轴类部件旋转弯曲微动疲劳损伤分析及试验模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴类构件过盈配合连接具有结构紧凑、对中性好以及冲击小等优点,被广泛用于传递动力和运动。但是,大量工业实践表明,过盈配合面间的微动损伤极大地降低了过盈配合构件的疲劳强度,造成了巨大的经济损失和人员伤亡。目前微动疲劳领域的研究大多集中在简化的切向微动疲劳模式,而工业中的轴类构件受旋转弯曲微动疲劳载荷,其损伤是弯曲微动疲劳和拉扭微动疲劳耦合作用的结果。关于旋转弯曲微动疲劳损伤的研究报道较少,开展轴类零件过盈配合结构的旋转弯曲微动疲劳研究,不仅对认识和深化复杂微动疲劳损伤机理有重要的理论意义,而且也能为实际工程的抗微动疲劳损伤设计提供的理论指导。
     为揭示轴类构件微动损伤的现象和本质,本研究以实际列车轮轴和电机轴/小齿轮轴的过盈配合部位为研究对象,利用光学显微镜、扫描电子显微镜、电子能谱、光电子能谱、里氏硬度仪和3D形貌仪等先进微观分析手段,进行了详细的失效分析,结果表明典型轴类部件过盈配合区的断裂失效是旋转弯曲微动疲劳的结果。
     本研究研制了一套模拟轮轴服役行为的旋转弯曲微动疲劳试验系统,实现了缩比结构的旋转弯曲微动疲劳试验模拟,很好地重现了轮轴的旋转弯曲微动疲劳损伤现象。本研究,针对LZ50车轴钢和30CrNiMo8钢,在不同参数(弯曲疲劳载荷、接触应力、旋转速度等)下系统地进行了轮轴缩比结构的旋转弯曲微动疲劳的试验研究,并结合有限元数值模拟,对旋转弯曲微动疲劳机理进行了深入研究。
     完成的主要研究内容及结论如下:
     (一)LZ50车轴钢旋转弯曲微动疲劳损伤机理研究
     轮轴缩比旋转弯曲微动疲劳的试验结果重现了实际服役轮座的损伤。在大量试验基础上,建立了LZ50车轴钢缩比试样的旋转弯曲微动疲劳S~N曲线,结果表明疲劳寿命随弯曲疲劳载荷的变化呈现强烈的非单调特征。微观分析发现,外侧损伤带(靠近弯曲载荷一侧)的损伤以微动磨损为主,而内侧损伤带的宽度较小,微动磨损较轻微,损伤主要表现为微动疲劳裂纹;有限元分析结果显示,外侧损伤带内的相对滑移幅值几乎是内侧的3倍,且依赖于外加疲劳载荷。缩比试样断口呈多源性和台阶状特征。研究发现旋转弯曲微动疲劳寿命随试验速度的增加而下降,但损伤机理未发生改变;研究发现改变接触应力(即过盈配合应力),试样的旋转弯曲微动疲劳寿命存在急剧减小的寿命凹区,即对应微动运行的混合区,说明工程应用中应避开该区域;有限元分析发现,Ruiz参数可以预测旋转弯曲微动疲劳寿命随接触应力变化的行为。(二)30CrNiMo8钢旋转弯曲微动疲劳损伤机理研究基于轮轴旋转弯曲微动疲劳缩比试验台,研究建立了30CrNiMo8钢的旋转弯曲微动疲劳S~N曲线,结果显示30CrNiMo8钢的旋转弯曲微动疲劳寿命急剧下降,其疲劳极限仅约90MPa。30CrNiMo8钢的旋转弯曲微动疲劳损伤现象类似于LZ50钢,但其寿命对微动疲劳损伤更敏感,几乎在所有外加疲劳载荷水平下,在试样损伤带内均发现了微动疲劳裂纹,表现出更强烈的对疲劳载荷的依赖性。(三)轴类构件旋转弯曲微动疲劳损伤机理的基本特征基于典型轴类部件过盈配合部位的失效分析和上述两种钢的旋转弯曲微动疲劳试验研究,总结归纳的旋转弯曲微动疲劳损伤机理的基本特征如下:(1)轴类构件的旋转弯曲微动疲劳的对数疲劳寿命分布特征并不符合传统的Basquin方程,表现出了较强的对疲劳载荷的依赖性。(2)微动损伤发生在过盈配区边缘,微动磨损最严重的位置发生在距接触区边缘
     一定距离的位置,微动磨损带的宽度主要取决于外加疲劳载荷的大小;试样表面微动磨损的机制主要为磨粒磨损、氧化磨损和剥层。
     (3)旋转弯曲微动疲劳的断口呈现多源性和台阶状特征;微动疲劳裂纹萌生于次表层,在裂纹萌生区可见孔洞等缺陷,微裂纹可能是孔洞联通的结果;裂纹扩展呈三阶段特征:a)接触应力控制阶段--裂纹与接触表面的法向呈小角度扩展(约20~40°),并与表面微动磨损倾斜裂纹沟通;b)接触应力和疲劳应力共同控制阶段--随着深度增加接触应力的影响下降,裂纹逐渐转向垂直于接触表面扩展;c)疲劳应力控制阶段--在裂纹垂直于接触表面扩展,其行为相同于常规疲劳,直至最后断裂。
     (4)在旋转弯曲微动疲劳损伤过程中存在局部磨损与疲劳的竞争机制:在接触区外侧区域,应力、应变和滑移幅值均较高,损伤较严重,主要表现为磨损,且磨损后,颗粒的脱落和第三体的形成有效降低了该区域的应力集中,裂纹形成受到抑制;而在内侧,磨损相对轻微,局部疲劳占优,裂纹易形成和扩展。
     (5)旋转弯曲微动疲劳损伤表现出了强烈的材料依赖性,即高强度材料的微动疲劳寿命下降因子高;同时,旋转弯曲微动疲劳损伤也体现出一定的运行速度和疲劳载荷依赖性。
Axial components with interference fit are widely used to transfer power and motion due to the advantages of compact structure, better centering and lower impact. However, a great deal industrial application shows that the fatigue strength of shaft is decreased largely by the fretting damage between the interference fit interfaces, which induces a huge of economic losses and casualties. Presently, most of researches focus on tension-compression fretting fatigue in the field of fretting fatigue. However, the axial components are borne rotary bending fatigue loads whose fatigue damages