铟掺杂铌酸锂晶体生长及光学性能优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用中频加热炉,采用提拉法生长In:Zn:LiNbO_3晶体,In:Zn:Fe: LiNbO_3晶体,不同[Li]/[Nb]比的In:LiNbO_3晶体和In:Mn:Fe:LiNbO_3晶体。通过优化晶体生长的工艺参数,生长出无宏观缺陷、光学均匀性好的晶体。通过对晶体进行退火、极化,然后经过加工制备出一系列的试样进行性能测试。对晶体开裂原因进行了分析并提出了有效的解决方案。
     X射线粉末衍射实验结果表明,In:Zn:LiNbO_3晶体,In:Zn:Fe:LiNbO_3晶体,不同[Li]/[Nb]比的In:LiNbO_3晶体和In:Mn:Fe:LiNbO_3晶体仍然保持纯铌酸锂晶体的晶格结构,但是其晶格常数却发生了不同程度的变化。通过差热分析测试表明,In掺杂LiNbO_3晶体的居里温度随晶体中随着晶体中掺In量或[Li]/[Nb]比的增加先升高后下降。
     通过研究In掺杂LiNbO_3晶体的光谱性能发现,晶体紫外-可见吸收光谱的吸收边和红外吸收光谱的OH-吸收峰随着掺In量和[Li]/[Nb]比的变化会发生移动。通过分析掺杂离子在晶体中的占位表明,In~(3+)首先取代占据锂位的反位铌( Nb 4L+i),当In~(3+)掺杂浓度达到阈值浓度,即所有的的反位铌( Nb L4+i)都被取代时,In~(3+)才同时取代正常晶格中的Li位和Nb位。
     利用透射光斑畸变的方法对晶体的抗光折变能力进行了测试,系统地研究了In掺杂和[Li]/[Nb]比变化对晶体的抗光折变性能的影响。实验结果表明,晶体中掺入铟,晶体的抗光折变能力增加,当铟的掺杂量达到阈值浓度后,相应的晶体的抗光折变能力比未掺杂的铌酸锂晶体高大约两个数量级。[Li]/[Nb]比的增大也能对铌酸锂晶体的抗光折变性能起到增强的作用。
     通过对In:Zn:LiNbO_3晶体的倍频性能测试发现, In(2mol%):Zn (2mol%):LiNbO_3晶体的倍频转换效率最高,可达42%。通过对不同[Li]/[Nb]比In:LN晶体的倍频性能测试可以看出,[Li]/[Nb]=1.0的In(1mol%):LiNbO_3倍频转换效率最高,达到了50%。铟的掺杂和[Li]/[Nb]的增加使得铌酸锂晶体的倍频性能得到了优化。利用退火质子交换法制备了In:Zn:LiNbO_3晶体光波导基片,利用m-线法研究了In:Zn:LiNbO_3晶体光波导基片的光损伤性能,发现在掺In量达到阈值浓度后,波导基片的抗光损伤能力提高了两个数量级以上。
     通过对In掺杂LiNbO_3晶体的光折变性能进行研究表明,随着铟含量的增加,二波耦合指数增益系数减小,衍射效率降低,动态范围也减小;但是晶体的响应时间缩短,光折变灵敏度提高,通过In掺杂可以有效的调控其光折变综合性能。分析表明In掺杂LiNbO_3晶体中由于有效载流子数目的减少导致其光折变效应减弱,同时由于光电导的提高,使得晶体的响应时间缩短了。
     将In:Mn:Fe:LiNbO_3晶体用于全息存储系统,实验表明由于In的掺入使得In:Mn:Fe:LiNbO_3晶体存储后的再现相关峰光斑畸变程度变小,光栅建立时间缩短,再现图像的质量高于未掺杂晶体,存储综合性能得到了提高。
     研究表明通过In的掺杂和[Li]/[Nb]比的改变,使得LiNbO_3晶体的光学性能得到了有效的调节,这将有力的推动LiNbO_3晶体在全息存储领域的实用化。
In:Zn:LiNbO_3, In:Zn:Fe:LiNbO_3, In:Mn:Fe:LiNbO_3 crystals with different In2O_3 concentration and In:LiNbO_3 crystals with different [Li]/[Nb] ratios were grown by Czochralski technique using the intermediate frequency furnace as the heater. By selecting appropriate growth technical parameters, crystals with good optical homogeneity and no macroscopic defects have been grown. After the annealing and polarization progress, a series of samples were prepared for measuring the properties. The reasons for the cracking of the LiNbO_3 were discussed and several effective methods were found to conquer it.
