钪系掺杂铌酸锂晶体生长及全息存储性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用提拉法生长出无宏观缺陷、光学均匀性好的Sc:Fe:LiNbO_3晶体和Mg:Sc:Fe:LiNbO_3晶体。摸索出生长高掺杂和不同锂铌比的掺杂铌酸锂晶体的合适工艺条件,以避免晶体开裂,并降低溶质分凝所引起的晶体成分不均匀性。
     通过X-射线粉末衍射结果分析,钪系掺杂铌酸锂晶体在改变掺钪量和Li/Nb比的情况下,没有出现新相,但晶格常数有所改变,表明掺杂离子只能取代Li~+、Nb_(Li)~(4+)或Nb~(5+)。
     根据晶体的红外光谱吸收带和紫外可见吸收光谱的吸收边随掺钪量、掺镁量和Li/Nb比变化而发生移动的规律,分析确定杂质Sc在Sc:Fe:LiNbO_3晶体和Mg:Sc:Fe:LiNbO_3晶体中的阈值浓度和占位情况。当掺钪量低于阈值浓度时,Sc~(3+)离子优先取代反位铌(Nb_(Li)~(4+),占据Li~+位的Nb~(5+)),而当掺钪量的达到阈值浓度后,所有的反位铌被取代,Sc~(3+)离子将同时进入正常的Li位和铌位。随着Li/Nb的增加,晶体中Sc的阈值浓度浓度逐渐减小。同成分Sc:Fe:LiNbO_3晶体Sc的阈值浓度约为3mol%。在近化学计量比Sc:Fe:LiNbO_3晶体中,Sc的阈值浓度仅有0.3mol%。在Sc和Mg共掺晶体中,Sc比Mg优先达到阈值浓度。而且Sc在Mg:Sc:Fe:LiNbO_3晶体中的阈值浓度比在未掺镁的Sc:Fe:LiNbO_3晶体中的更低。在Sc、Mg的掺入量达到各自阈值浓度后,继续增加镁掺量,Sc、Mg的掺入量将达到一个共同的阈值。
     采用二波耦合和光斑畸变法分别测试晶体的光折变性能和抗光损伤性能。结果表明,随着掺钪量增加,Sc:Fe:LiNbO_3晶体的衍射效率和动态范围下降,而记录时间和擦除时间缩短,光折变灵敏度增加。对于不同Li/Nb比Sc:Fe:LiNbO_3晶体和Mg:Sc:Fe:LiNbO_3晶体,其光折边变性能的变化规律与不同钪掺量的Sc:Fe:LiNbO_3晶体的光折边变性能变化规律是一致的。
     在掺钪量达到阈值之后,Sc:Fe:LiNbO_3晶体的抗光损伤能力显著增强,比Fe:LiNbO_3晶体高二个数量级。通过增加Li/Nb比也可提高Sc:Fe:LiNbO_3晶体的抗光损伤能力。对于近化学计量比Sc:Fe:LiNbO_3晶体来说,当钪的掺杂量达到阈值浓度之后,再增加晶体中的掺钪量,反而导致晶体的抗光损伤能力降低。实验发现可通过共掺杂质Mg,使晶体的抗光损伤能力获得进一步提高,
     对晶体的全息存储实验结果表明,(5mol%)Sc:Fe:LiNbO_3晶体的读出图象质量明显高于Fe:LiNbO_3晶体和近化学计量比(0.1mol%)Sc:Fe:LiNbO_3晶体,表明晶体的抗光损伤能力的提高可以有效降低全息存储过程中噪音,提高读出图像的质量。掺杂钪和改变晶体中Li/Nb比可有效改善全息存储中缺点,有利于铌酸锂晶体在全息存储方面的实际应用。
The Sc:Fe:LiNbO_3 and Mg:Sc:Fe:LiNbO_3 crystals are grown by the Czochraski method,and the crystals have no macroscopic defect and exhibit good optical homogeneity,The appropriate technological conditions are chosen during the crystal growth process to avoid the crystal crack and decrease the component asymmetry due to the solute segregation.
     X-ray powders diffraction of the crystals were performed.The results showed that there is no new phase appeared in the doped LiNbO_3 crystals.The crystals hold the same lattice structure as the pure congruent lithium niobate crystal,but the lattice constants have comparable change.The doped ions can only replace Li~+,Nb_(Li)~(4+) or Nb~(5+).