are the results of the combination of bending fretting fatigue and tension-torsion fretting fatigue. The research reports on rotary bending fretting fatigue (RBFF) are very rare. Thus, the study on RBFF for the interference fit structure of shafts is not only a significant to understand the mechanisms of RBFF, but also can provide some efficient guidance on design of anti-fretting fatigue damage in actual engineering.
     In order to reveal the phenomenon and essence of fretting damage of axial components, the actual components of railway wheel-axle and electric motor axis/pinion shaft were used to do failure analysis in detail by using advanced micro analysis methods of optical microscope, scanning electrical microscope, electron energy dispersive spectrum, X-ray photo electron spectrum, Leeb hardness tester and3D profilometer. The results indicated that the fracture phenomena of interference fit positions of typical axial components are the result of RBFF.
     The main obtained research results are as follows:
     (I) Study on RBFF damage mechanisms of LZ50railway axle steel
     The experimental results of railway wheel-axle in small scale reproduced the RBFF damage of the real wheel seat of axle in service.Based on a number of tests, the S-N curve of small scale samples of LZ50railway axle steel has been established, and the result shows the fatigue life presented a strong non-monotonic behavior with the change of bending fatigue load.The micro-analysis reveals that the outer damage band (close to the sideof bending load end) was dominated by fretting wear. However, in the inner damage band with a narrow width, fretting wear is slight, and the main damage exhibited cracking of fretting fatigue.The result of FEM simulation indicates that the relative slip amplitude in the outer damage band was about three times of the inner one and this value was dependent upon the imposed fatigue load.
     The fracture surface of small scale samples showed the profile of multi-source and step-like feature.The research found that the RBFF life decreased with the increase of test speed, however the damage mechanisms unchanged.lt has been found that with the change of contact stress (z.e.the interference fit stress), the RBFF life exhibited a concave zone in dramatically drop-down, and namely this contact stress region corresponded to the mixed regime of fretting running behavior. Thus, it indicated that the engineering application must avoid this zone/regime.The FEM analysis testified that the Ruiz parameter can be used to forecast the behavior of RBFF life varied with the contact stress.