     The structure of the In-doped LiNbO_3 crystals has been measured by X-ray powder diffraction technique. The results indicated that the doped crystals kept the same lattice structure as that of pure LiNbO_3 crystal. But the lattice constants of doped-LiNbO_3 crystals changed compared with pure LiNbO_3 crystal. The Curie temperature of the crystals was measured by differential thermal analysis. The results showed that the Curie temperature increased with the In-doped concentration and [Li]/[Nb] ratio firstly, and then decreased.
     The infrared absorption spectra and ultraviolet-visible absorption spectra of In-doped LiNbO_3 crystals were measured. The OH- absorption peak of infrared absorption spectra and the absorption edge of ultraviolet-visible absorption spectra shifted with the In-doped concentration and [Li]/[Nb] ratio. The occupy mechanism of the dopants were investingated. The analysis showed that In~(3+) firstly replaced the anti-site Nb ( Nb_(Li)~(4+)), which located at Li site. When the In-doped concentration reached the threshold, all the anti-site Nb ( Nb_(Li)~(4+)) ions were replaced and In~(3+) began to occupy the ordinary Li and Nb sites.
     The photo-refractive resistant property was measured by transmitted facula- distoration method. The influence of the In-doped concentration and [Li]/[Nb] ratio on the photo-refractive resistant properties was investigated systematically. The results indicated that the photo-refractive resistant properties improved with the increasing of the In-doped concentration and [Li]/[Nb] ratio. When the In-doped concentration reached the threshold, the photo-refractive resistant ability was two orders of magnitude higher than that of those crystals without In-doped.
     The second harmonic generation (SHG) propertiesof In:Zn:LiNbO_3 and In:LiNbO_3 with different [Li]/[Nb] ratio were measured and the results indicated that the SHG properties were improved with the In-doped and the increasing of [Li]/[Nb] ratio. The SHG conversation efficiencies of In(2mol%):Zn(2mol%):LiNbO_3 and In(1mol%):LiNbO_3 ([Li]/[Nb]=1.0) were the highest, which were 42% and 50%, respectively. In:Zn:LiNbO_3 optical waveguide substrate were prepared by annealing proton exchange method and the optical damage property of the optical waveguide substrate was investigated by the m-line technique. The optical damage resistant ability was two orders of magnitude higher than that of pure LiNbO_3, when the In-doped concentration reached the threshold.
     The photo-refractive properties of the In-doped LiNbO_3 crystals were measured. The two-beam coupling exponential gain coefficient, the diffraction efficiency and the dynamic range decreased, while the response time shortened and the photo- refractive sensitivity improved followed by the increasing of the In-doped concentration. The analysis showed that the reduction of the efficient charge carrier density leads to the decreasing of the photo-refractive properties, while the improvement of the photoconduction cause the shortening of the response time.
     The holographic storage experiment was carried out by using In:Mn:Fe:LiNbO_3 crystal as the storage medium. The results showed that, for the In-doped, the distoration of the coherent peak facula decreased, the establishing time of the optical grating shorted and the quality of the output pictures optimized. The storage properties improved.
     The research showed that the optical properties of the LiNbO_3 crystal could be improved by doping In ions and changing [Li]/[Nb] ratio. It was helpful for the development of the application of LiNbO_3 crystal.