     The dependence of the change of the absorption band in the IR spectra and the absorption edge in the UV-Vis spectra on the change of Sc_2O_3,MgO and Li/Nb ratio in the raw materials are investigated.The threshold concentration and location of Sc in doped LiNbO_3 crystals are confirmed.When the Sc doping concentration is below the threshold concentration,Sc~(3+) ions replace the antisite Nb(Nb_(Li)~(4+),the Nb~(5+) located at the Li site) firstly and Fe ions locate normal Li~+ sites.When the Sc doping concentration is up to the threshold concentration,all of Nb_(Li)~(4+) ions are replaced by Sc~(3+) ions,and Sc~(3+) ions will occupy normal Li~+ and Nb~(5+) sites.The threshold concentration of Sc is about 3mol%in congruent Sc:Fe:LiNbO_3 crystals.The threshold value decreases with the Li/Nb ratio increasing.In the near stoichiometric Sc:Fe:LiNbO_3 crystal,the threshold concentration is only 0.3mol%.The threshold concentration in the Sc:Fe:LiNbO_3 crystal was higher than that of Mg:Sc:Fe:LiNbO_3 crystal.In Mg:Sc:Fe:LiNbO_3 crystal,the Sc concentration reaches the threshold priority.When the MgO concentration increases further,and the doping concentration of Sc_2O_3 and MgO concentration exceeds the threshold concentration,the "Sc-Mg threshold concentration" is achieved.
     The photorefractive and photorefractive resistance properties are measured by two wave coupling and transmission facula distortion method,respectively. With the increasing of Sc doping concentration,Mg doping concentration or Li/Nb ratio,the diffraction efficiency and dynamic range of crystals decrease,the response time and the erasure time decrease,and the photorefractive sensitivity increase.
     The optical damage resistance of the co-doped Sc:Fe:LiNbO_3 crystals have obviously changed when the Sc doping concentration reached the threshold value. It is two orders of magnitude higher than that of Fe:LiNbO_3 crystals.With the Li/Nb increases,the optical damage resistances of crystals also improve.In the stoichiometric Sc:Fe:LiNbO_3 crystals,With the Sc doping concentration increase further,the optical damage resistances of Sc:Fe:LiNbO_3 crystals gradually decrease above the the threshold until the MgO doped.
     The holographic storage experiment was carried out by using the Fe:LiNbO_3 crystal and Sc:Fe:LiNbO_3 crystals as storage medium,the quality of the output picture stored in the Sc(5mol%):Fe:LiNbO_3 crystal was higher than that of Fe:LiNbO_3 crystal and near stoichiometric Sc(0.1mol%):Fe:LiNbO_3 crystal.The results indicated that the photorefractive effect can be affected by doping the Sc ions to the crystals and changing the Li/Nb ratio.It is helpful for improving the application in holographic storage.
引文
[1]孔勇发.光电功能晶体-铌酸锂[M].北京:科学出版社,2005:3-6.
    [2]LAMBERTUS H,SERGEI S.Photorefractive Materials for Nonvolatile Volume Holographic Data Storage[J].Science,1998,292(11):1089-1094.
    [3]刘思敏,郭儒,凌振芳编著.光折变非线性光学[M].北京:中国标准出版社,1992:4-6.
    [4]李铭华,杨春晖,徐玉恒著.光折变晶体材料科学导论[M].北京:科学出版社,2002:2-8.
    [5]COUFAL H,PASALTIS D,SINCERBOX G.Holographic Data Storage[M].Berin:Springer Verlag,2000:27-28.
    [6]WAN Y H,TAO S Q,YUAN W.Experimental Study on High-Density Holographic Disk Storage with Batch Thermal Fixing[J].Journal of Lasers,2005,32(3):361-364.
    [7]STAEBLER D L,AMODEI J J.Coupled Wave Analysis of Holographic Storage in LiNbO_3[J].Applied Physics,1972,43(11):1042-1049.
    [8]KUKHTAREV N V,MARKOV V B,ODULOV S G.Holographic Storage in Electrooptic Crystals[J].Ferroelectrics,1979,22(4):949-953.
    [9]FEINBERG J,HEIMAN D,HELLWARTH R.Photorefractive Effects and Light Induced Charge Migration in Barium Titanate[J].Applied Physics,1980,51(3):1297-1282.
    [10]闫爱民,刘德安,柴志方等.组合外加电场提高Fe:LiNbO_3中90°记录体全息的衍射效率[J].中国激光,2005,32(12):1659-1663.
    [11]孙砚宾,江竹青,孔芳.LiNbO_3:Fe:Cu晶体中的双色全息存储及复用技术[J].光电子激光,2007,18(6):698-700.