     (Ⅱ) Study on RBFF damage mechanisms of30CrNiMo8steel
     Based on the small scale RBFF railway wheel-axle test rig, the S-N curve of RBFF of30CrNiMo8steel was established in this research. The result shows that the RBFF life of30CrNiMo8steel was sharply dropped to the RBFF fatigue limit of about90MPa. The fretting damage phenomena of30CrNiMo8steel were similar to the LZ50steel, however, its life was more sensitive to the fretting damage. Under almost all imposed fatigue load levels, the fretting cracks can be observed in all damage bands, which presented much stronger dependence of fatigue load.
     (Ⅲ) Basic characteristics of RBFF damage mechanisms of axial components
     Based on the results of failure analysis of typical axial components and the RBFF experimental research for the two steels mentioned above, the basic features of RBFF damage mechanisms were summarized as follows:
     (1) The distribution of RBFF logarithmic life of axial components does not obey the traditional Basquin function but shows an intensive dependence on fatigue loads.
     (2) Fretting damage occurred at the contact edge area of the interference fitted zone and the most serious wear location is located at a certain distance apart the contact edge. The width of fretting wear band is dependent upon the level of fatigue load. The main wear mechanisms of samples surface are abrasive wear, oxide wear and delamination.
     (3) The fracture surface shows the multi-source and step-like profile, which caused by the action of multi axial stress. The fretting fatigue cracks initiated at the sub-surface, some defects such as caves have been observed in the crack initiation area. The micro-cracks are probably induced by the conjunction of the caves. The propagation of fretting fatigue crack shows three stages:a) The stage control by contact stress--the crack propagates inclined to the normal of surface with an small angle (about20°~40°). And the inclined crack connects with the surface wear oblique cracks, b) The stage control by the combination of contact stress and fatigue stress--the effect of contact stress decreased with the increase of depth and the inclined crack gradually transforms to the normal of surface, c) The stage control by fatigue stress--, the crack propagates normal to the contact surface until to final fracture as same as the plain fatigue process.
     (4) The competition mechanism exists between the local wear and fatigue during the RBFF damage process. At the outer damage region, the stress, strain and slip amplitude are higher, and the damage is very serious mainly with local wear. And the stress concentration is effectively released by the particle detachment and the third-body formation after local wear. Thus, the fatigue crack initiation is restrained. However, in the inner side, the wear is slighter and the damage dominates by local fatigue, where the fatigue crack is easy to initiate and propagate.
     (5) The RBFF damage strongly depends upon the material properties, i.e. the higher strength of materials, the higher factor of life reduction. At meanwhile, the RBFF damage also shows dependence upon the running speed and fatigue load.
引文
[1]A.D.Sarkar. Wear mechanisms of metals in dry sliding situations. Int.Conf. On optimum resource utilization though trobo terotechnology and maintenance management,30 nov-6 Dec 1981(new Delhi,India), Indian institute of technology, New Delhi, India.
    [2]谢友柏.摩擦学的三个公理.摩擦学报,2001,21(3):161-166.
    [3]周仲荣, Leo Vincent.微动磨损.科学出版社,2002,北京.
    [4]张嗣伟.我国摩擦学工业应用的节约潜力巨大—谈我国摩擦学工业应用现状的调查[J].中国表面工程,2008,21(2):50-52.
    [5]张嗣伟.摩擦学是节能、降耗、减排的重要手段[J].表面工程咨讯,2007,21(6):1-3.
    [6]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿.科学出版社,2006.
    [7]Waterhouse R. B. Fretting corrosion. Pergamon press,1972.
    [8]Waterhouse R. B. Fretting fatigue. Elsevier Applied Sciene,1981.
    [9]祝继常.德国ICE高速列车发生重大事故[j].中国铁路,1998,8.
    [10]M.H.Zhu, Z.R.Zhou. On the mechanisms of various fretting wear modes. Tribology international,2011,4(11):1378-1388.