引文
1 张玉龙, 唐磊. 人工晶体—生长技术、性能与应用. 化学工业出版社, 2005: 1-28
    2 A. Rauber. Current Topics in Materials Science: Chemistry and physics of lithium niobate. North-Holland, Amsterdam, 1978: 481
    3 张克从, 王希敏. 非线性光学晶体材料科学(第二版). 科学出版社, 2005: 259-273
    4 L. Arizmendi. Photonic Applications of Lithium Niobate Crystals. Phys. Stat. Sol. (a). 2004, 201(2):253-283
    5 李铭华, 杨春晖, 徐玉恒等. 光折变晶体材料科学导论. 科学出版社, 2003: 163
    6 D. M. Smyth. Defects and Transport in LiNbO3. Ferroelctrics. 1983, 50:93-102
    7 W. Y. Ching, Z. Q. Gu, Y. N. Xu. First-principles Calculation of the Electronic and Optical Properties of LiNbO3. Phys. Rev. B. 1994, 50:1992-1995
    8 S. M. Tomlinson, C. M. Freeman, C. R. A. Catlow, et al. Atomistic Simulation Studies of Technologically Important Oxides. J. Chem. Soc. Faraday Trans. 2. 1989, 85:367-383
    9 H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, et al. Computer-Simulation Studies of Intrinsic Defects in LiNbO3 Crystals. Phys. Rev. B. 1989, 40:11909-11916
    10 H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, et al. Computer-Simulation Studies of Extrinsic Defects in LiNbO3 Crystals. Phys. Rev. B. 1991, 44:4877-4883
    11 S. C. Abrahams, J. M. Reddy, J. L. Bernstein. Ferroelectric Lithium Niobate 3 Single Crystal X-Ray Diffraction Study. J. Phys. Chem. Solids. 1966, 27: 997-1012
    12 S. C. Abrahams, W. C. Hamilton, J. M. Reddy. Ferroelectric Lithium Niobate 4 Single Crystal Neutron Diffraction Study at 24°C. J. Phys. Chem. Solids. 1966, 27:1013 -1018
    13 Dongfeng Xue, Kenji Kitamura. Effects of Li+ and Nb5+ cationic sites onmacroscopic properties of lithium niobate crystals. Journal of Physics and Chemistry of Solids, 2005, 66:589-592
    14 R. S. Weis, T. K. Gaylord. Lithium Niobate: Summary of Physical Properties and Crystal Structure. Appl. Phys. A. 1985, 37:191-203
    15 钟维烈. 铁电体物理学. 科学出版社, 2000:28
    16 孔勇发, 许京军, 张光寅等. 多功能光电材料-铌酸锂晶体. 科学出版社, 2005:6
    17 刘建成, 冯锡淇, 金幼华等. 不同组份 LiNbO3的晶体数据和缺陷结构. 人工晶体. 1987, 16(2): 148-157
    18 H. Fay, W. J. Alford, H. M. Dess. Dependence of Second Harmonic Phase- Matching Temperature in LiNbO3 Crystals on Melt-compostion. Appl. Phys. Lett. 1968, 12:69-71
    19 D. M. Smyth. Defects and Transport in LiNbO3. Ferroelectrics. 1983, 50:93-102
    20 S. C. Abrahams, P. Marsh. Defect Structure Dependence on Composition in Lithium Niobate. Acta. Crystallogr. Sec. B. 1986, 42:61-64
    21 P. Lerner, C. Legras, J. P. Duman. Stoechiometrie Des Monocristaux De Metaniobate De Lithium. J. Cryst. Growth. 1968, 3/4:231-235
    22 N. Iyi, K. Kitamura, F. Izumi, et al. Comparitive Study of Defects Structures in Lithium Niobate with Different Compositions. J. Solid State Chem. 1992, 101:340-352
    23 J. Blumel, E. Born, T. Metzger. Solid State NMR Study Supporting the Lithium Vacancy Defect Model in Congruent Lithium Niobate. J. Phys. Chem. Solids. 1994, 55:589-593
    24 S. Kojima. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals. Jpn. J. Appl. Phys. 1993, 32:4273-4376
    25 N. Zotov, H. Boysen, F. Frey, et al. Cation Substitution Models of Models of Congruent LiNbO3 Investigated by X-Ray and Neutron Powder Diffraction. J. Phys. Chem. Solids. 1994, 55:145-152
    26 T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, et al. Relation of the photo- refraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals. Optical Materials, 2003, 23:229-233.