    [12]LEE M K,TAKEKAWA S J,FURUKAWA Y.Volume Holographic Storage in Near-Stoichiometric LiNbO_3:Ce:Mn[J].Physical Review Letters,2000,84(5):875-878.
    [13]孔勇发.铌酸锂晶体的缺陷结构及其相关问题的研究[R].南开大学博士后研究报告,1999:44-45.
    [14]WAN Y B,YANG P Z,WU Y R.The Influence of Composition on Optical Properties of Ferroelectric Potassium Lithium Niobate Single Crystals[J]. Optical Materials,2007,29(12):1746-1750.
    [15]WILKINSON A,CHEETHAM A,JARMAN R.The Defect Structure of Congruently Melting Lithium Niobate[J].Applied Physics,1993,74(5):3080-3083.
    [16]SCHIRMER O F,THIEMANN O,WOHLECKE M.Defects on LiNbO_3 I:Experimental Aspects[J].Physics and Chemical of Solids,1991,52(1):185-200.
    [17]PETERSON G E,CARNEVALE A.~(93)Nb NMR Linewidths in Non-Stoichiometric Lithium Niobate[J].Chemical Physics,1972,56(11):4848-4852.
    [18]ZHEN X H,ZHAO L C,XU Y H.Defect Structure and Optical Damage Resistance of Zn:Fe:LiNbO_3[J].Applied Physics B,2003,76(8):655-659.
    [19]FAY H,ALFORD W J,DESS H M.Dependence of Second Harmonic Phase-Matching Temperature in LiNbO_3 Crystals on Melt Compositign[J].Applied Physics Letters,1968,12(2):69-71.
    [20]ENOELSKERG M,SOUZA R,PACOBAHYBA L.Structural Determination of Hydrogen Site Occupation in Proton Exchanged LiNbO_3 by Nuclear Magnetic Resonance[J].Applied Physics Letters,1995,67(3):359-361.
    [21]LERNER P,LEORAS C,DUMAS J P.Stoichiometric Nonocristaux Meta Niobate Lithium[J].Crystal Growth,1968,3(4):231-235.
    [22]ABRAHAMS S C,MARSH P.Defect Structure Dependence on Composition in Lithium Niobate[J].Acta Crystal,1986,42(1):161-168.
    [23]刘建军,张万林.掺镁铌酸锂晶体的缺陷结构及其结晶化学分析[J].物理学报,1996,45(5):1852-1858.
    [24]BLUMEL J,BORN E,METZOER H.Solid State NMR Study Supporting the Lithium Vacancy Defect Model in Congruent Lithium Niobate[J].Physics and Chemical of Solids,1994,55(10):589-593.
    [25]ZOTOV N,BOYSEN H,FREY F.Cation Substitution Models of Congruent LiNbO_3 Investigated by X-ray and Neutron Powder Diffraction[J].Physics and Chemical of Solids,1994,55(4):145-152.
    [26]VOLK T,RUBININA N,W(o|¨)helcke.Optical damage Resistance Impurities in Lithium Niobate[J].Optical Society of America B,1994,11(9):1681-1687.
    [27]冯少新.晶体缺陷能学计算及铌酸锂的缺陷结构[D].南开大学博士研究 生学位论文,2001:10-16.
    [28]REBOUTA L,SMULDERS P J,BOERMA D O.Ion-beam Channeling Yields of Host and Impurity,Atoms in LiNbO_3:Computer Simulations[J].Physics Review B,1993,48(2):3600-3610.
    [29]DONNERBERG H,TOMLINSON S M.Defects in LiNbO_3-Ⅱ.Computer Simulation[J].Physics and Chemical of Solids,1991,52(3):201-205.
    [30]VOLK T,MAXIMOV B,SULYANOV S.Relation of Photorefraction and Optical Damage Resistance to the Intrinsic Structure in LiNbO_3 Crystals[J].Optical Materials,2003,23(2):229-233.
    [31]JERMANN F,OTTEN J.Light-Induced Charge Transport in LiNbO_3:Fe at High Light Intensities[J].Optical Society of America B.1993,10(12):2085-2092.
    [32]赵红娥,刘思敏,郭儒.非相干背景光辐照对LiNbO_3:Fe与LiNbO_3:Fe:In 晶体中二波耦合的控制[J].物理学报,2005,50(11):2149-2154.
    [33]PANKRATOV V,MILLERS D,GRIGORJEVA L.The Role of Fe and Cu Dopants in Electron Hole Trapping and Relaxation Process in Congruent LiNbO_3[J].Optical Materials,2003,22(7):257-262.
    [34]IMBROCK J,WIRP A,KIP D.Photorefractive Properties of Lithium and Copper in Diffused Lithium Niobate Crystals[J].Optical Society of America B.2002,19(8):1822-1829.