    [11]E.M.Eden, W.N.Rose and F.L.Cunningham. The endurance of metals. Proc. Instn. Mech.Eng,4,1911:839-974.
    [12]H.W.Gillet and E.L.Mack. Notes on some endurance tests of metals. Proc.Am.Soc. Testing Mater.1924,24:476.
    [13]Tomlinson GA, Thorpe PL, Gough HJ. An investigation of the fretting. Proc I Mech E, 1939,141:223-249.
    [14]Warlow-Davies EJ. Fretting corrosion and fatigue strength:brief results of preliminary experiments. Proc I Mech E,1941,146:33-38.
    [15]Maxwell WW, Dudley BR, Cleary AB, Richards J, Shaw J. Proc I Mech E,1967, 182:89-108.
    [16]R.D.Mindlin. Complianceof elastic bodies in contact. AS EM Journal of Applied Mechanics,1949,16:259-268.
    [17]R.B.Waterhouse, Fretting fatigue. Applied Sience Publisher,1981, UK.
    [18]D.W.Hoeppner and G.L.Goss. Research on the mechanism of fretting fatigue,corrosion fatigue:chemistry, mechanics, and microstructure, National Association of Corrosion Engineer, USA,1972:617-626.
    [19]M.Godet. Third-bodies in tribology. Wear,136:29-45.
    [20]D.Nowell and D.A.Hills. Crack initiation criteria in fretting fatigue.Wear,1990, 136:329-343.
    [21]D.A.Hills. Mechanics of fretting fatigue. Wear,1994,175:107-103.
    [22]Elber,W. Dmage tolerance in aircraft structures. ASTM STP 486,1971, pp.230-242.
    [23]F.Morel, A.Morel, Y.Nadot. Comparison between defects and micro-notches in multiaxial fatigue-The size effect and the gradient effect. International journal of fatigue,2009,31:263-275.
    [24]Bramhall R. Studies in fretting fatigue. D.Phil. Thesis. University of Oxford,1973
    [25]Fellows LJ, Nowell D, Hills DA. Contact stresses in a moderately thin strip (with particular reference to fretting experiments). Wear,1995,185:235-238.
    [26]Hills DA, Nowell D. Effects of temperature and shot-peening intensity on fretting fatigue behavior of. Ti-6A1-4A. Int J Fatigue,2001,23:747-748.
    [27]Nowell D. An analysis of fretting fatigue. D.Phil. Thesis. University of Oxford,1988.
    [28]Vingsbo O, Soderberg D. On fretting maps. Wear 1988,126:131-47.
    [29]Waterhouse RB. Fretting fatigue. Int Mater Rev 1992,37:77-97.
    [30]Ciavarella M, Dini D, Demelio GP. In:Ravi-Chandar K, Karihaloo BL, Kishi T, Ritchie RO, Yokobori Jr AT, Yokobori T,editors. Proceedings of the 10th International Conference on Fatigue, Honolulu, December 2001. Pergamon,2001.
    [31]Daniele Dini, David Nowell, Igor N. Dyson. The use of notch and short crack approaches to fretting fatigue threshold prediction:Theory and experimental validation. Tribology International,2006,39:1158-1165.
    [32]Nowell D, Hills DA. Contact problems incorporating elastic layers. Int J Solid Struct, 1988,24(1):105-15.
    [33]Dini D, Nowell D. Flat and rounded fretting contact problems incorporating elastic layers. Int J Mech Sci,2004,46:1635-57.
    [34]Blanchard P, Colombier C, Pellerin V. Material effect in fretting wear. Metall Trans 1991:1535-44.
    [35]Fouvry S, Kapsa P, Sidoroff F, Vincent L. Identification of the characteristic length scale for fatigue cracking in fretting contacts. J Phys IV France,1998,8:159-66.
    [36]K.Endo, H.Goto. Initiation and propagation of fretting fatigue, wear,1976, 125:311-324.
    [37]K.Nishioka, K.Hairakawa. Fundamental investigations of fretting fatigue. part2, Bulletin of JSME,1969,12(50):180-187.