    27 冯少新. 晶体缺陷能学计算及铌酸锂的缺陷结构. 南开大学博士学位论文. 2001:47-48
    28 G. E. Peterson, A. Carnevale. 93Nb NMR Linewidths in Nonstoichiometric Lithium Niobate. J. Chem. Phys. 1972, 56:4848-4852
    29 N. Iyi, K. Kitamura, Y. Yajima, et al. Defect Structure Model of MgO-Doped LiNbO3. J. Solid State Chem. 1995, 118:148-152
    30 B. C. Grabmaier, W. Wersing, W. Koestler. Properties of Undoped and MgO-Doped LiNbO3, Correlation to the Defect Structure. J. Cryst. Growth. 1991, 110:339-343
    31 A. P. Wilkinson, A. K. Cheetham, R. H. Jarman. The Defect Structure of Congruently Melting Lithium Niobate. J. Appl. Phys. 1993, 74(5):3080-3083
    32 Wei Zheng, Naidong Zhang, Liancheng Zhao, et al. The Role of Zn in Holographic Storage in Zn:Fe:LiNbO3. Opt. Commu. 2003, 227:259-263
    33 X. H. Zhen, L. C. Zhao, Y. H. Xu. Defect Stucture and Optical Damage Resistance of Zn:Fe:LiNbO3 Crystals. Appl. Phys. B. 2003, 76:655-659
    34 J. R. Carruthers, G. E. Peterson, M. Grasso, et al. Nonstoichiometry and Crystal Growth of Lithium Niobate. J. Appl. Phys. 1971, 42:1486-1851
    35 Yasaunori Furukawa, Masayoshi, Kenji Kitamura, et al. Optical Damage Resistance and Crystal Quality of LiNbO3 Single Crystals with Various [Li]/[Nb] Ratios. J. Appl. Phys. 1992, 72(8):3250-3254
    36 Xiao-Jun Chen, Deng-Song Zhu, Bing Li, et al. Fast Photorefractive Response in Strongly Reduced Near-Stoichiometric LiNbO3 Crystals. Opt. Lett. 2001, 26(13):998-1000
    37 周宏, 刘振宏, 耿雁. 不同 Li/Nb 摩尔比 In:Fe:LiNbO3 晶体的生长及其光学性能. 硅酸盐学报. 2006, 34(3):266-270
    38 王佳, 王锐, 刘维海等. 不同 Li/Nb 比 Mg:In:Fe:LiNbO3晶体的光折变性能研究. 人工晶体学报. 2006, 35(5):1012-1015
    39 王淼, 王锐, 杨春晖等. [Li]/[Nb]比对 Ce:LiNbO3 晶体结构及光折变性能的影响. 人工晶体学报. 2006, 35(5):1003-1006
    40 XU Yuheng, XU Wusheng, XU Shiwen, et al. Effect of Li/Nb ratio on growth and photorefractive properties of Ce:Fe:LiNbO3 crystals. Opt. Mater.. 2003, 23: 305-308
    41 G. Bhagavannarayana, G. C. Budakoti, K. K. Maurya, et al. Enhancement of crystalline, piezoelectric and optical quality of LiNbO3 single crystals by post-growth annealing and poling. J. Crystal Growth, 2005, 282:394-401
    42 R. Mouras, M. D. Fontana, M. Mostefa, et al. Photorefractive properties probed by Raman spectroscopy in Fe-doped LiNbO3. J. Opt. Soc. Am. B. 2006, 23:1867-1871
    43 孙敦陆, 杭寅, 张连瀚等. 化学计量比 LiNbO3 晶体的畴结构及完整性研究. 人工晶体学报. 2002, 31:387-391
    44 Tao Zhang, Biao Wang, Ye-Quan Zhao, et al. Optical homogeneity and second harmonic generation in Li-rich Mg-doped LiNbO3 crystals. Materials Chemistry and Physics, 2004, 88:97-101
    45 张洪喜. 高掺镁富锂铌酸锂晶体的倍频和抗光损伤性能的研究. 哈尔滨工业大学硕士学位论文. 1988:35-45
    46 J. J. Amodei, D. L. Staebler, A. N. Stephaphens. Holographic Pattern Fixing in ElectroopticCrystals. Appl. Phys. Lett. 1971, 18(12):540-542
    47 W. Philliphs, J. J. Amodei, D. L. Staebler. Optical and Holographic Storage Properties of Transition Metal Doped Lithium Niobate. RCA Review. 1972, 33:94-109
    48 K. Buse. Light-Induced Charge Transport Process in Photorefractive Crystals Ⅱ: Materials. Appl. Phys. B. 1997, 64:391-407
    49 SUN Zhijie, LI Hongtao, ZHEN Xihe. Photorefractive properties of MnO-doped near stoichiometric LiNbO3 crystals. J. Phys. Chem. Solids. 2004, 65: 1901-1904.
