawa and T. Takano, ShankerEnergy and angular distributions of backscattered [J],Jpn. J. Appl. Phys.,2004,43(5B): 2884-2886.
    [57]李志坚.微电子技术的又一次革命一微电子机械系统(MEMS)发展展望[J].科技导报,1997(9):3-5.
    [58]MORONEY R M, WHITE R M, HOWE R T. Ultra-sonic micromotors [C].Montreal Canada: IEEE Ultra-sonic Symposium,1989.745-748.
    [59]FLYNN A M, TAVROW L S, BART Stephen F, etal. Piezoelectric micromotors for microrobots [J]. Journal of Microelectromechanical System,1992,1(1):44-51.
    [60]RACINE G A, LUTHIER R, ROOIJ N F de. Hybrid ultrasonic micromachined motors [C]. Florida: Proc.7th IEEE Int Conf Micro Electro Mechanical Systems Workshop,1993-128-132.
    [61]TANI K, SUZUKI M, FURUTA K, et al. Development of a new type piezoelectric micromotor [C]. Heidelberg Germang:Proc 11th IEEE Ann Int Workshop on Micro Electro Mechnical Systems,1998.396-401.
    [62]张凯,周铁英.三种弯曲旋转超声电机的原理及研究[J].压电与声光,2002,24(3):191-195.
    [63]许海,赵淳生.直线型超声电机的发展及应用[J].中国机械工程,2003,14(8):715-717.
    [64]赵增辉,王育平,袁义坤,陈波.直线超声电机的研究与应用现状[J].电机与 控制应用,2008,35(9),117-119.
    [65]周铁英等.三梁纵弯扭超声驻波电机.声学学报,1998. Vol23. NO1,45-47.
    [66]袁小红,刘俊标,赵淳生,一种新型驻波直线超声电机的研究,压电与声光,2009, Vol23. N03,198-201.
    [67]周铁英,巫庆华,超声对摩擦力的影响.声学学报.2000.25(2).114-119
    [68]林书玉.大功率纵扭超声振动系统研究.声学技术.1997.16(4).205-208.
    [69]陈志华,赵淳生.超声电机控制中的若干关键问题[J].驱动控制,2002,2:23-25.
    [70]周光平.超声振动系统纵-扭和扭-弯复合振动,声学学报,2001,26(5),435-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700