    [38]K.Nishioka and K.Hirakawa. Fundamental investigations of fretting fatigue. Part 3, Bulletin of JSME,1969,12(51):397-407.
    [39]Y.J. Xie, D.A. Hills. Crack initiation at contact surface. Theoretical and Applied Fracture Mechanics,2003,40:279-283.
    [40]D. Nowell, D.A. Hills. Mechanics of fretting fatigue tests, int, J.Mech.$ci.1987,29 (5):355-365.
    [41]S. Adibnazari, D. Hoeppner. The role of normal pressure in modeling fretting fatigue. In R.B. Waterhouse and T.C. Lindley (eds.), Fretting Fatigue Mechanical Engineering Publications, London,1994, pp.125-133.
    [42]J.A. Alic, A.L. Hawley, J.M. Urey. Formation of fretting fatigue cracks in 7075-T7351 aluminum alloy. Wear,1979,56:351-361.
    [43]R.B. Waterhouse. Introduction of fatigue, in Fretting fatigue, a applied Science, London, 1981. pp.1-21.
    [44]K, Sara, H. Fujii, S. Kodama. Crack propagation behavior in fretting fatigue. Wear, 1986,107:245-262.
    [45]A.G. Philippsa, S. Karuppanan, C.M. Churchman, D.A. Hills. Crack tip stress intensity factors for a crack emanating from a sharp notch. Engineering Fracture Mechanics, 2008,75:5134-5139.
    [46]C Ruiz, P.H.B.Boddingmn, K.C. Chen. An investigation of fatigue and fretting in a dovetail joint. Experimental Mechanics,1984,24 (3):208-217.
    [47]K.Nishoka, S.Nishimura, K.Hirakawa. Fundamental investigations of fretting fatigue. Parti, Bull JSME,1968,12(45):437-445.
    [48]D.A.Hills, D.Nwell. Mechanics of fretting fatigue. Kluwer, Deventer,1994.
    [49]Brown MW, Miller KJ. A theory for fatigue under multiaxial stress-strainconditions. In: Proceedings of the institute of mechanical engineers,1973,187:745-56.
    [50]Wang CH, Brown MW. Life prediction techniques for variable amplitude multiaxial fatigue-part 1:theories. J Eng Mater Technol, Trans ASME1996,118(3):367-70.
    [51]Jing Li, Zhong-ping Zhang, Qiang Sun, Chun-wang Li. Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. International Journal of Fatigue,2011,33(2):90-101.
    [52]Chen X, Gao Q, Sun XF. Low-cycle fatigue under non-proportional loading. Fatigue Fract Eng Mater Struct,1996,19(7):839-54.
    [53]Jing Li, Zhong-ping Zhang, Qiang Sun, Chun-wang Li, Yan-jiang Qiao. A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings. International Journal of Fatigue,2009,31:776-781.
    [54]Ying-Yu Wang, Wei-Xing Yao. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading. International Journal of Fatigue,2006,28:401-408.
    [55]Guo-Qin Sun, De-Guang Shang. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis. Materials and Design,2010,31:126-133.
    [56]Lohr RD, Ellison EG A simple theory for low-cycle multiaxial fatigue. Fatigue Fract Eng Mater Struct 1980,3:1-17.
    [57]Yip MC, Jen YM. Mean strain effect on crack initiation lives for notched specimens under biaxial nonproportional loading paths. Trans ASME J Eng Mater Technol,1997, 119:104-12.
    [58]Smith RN, Watson P, Topper TH. A stress-strain function for the fatigue of metal. J Mater,1970,5(4):767-78.
    [59]L. Reis, B. Li, M. de Freitas. Crack initiation and growth path under multiaxial fatigue loading in structural s teels. International Journal of Fatigue,2009,31:1660-1668.
    [60]Chakherlou, T.N. Abazadeh, Babak. Estimation of fatigue life for plates including pretreated fastener holes using different multiaxial fatigue criteria. International Journal of Fatigue,2011,33(3):343-353.
    [61]Fatemi A, Socie D. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct,1988, 11(3):149-65.
    [62]Halford GR. The energy required for fatigue. J Mater,1966,1(1):3-18.