    50 Zhong Jiguo, Jin Jian, Wu Zhongkang. Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrateion of MgO. 11th International Quantum Electronics Conference, New York, IEEE Catalog. No. 80, CH 1561-0, 1980: 631-635
    51 仲跻国, 徐观峰, 王廷福. 高掺镁铌酸锂晶体的生长和倍频性能. 物理学报, 1983, 32(6):795-798
    52 T. R. Volk, V. I. Pryalkin, N. M. Rubinina. Optical-damage-resistant LiNbO3: Zn crystal. Opt. Lett.. 1990, 15(18): 996-998
    53 Yang Yunping, Demetri Psaltis, Marc Luennemann, et al. Photorefractive properties of lithium niobate crystals doped with manganese. J. Opt. Soc. Am. B, 2003, 20(7):1491~1502
    54 Yongfa Kong, Jinke Wen, Huafu Wang. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In. Appl. Phys. Lett.. 1995, 66(3):280-281
    55 Haijun Qiao, Jingjun Xu, Qiang Wu, et al. An increase of photorefractive sensitivity in In:LiNbO3 crystal. Optical Materials. 2003, 23:269-272
    56 J. K. Yamamoto, K. Kitamura, N. Lyi, et al. Increased Optical Damage Resistance in Sc2O3-Doped LiNbO3. Appl. Phys. Lett. 1992, 61(18):2156-2158
    57 J. K. Yamamoto, T. Yamazaki, K. Yamagishi. Noncritical phase matching and photorefractive damage in Sc2O3:LiNbO3. Appl. Phys. Lett.. 1994, 64(24): 3228-3230
    58 Kokanyan. Photorefractivity of Hafnium-doped congruent lithium-niobate crystals. Appl. Phys. Lett.. 2005, 86:131914
    59 S. Li, S. Liu, Y. Kong, et al. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. J. Phys.: Condens. Matter. 2006, 18:3527-3534
    60 E. P. Kokanyan. Hafnium-Doped Periodically Poled Lithium Niobate Crystals: Growth and Photorefractive Properties. Ferroelectrics. 2006, 341:119-124
    61 周玉祥, 郑威, 刘彩霞等. Mg:Fe:LiNbO3 晶体的生长及光学性能研究. 光子学报. 2004, 33(5):577-580
    62 Tao Zhang, Biao Wang, Fu-Ri Ling, et al. Growth and optical property of Mg, Fe co-doped near-stoichiometric LiNbO3 crystal. Materials Chemistry and Physics, 2004, 83:350-353
    63 X. H. Zhen, L. C. Zhao, Y. H. Xu. Defect structure and optical damage resistance of Zn:Fe:LiNbO3. Appl. Phys. B. 2003, 76: 655-659
    64 郭亚军, 张建, 刘彩霞等. Zn:Fe:LiNbO3 晶体全息存储性能研究. 光子学报. 2004, 33(5): 570-572
    65 贺顺忠, 许东. Ce:Fe:LiNbO3 晶体的双泵浦相位共轭研究. 光子学报. 1996, 25(3): 253-256
    66 郭袁俊, 刘立人, 刘德安. LiNbO3:Cr:Cu 晶体吸收特性及非挥发全息存储研究. 光子学报. 2006, 35(12):1878-1883
    67 张国权. 掺杂铌酸锂的光折变光放大及不同掺杂对晶体光折变性能的调控. 南开大学博士学位论文. 1998:47-49
    68 Wang Huafu, Shi Guotong, Wu Zhongkang. Photovoltaic effect in LiNbO3:Mg. Phys. Stat. Solidi. 1985, 89:211-214
    69 吴仲康, 王韦, 王华馥等. 掺镁铌酸锂的抗光损伤增强. 硅酸盐学报. 1987, 15(2):175-178
    70 孔勇发, 李兵, 陈云琳等. 掺镁铌酸锂晶体抗光折变微观机理研究. 红外与毫米波学报. 2003, 22(1):40-44
    71 H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow. Defects in LiNbO3-II. Computer simulation. J. Phys. Chem. Solids. 1991, 52:201-205
    72 L. Rebouta, P. J. M. Smulders, D. O. Boerma, et al. Ion-Beam Channeling Yields of Host and Impurity Atoms in LiNbO3: Computer Simulations. Phys. Rev. B. 1993, 48:3600-3610