    [35]YANG Y P,BUSE K,PSALTIS D.Photoreffactive Recording in LiNbO_3:Mn[J].Applied Physics Letters,2002,27(3):158-160.
    [36]WANG B,WANG R,NIE Y.Investigation on Photorefractive Properties of In:Mn:Fe:LiNbO_3[J].Otical Materials,2003,26(11):103-106.
    [37]XU Y H,XU W S,XU S W.Effect of Li/Nb Ratio on Growth and Photorefractive Properties of Ce:Fe:LiNbO_3 Crystals[J].Optical Materials.2003,23(1):305-308.
    [38]刘金伟,刘国庆,陶世荃.Fe:LiNbO_3晶体生长及光谱特性[J].北京工业大学学报,2000,26(2):27-29.
    [39]BUSE K.Light Induced Charge Transport Processes in Photorefractive Crystals Ⅱ:Materials[J].Applied Physics,1997,64(11):391-407.
    [40]姚淑华,王继扬,刘宏等.掺镁近化学剂量比铌酸锂晶体的生长[J].硅酸盐学报,2007,35(3):281-284.
    [41]FURUKAWA Y,KITAMURA K,TAKEKAWA S.The Correlateion of MgO-Doped Near-Stoichiometric LiNbO_3 Composition to the Defect Structure[J].Crystal Growth,2000,2(11):230-236.
    [42]ZHEN X H,ZHAO L C.Defect Structure and Optical Damage Resistance of Zn:Fe:LiNbO_3 Crystals[J].Applied Physics,2003,76(8):655-659.
    [43]王淼,王锐,徐衍岭.Holographic Storage Properties of In:Fe:Mn:LiNbO_3Crystals[J].结构化学,2007,26(10):1218-1222.
    [44]郑威,桂强,徐玉恒等.Sc:Fe:LiNbO_3晶体的生长和光学性能研究[J].人工晶体学报,2007,36(2):314-318.
    [45]VOLK T,MAXIMOV B,CHERNAYA T.LiNbO_3 with the Damage Resistant Impurity Indium[J].Applied Physics,2002,76(11):217-225.
    [46]FONTANA M,CHAH K,AILLERIE M.Optical Damage Resistance in Undoped LiNbO_3 Crystals[J].Optical Materials,2001,16(6):111-117.
    [47]KASEMIR K,BETZLER K,MATZAS B.Influence of Zn/In Codoping on the Optical Properties of Lithium Niobate Crystals[J].Applied Physics,1998,84(9):5191-5193.
    [48]甄西合.双掺锌铁铌酸锂晶体生长及其结构与光折变性能[D].哈尔滨工业大学博士学位论文,2003:46-48.
    [49]SERRANO M,BERMUDEZ V,ARIZMENDI L.Determination of the Li/Nb Ratio in LiNbO_3 Crystals Growth by Czochralski Method with K_2O Added to the Melt[J].Crystal Growth,2000,210(4):670-676.
    [50]NIE Y R,WANG R,WANG B.Effect of Li/Nb Ratio on Holographic Storage Properties of In:LiNbO3 Crystals[J].Microwave and Optical Technology Letters,2004,49(9):2169-2171.
    [51]RAVI G,KITAMURA K,MOHANKUMAR R.Growth and Characterization of Mn-Doped Stoichiometric Lithium Niobate Single Crystals[J].Crystal Growth,2006,292(2):355-357.
    [52]CHEN H,ZHENG.Y,CHENG.J.Bulk Near Stoichiometric Lithium Niobate Crystal Growth by A Melt Supply Method[J].Crystal Growth,2006,292(2):412-415.
    [53]郑威,王凤春,徐玉恒.近化学计量比铌酸锂晶体的生长及其结构[J].硅酸盐学报,2004,32(11):1367-1370.
    [54]张克从,张东浦.晶体生长[M].北京:科学出版社,1981:367-379.
    [55]陈念贻著.键参数函数及其应用[M].北京:科学出版社,1976:102-105.
    [56]KOVACS L,WOHLECKE M,JOVANOVIC A.Infrared Absorption Study of the OH Vibrational Band in LiNbO_3 Crystals[J].Physics and Chemistry of Solids,1991,52(11):797-803.
    [57]GUNTER P,HUIGNARD P.Photorefractive Materials,and Their Applications[M].Berlin:Springer-Verlag,1998:46-47.
    [58]孔勇发.抗光折变系列掺杂铌酸锂晶体[D].南开大学硕士学位论文,1994:25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700