    [63]Lefebvre D, Neale KW, Ellyin F. A criterion for low-cycle fatigue failure under biaxial states of stress. J Eng Mater Technol, Trans ASME 1981,103:1-6.
    [64]Golos K, Ellyin F. A total strain energy density theory for cumulative fatigue damage. J Pressure Vessel Technol, Trans ASME,1988,110:36-41.
    [65]K.M.GOLOS. Multiaxial fatigue criterion with mean stress effect, ht. J. Pres. Vex & Piping,1996,69:263-266.
    [66]Jinsoo Park, Drew Nelson. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life. International Journal of Fatigue,2000,22:23-39.
    [67]Davis EA, Connelly FM. Stress distribution and plastic deformation in rotating cylinders of strain-hardening material. J Appl Mech, Trans ASME, Ser E,1959, 26:25-30.
    [68]Glinka G, Plumtree A, Shen G A multiaxial fatigue strain energy parameter related to the critical plane. Fatigue Fract Eng Mater Struct,1995,18(1):37-46.
    [69]Glinka G, Wang G, Plumtree A. Mean stress effects in multiaxial fatigue. Fatigue Fract Eng Mater Struct,1995,18:755-64.
    [70]Pan WF, Hung CY, Chen LL. Fatigue life estimation under multiaxial loadings. Int J Fatigue,1999,21:3-10.
    [71]Chen X, Xu S, Huang D. Critical plane-strain energy density criterion of multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Fract Eng Mater Struct, 1999,22:679-86.
    [72]Han C, Chen X, Kim KS. Evaluation of multiaxial fatigue criteria under irregular loading, Int J Fatigue,2002,24:913-22.
    [73]Varvani-Farahani A. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to inphase and out-of-phase multiaxial fatigue loading conditions, Int J Fatigue,2000,22:295-305.
    [74]Ying-Yu Wang, Wei-Xing Yao. Evaluation and comparison of several multiaxial fatigue criteria. International Journal of Fatigue,2004,26:17-25.
    [75]M. H. Attia, R. B. Waterhouse. Standardization of fretting fatigue test methods and equipment.1992.
    [76]J. De Pauwl, P. De Baetsl, W. De Waele. Review and classification of fretting fatigue test rigs. Sustainable Construction and Design,2011,41-52.
    [77]S. Wagle, H. Kato. Ultrasonic wave intensity reflected from fretting fatigue cracks at bolt joints of aluminum alloy plates. Ndt & E International, Dec 2009,42:690-695.
    [78]D. Houghton, P. M. Wavish, E. J. Williams, S. B. Leen. Multiaxial fretting fatigue testing and prediction for splined couplings. International Journal of Fatigue, Nov-Dec 2009,31:1805-1815.
    [79]T. R. Hyde, S. B. Leen, and I. R. McColl. A simplified fretting test methodology for complex shaft couplings. Fatigue & Fracture of Engineering Materials & Structures, Nov 2005,28:1047-1067,.
    [80]S. B. Leen, T. H. Hyde, C. H. H. Ratsimba, E. J. Williams, I. R. McColl. An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling. Journal of Strain Analysis for Engineering Design, Nov 2002, 37:565-583.
    [81]P. J. Golden, J. R. Calcaterra. A fracture mechanics life prediction methodology applied to dovetail fretting. Oct 2006. Tribology International,39:1172-1180.
    [82]C. R. F. Azevedo, A. M. D. Henriques, A. R. Pulino Filho, J. L. A. Ferreira, J. A. Araujo. Fretting fatigue in overhead conductors:Rig design and failure analysis of a Grosbeak aluminium cable steel reinforced conductor. Engineering Failure Analysis,2009, 16:136-151.
    [83]O. Plekhov, T. Pain-Luc, N. Saintier, S. Uvarov, O. Naimark. Fatigue crack initiation and growth in a 35CrMo4 steel investigated by infrared thermography. Fatigue & Fracture of Engineering Materials & Structures. Jan 2005,28:169-178.
    [84]D. Wagner, N. Ranc, C. Bathias, and P. C. Paris. Fatigue crack initiation detection by an infrared thermography method. Jan 2009, Fatigue & Fracture of Engineering Materials & Structures,33:12-21.