    73 R. G. Smith, D. B. Fraser, R. T. Denton, et al. Correlation of Reduction in Optically Induced Refractive-Index Inhomogeneity with OH Content in LiTaO3 and LiNbO3. J. Appl. Phys. 1968, 39:4600-4607
    74 冯锡淇, 邓棠波. 高掺镁浓度铌酸锂晶体的OH吸收谱. 无机材料学报. 1993, 8(3): 273-280
    75 L. Kovács, V. Szaiay, R. Capelletti. Stoichiometry Dependence of OH- Absorption Band in LiNbO3 Crystals. Solid State Commun. 1984, 52:1029-1035
    76 孔勇发. 铌酸锂晶体的缺陷结构及相关问题的研究. 南开大学博士后研究工作报告. 1999:54-56
    77 A. Ashkin, G. D. Bord, J. M. Dziedzie, et al. Optically-induced Refractive Index Inhomogeneities in LiNbO3. Appl. Phys. Lett. 1966, 9(1):72-74
    78 F. S. Chen, J. T. LaMacchia, D. B. Fraser. Holographic Storage in Lithium Niobate. Appl. Phys. Lett. 1968, (13):223-225
    79 Fai H. Mok. Angle-Multiplexed Storage of 5,000 Holograms in Lithium Niobate. Optics Letters. 1993, 18(11):915-917
    80 G. W. Burr. Storage of 10,000 Holograms in LiNbO3:Fe. Conference on Lasers and Electro-Optics. Anaheim, CA. 1994
    81 L. Hesselink. Digital Holographic Data Storage Looks Ahead. Photonics Spectra. 1996:44-45
    82 K. Curtis, W. L. Wilson. U. S. Patent. 1998, PN:5, 719, 691
    83 K. Buse, A. Adibi, D. Psaltis. Non-Volatile Holographic Storage in Doubly Doped Lithium Niobate Crystals. Nature. 1998, 393(5):665-668
    84 Lambertus Hesselink, Sergei S. Orlov, Alice Liu, et al. Photorefractive Materials for Nonvolatile Volume Holographic Data Storage. Science. 1998, 292 (11):1089-1094
    85 A. Adibi, K. Buse, D. Psaltis. Multiplexing Holograms in LiNbO3:Fe:MnCrystals. Opt. Lett. 1999, 24(10):652-654
    86 李晓春. 1000 幅数字图像的晶体体全息存储与恢复. 光学学报. 1998, 18(6):722-725
    87 万玉红, 陶世荃, 袁韡等. 高密度盘式全息存储及其热固定的实验研究. 中国激光. 2005. 32(3):361-364
    88 许士文, 徐悟生, 李宣东等. In:Er:LiNbO3 晶体生长及光损伤性能研究. 人工晶体学报. 2004, 33(3): 301-304
    89 刘友文, 刘立人, 周常河等. 光色效应双掺杂(Fe,Mn):LiNbO3 的光折变全息存储. 光学学报, 1999, 19(10):1437-438
    90 Ren L., Liu L., Liu D., et al. Recording and fixing dynamics of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals. J. Opt. Soc. Am. B. 2003, 20(10): 2162~2173
    91 刘金伟, 刘国庆, 江竹青等. 近化学计量比 Tb:Fe:LiNbO3 晶体的光谱特性及组分测定. 人工晶体学报, 2006, 35( 2): 315-318
    92 Yang C., Zhao Y., Wang R., et al. Studies of photorefractive crystals of double- doped Ce,Fe:LiNbO3. Optics Communications. 2000, 175(1):247-252
    93 Furi Ling, Biao Wang, Chengxiang Guan. Effect of UV light on multiplexing holograms in near-stoichiometric LiNbO3:Ce:Fe. Optics Communications. 2004, 241:293-298
    94 侯金英 陶世荃 江竹青. LiNbO3:Fe:Cu 晶体中双色全息存储技术的研究. 光电子·激光. 2004, 15(5): 594-598
    95 Liu De’an, Liu Liren, Zhou Changhe, et al. Nonvolatile holograms in LiNbO3: Fe:Cu by use of the bleaching effect. Appl. Opt.. 2002, 41(32):6809~6814
    96 刘友文, 刘立人, 刘德安等. 光强对(Cu,Ce):LiNbO3 晶体非挥发性全息记录性质的影响. 光学学报. 2001, 21(10): 1186-1189
    97 Ren Liyong, Liu Liren, Liu De’an, et al. Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram. Opt. Lett.. 2004, 29(2):186-188