    [85]W. Thomson. On the dynamical theory of heat - with numerical results deduced from Mr.Joule's equivalent of a thermal unit and M. Regaut's observations on steam. Royal Society of Edinburgh, Transactions of the Royal Society,1853,261-288.
    [86]S. Henkel, D. Hollander, M. Wunsche, H. Theilig, P. Hubner, H. Biermann, and S. Mehringer. Crack observation methods, their application and simulation of curved fatigue crack growth. Engineering Fracture Mechanics,77:2077-2090.
    [87]B. Bruzek, E. Leidich. Evaluation of crack growth at the weld interface between bronze and Steel. International Journal of Fatigue,2007,29:1827-1831.
    [88]P. Cavaliere, A. D. Santis, F. Panella, A. Squillace. Thermoelasticity and CCD analysis of crack propagation in AA6082 friction stir welded joints. International Journal of Fatigue,2009,31:385-392.
    [89]J. Hwang, J. Lee, S. Kwon. The application of a differential-type Hall sensors array to the nondestructive testing of express train wheels. NDT & E International,2009, 42:34-41.
    [90]K. K. Liu and M. R. Hill. The effects of laser peening and shot peening on fretting fatigue in Ti-6A1-4V coupons. Tribology International,2009,42:1250-1262.
    [91]R. Cortez, S. Mall, and J. R. Calcaterra. Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6A1-V. International Journal of Fatigue,1999,21: 709-717.
    [92]S. Fouvry, K. Kubiak, A. M. Marechal, J. M. Vernet. Behaviour of shot peening combined with WC-Co HVOF coating under complex fretting wear and fretting fatigue loading conditions. Surface & Coatings Technology,2006,201:4323-4328.
    [93]M. C. Gean, T. N. Farris. Elevated temperature fretting fatigue of Ti-17 with surface treatments. Tribology International,2009,42:1340-1345.
    [94]Wittkowsky, Birch, Dominguez, Suresh. An apparatus for quantitative fretting testing. Fatigue &Fracture of Engineering Materials & Structures,1999,22:307-320.
    [95]L. J. Fellows, D. Nowell, D. A. Hills. On the initiation of fretting fatigue cracks. Wear, 1997,205:120-129.
    [96]R. Magaziner, O. Jin, S. Mall. Slip regime explanation of observed size effects in fretting. Wear,2004,257:190-197.
    [97]A. Mugadu, D. A. Hills, D. Nowell. Modifications to a fretting-fatigue testing apparatus basedupon an analysis of contact stresses at complete and nearly complete contacts. Wear,2002,252:475-483.
    [98]J. Berk. Systems Failure Analysis. ASM International,2009.
    [99]Failure Analysis and Prevention. Vol 11, ASM Handbook, ASM International,2002.
    [100]D. P. Dennies. How to Organize and Run a Failure Investigation. ASM International, 2005.
    [101]R. A. Smith, S. Hillmansen. A brief historical overview of the fatigue of railway axles. In:Proc. Instn. Mech. Engrs. Part F:J. Rail and Rapid Transport,2004,218:267-274.
    [102]U. Zerbst, S. Beretta. Failure and damage tolerance aspects of railway components. Engineering Failure Analysis,2011,18:534-542.
    [103]M. Kubota, K. Hirakawa. The effect of rubber contact on the fretting fatigue strength of railway wheel tire. Tribology International,2009,42:1389-1398.
    [104]http://finance.jrj.com.cn/2008/10/2515112479637.shtml
    [105]Madia M, Baretta S, Zerbst U. An investigation on the influence of rotatory bending and press fitting on stress intensity factors and fatigue crack growth in railway axles. Eng Fract Mech,2008,75:1906-1920.
    [106]D. H. Lee, S. J. Kwon, J. B. Choi, and Y. J. Kim. Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft. Transactions of the KSME (A),2007,31(6):701-709.
    [107]Taizo Makino, Takanori Kato, Kenji Hirakawa. Review of the fatigue damage tolerance of high-speed railway axles in Japan. Engineering Fracture Mechanics,2011, 78(5):810-825.