    98 Youwen Liu, Liren Liu, Liangying Xu, et al. Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals. Opt. Comm.. 2000, 181(1-3): 47-52
    99 Youwen Liu, Liren Liu, De’an Liu, et al. Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Cu:Ce crystals. Opt. Comm.. 2001,190(1-6): 339-343
    100 B. K. Das, R. Ricken, W. Sohler. Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett.. 2003, 82(10): 1515-1517
    101 Chi-hung Huang, L. McCaughan. Er-indiffused Ti:LiNbO3 channel waveguide optical amplifyiers pumped at 980nm. Electron. Lett.. 1996, 32(3): 215-216
    102 Markus Pollnau, Yaroslav E. Romanyuk. Optical waveguides in laser crystals. C. R. Physique. 2007, 8:123-137
    103 J. Amin, J. A. Aust, D. L. Veasey, et al. Dual wavelength, 980nm-pumped, Er/Yb-codoped waveguide laser in Ti:LiNbO3. Electr. Lett.. 1998, 34(5): 456-458
    104 卓壮, 王象泰, 孟宪林等. 质子交换 MgO:LiNbO3 波导及其镁含量对波导性能影响的研究. 中国激光. 1995, 22(5): 347-351
    105 卓壮, 邵宗书, 孟宪林等. 不同掺镁量的 Z 切 LiNbO3 质子交换光波导的制备和表征. 人工晶体学报. 1994, 23(3): 235-239
    106 E. Glavas, J. M. Cabrera, P. D. Townsend. A comparison of optical damage in different types of LiNbO3 waveguides. J. Phys. D: Appl. Phys.. 1989, 22: 611-616
    107 许士文, 李铭华, 高元凯等. m 线法研究掺杂 LiNbO3晶体波导基片的光损伤. 光子学报. 1994, 23(2): 179-183
    108 J. Jackel, A. M. Glass, G. E. Peterson, et al. Damage-resistant LiNbO3 wave- guides. J. Appl. Phys.. 1984, 55(1): 269-270
    109 W. M. Young, R. S. Feigelson, M. M. Fejer, et al. Photorefractive-damage- resistant Zn-diffused waveguides in MgO:LiNbO3. Opt. Lett.. 1991, 16(13): 995-997
    110 王锐, 徐衍岭, 徐悟生等. 全息法研究 Mg:In:LN 晶体波导基片的光损伤. 压电与声光. 2000, 22(6): 398-400
    111 Xihe Zhen, Rui Wang, Wusheng Xu, et al. Study on photodamage of Mg:Ga: LiNbO3 crystal wave-guide substrate. Opt. Mater.. 2002, 19(4): 427-431
    112 G. Zhang, Q. Li, P. Ho, et al. Dependence of specklon size on the laser-beam size via photoinduced light-scattering in LiNbO3-Fe. Appl. Opt.. 1986, 25(17): 2955-2959
    113 Guangyin Zhang, Jingjun Xu, Simin Liu, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals. Proceedingsof SPIE. 1995, 2529: 14-20
    114 T. R. Volk, N. V. Razumovski, A. V. Mamaev, et al. Hologram Recording in Zn-doped LiNbO3 crystals. J. Opt. Soc. Am. B. 1996, 13(7): 1457-1460
    115 孙骞. 三维光折变存储器的若干问题的研究. 南开大学博士生学位论文. 1997: 59-70
    116 赵朝中, 周玉祥, 张建等. Zn:Fe:LiNbO3 晶体的生长及其光学性能的研究. 人工晶体学报. 2004, 33(2):184-188
    117 徐悟生, 许世文, 李宣东. In 离子在掺杂 LiNbO3 晶体中的占位研究. 硅酸盐学报. 2004, 32(5):603-607
    118 王义杰, 代丽, 徐朝鹏. Mg:Ce:Fe:LiNbO3 晶体生长及其全息存储性能. 硅酸盐学报. 2007, 35(2):144-148
    119 ZHENG Wei, GUAN Chengxiang, ZHAO Liancheng, et al. The Correlation of doping ions to holographic storage properties of Mg:Mn:Fe:LiNbO3 crystals. J. Phys. Chem. Solids. 2003, 64:1371-1374
    120 Biao Wang, Rui Wang, Yiran Nie, et al. Investigation on photo-refractive properties of In:Mn:Fe:LiNbO3. Optical Materials. 2003, 23: 273–276
    121 Yiran Nie, Rui Wang, Biao Wang. Growth and holographic storage properties of In:Ce:Cu:LiNbO3 crystal. Materials Chemistry and Physics, 2007, 102: 281-283