    [108]B.Alfredsson. Fretting fatigue of a shrink-fit pin subjected to rotatory bending: Experiments and simulations. International Journal of Fatigue,2009,31:1559-1570.
    [109]R. Gutkin, B. Alfredsson. Growth of fretting fatigue cracks in a shrink-fitted joint subjected to rotatory bending. Engineering Failure Analysis,2008,15:582-596.
    [110]Masanobu Kubota, Yoshiyuki Kondo, Chu Sakae, et.al. Effect of understress on fretting fatigue crack initiation of press-fitted axle. JSME International Journal,2003, 46(3):297-302.
    [111]Tanaka S, Komatsu H, Nishioka K, Hirakawa K. Fatigue strength of press-fitted axles [in Japanese]. Proc JSME,1976,760(13):264-266.
    [112]彭志亮,左华付,肖先忠.机车转轴及小齿轮轴断裂失效分析.机械工程材料,2011,35(6):93-97.
    [113]曹飞.机车电机小齿轮油槽结构优化分析.机械传动,2012,06(36):65-67.
    [114]Peterson, R.E. Stress Concentration Factors. John Wiley & Sons, New York. New edition by Pilkey, W.D. and Pilkey, D.F., Peterson's Stress Concentration Factors,3rd rev. edn., John Wiley & Sons 2008.
    [115]Jaap Schijve. Fatigue of structures and materials (second edition). Springer,2009.
    [116]Conway HD, Farnham KA. Contact stresses between cylindrical shafts and sleeves. Int J Eng Sci,1967,5:541-554.
    [117]D.R. Swalla, R.W. Neu. Influence of coefficient of friction on fretting fatigue crack nucleation prediction. Tribology International,2001,34:493-503.
    [118]Petiot C, Vincent L, Dang Van K, Maouche N, Foulquier J, Journet B. An analysis of fretting-fatigue failure combined with numerical calculations to predict crack nucleation. Wear,1995,181-183:101-11.
    [119]Hills DA, Nowell D, Sackfield A. Surface fatigue considerations in fretting. Interface Dynamics. In:Dawson D, Taylor CM, Godet M, Berthe D, editors. Proceedings of the 14th Leeds-Lyon Symposium on Tribology, Lyon 1987. Amsterdam:Elsevier.
    [120]Ambrico JM, Begley MR. Plasticity in fretting contact. J Mech Phys Solids,2000, 48:2391-417.
    [121]Petiot C, Vincent L, Dang Van K, Maouche N, Foulquier J, Journet B. An analysis of fretting fatigue failure combined with numerical calculations to predict crack nucleation. Wear,1995,181:101-11.
    [122]Zhou Z R, Fayeulle S, Vincent L. Cracking behavior of various aluminium alloy during fretting wear.Wear,1992,155:317.
    [123]Waterhouse. R. B. Metals Handbook, Vol.18, Lubrication and Wear Technology. 1992, ASM International, Materials Park, OH, pp.242-256.
    [124]K.Iyer. Peak contact pressure, cyclic stress amplitudes, contact semi-width and slip amplitude:relative effects on fretting fatigue life. International Journal of Fatigue, 2011,23:193-206.
    [125]Ruiz C, Chen KC. Life assessment of doetail joints between blades and disks in aeroengines.London:I.Mech.E.Conference Publications,1986,p.187-194.
    [126]Ruiz C,Wang ZP,Webb PH.Techniques for the characterization of fretting fatiguedamage.In:Attia MH,Waterhous RB,editors Standardization of fretting fatigue testmethods and equipment.SSTM STP 1159.Publiadelphia:ASTM:19992.p.170-7.
    [127]Femando US,Farrahi GH,Brown MW.Fretting fatigue crack growth behaviour ofBS L45 4 percent copper aluminium alloy under constant normal load.In:Waterhouse RB,Lindley TC,editors.Fretting fatigue.ESIS 18.London:MechanicalEngineering Publications,1994,p.183-95.
    [128]M.Fujiwara,Y.kondo,T.Hattori.Quantitative Evaluation of Applied Stress by SurfaceRoughness for Fatigue Fracture.Journal of the Society of Materials Science,Japan,1991,40(453):712-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700