    122 N. Niizeki, T. Yamada, H. Toyoda. Growth Ridge, Etched Hillhocks, and Crystal Structure of Lithium Niobate. Jpn. J. Appl. Phys. 1967, 6:318-327
    123 张涛. 镁铁共掺铌酸锂晶体的生长与结构及全息存储性能. 哈尔滨工业大学博士学位论文. 2005:22-23
    124 A. Grone, S. Kapphan. Combination bands of libration+vibration of OH/OD centres in ABO3 crystals. J. Phys.: Condens. Matter. 1995, 7: 3051-3061
    125 Y. Furukawa, K. Kitamura, S. Takekam, et al. The Correlation of MgO-Doped Near-Stoichiometric LiNbO3 Composition to the Defect Strtucture. J. Cryst. Growth. 2000, 211:230-236
    126 Elaine E. Robertson, Robert W. Eason, Yoshiatsu Yokoo, et al. Photorefractive damage removal in annealed-proton-exchanged LiNbO3 channel waveguides. Appl. Phys. Lett.. 1997, 70(16): 2094-2096
    127 M. Kuneva, S. Tonchev, M. Pashtrapanska, et al. Proton exchange in Y-cut LiNbO3. Mat. Sci. in Semiconductor Processing. 2000, 3: 581-583
    128 K. Yamamoto, T. Taniuchi. Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3. J. Appl. Phys.. 1991, 70(11): 6663-6668
    129 刘思敏, 郭儒, 凌振芳. 光折变非线性光学. 中国标准出版社. 1992: 1-6
    130 张洪喜, 强亮生, 徐崇泉等. 载流子浓度对光折变 LiNbO3 晶体二波耦合增益的影响. 红外与毫米波学报. 1994, 13(3):227-230
    131 R.A.Vazquez, R.R.Neurgaonkar, M.D.Ewbank. Photorefractive Properties of SBN:60 Systematically Doped with Rhodium. J. Opt. Soc. Am. B. 1992, 9(8):1416-1427
    132 A. Yariv, S. S. Orlov, G. A. Rakuljic. Holographic Storage Dynamics in Lithium Niobate: Theory and Experiment. J.Opt.Soc.Am.B. 1996,13:2513-2523
    133 赵业权, 杨春晖, 徐悟生等. In:Fe:LiNbO3晶体的全息存储性能研究. 光学学报. 1999, 19(8): 1070-1073
    134 Ali Adibi, Karsten Buse, Demetri Psaltis. System Measure for Persistence in Holographic Recording and Application to Singly-Doped and Doubly-Doped Lithium Niobate. Appl. Opt. 2001, 40:5175-5182
    135 F. H. Mok. Storage of 500 High- resolution Holograms in a LiNbO3 Crystal Opt. Lett. 1992, 16:605-607
    136 W. Zheng, C. X. Guan, L. C. Zhao, et al. The Correlation of Doping Ions to Holographic Storage Properties of Mg:Mn:LiNbO3 Crystals. J. Phys. Chem. Solids. 2003, 64:1371-1374
    137 F. Micheron, G. Bismuth. Electrical Control of Fixation and Erasure Holographic Patterns in Ferroelectric Materials. Appl. Phys. Lett. 1972, 20:79-81
    138 J. Ma, T. Y. Chang, J. H. Hong, et al. Enhancement of Multiplexed Holograms in Cerium-Doped Sr0.75Ba0.25Nb2O6. Phys. Rev. Lett. 1997, 78: 2960 –2963
    139 J. J. Amodei, D. L. Staebler, W. Stephens. Holographic Storage in Doped- Barium Sodium Niobate. Appl. Phys. Lett. 1971, 18: 507-509
    140 D. L. Staebler, W. J. Burke, W. Phillips, et al. Multiple Storage and Erasure of Fixed Holograms in Fe-doped LiNbO3. Appl. Phys. Lett. 1975, 26:182-184
    141 N. V. Kukhtarev, V. B. Markov, S. G. Odulov, et al. Holographic storage in electrooptic crystals. Ferroelectrics. 1979, 22(4): 949-953

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700