直升机旋翼鸟撞数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸟撞事故一般发生在600m以下的空域,而低空飞行是直升机的显著使用特点,因此直升机发生鸟撞的可能性很大,并且随着飞行速度的提高,鸟撞事故的危害性也在逐步加大。鸟撞轻则使机体损坏,重则会造成机毁人亡。旋翼是直升机非常重要的组成部分,一旦出现鸟撞损伤就会对直升机的飞行安全造成严重威胁,是抗鸟撞研究中需要着重解决的关键技术。我国民用直升机的抗鸟撞设计研究起步较晚,在民用直升机鸟撞方面开展的数值计算和鸟撞试验还很少。如何在设计的过程中采取有效的分析、设计和试验手段满足适航条例的要求已成为我国新型民用直升机研制中亟需解决的问题。
     本文详细地推导了鸟撞数值计算方法的理论公式,结合直升机旋翼鸟撞的特点,选择ALE流固耦合方法对某民用型直升机旋翼鸟撞进行了动态响应分析,并开展了相关的鸟撞试验研究工作。首先建立了某民用型直升机旋翼全尺寸鸟撞有限元模型。通过对旋翼固有特性的分析验证了旋翼有限元模型的有效性;桨叶材料的本构模型中考虑了应变率效应;以预应力的形式计入了离心力的影响。对撞击速度、撞击方向、撞击部位以及鸟体密度等鸟撞参数进行了桨叶动态响应影响性分析,得出了一些有参考价值的结论。针对桨叶后缘抗鸟撞能力薄弱方面,在不有悖于飞行器设计最小重量的原则下,提出了一些提高桨叶抗鸟撞性能的方法,并对这些方法进行了对比分析。
     设计制作了鸟撞试验装置,其中包括开炮机构、脱壳机构、鸟弹安装机构、明胶鸟弹等部件。利用该装置开展了鸽子鸟弹、明胶鸟弹撞击悬臂梁试验。在鸽子撞击试验中,并没有对鸽子进行宰杀;而是仅用保鲜膜将鸽子束缚住,直接发射出去撞击靶体,通过高速摄像结果可以看出,本文的方法更接近于真实的鸟体撞击。利用明胶鸟弹作为替代鸟体进行了撞击试验,发现明胶鸟弹能够很好地模拟鸟体在撞击过程中的流体动力学行为,为今后旋翼鸟撞试验中的替代鸟体研究奠定了一定的基础。
     由于直升机旋翼直径较大,并且在旋转过程中桨叶具有挥舞、摆振、扭转等运动,边界条件复杂,受试验条件和试验场地的限制,主桨叶全尺寸鸟撞试验很难实现。本文提出采用集中载荷作用下的桨叶静态鸟撞试验替代旋转状态下桨叶鸟撞试验,并利用数值计算方法验证了该方法的有效性,从而为直升机旋转部件的碰撞试验方法提供了理论依据。
Bird impact usually occurs in the airspace below600meters. However, low altitude flying isthe most obvious characteristics of helicopter. Therefore, there is a great possibility that birdimpact occurs to helicopter. Moreover, with the improvement of flying speed, the danger of birdimpact is gradually deepening. Slight bird impact could cause plane body damage, while huge birdimpact could cause plane crash accident. The rotor is the most vital component of helicopter. Oncethe damage occurs, it will cause serious threat to helicopter’s flying safety which needs to beresolved urgently in anti-bird impact research.Anti-bird impact design research of civil helicopterin our country started fairly late and there are also few reports about numerical calculation andbird impact test related to civil bird impact. Therefore, How to meet AACA(Administration of theAirworthiness of Civil Aircraft’s) requirements in design process by adopting effective analysis,design and test means has become the problem that needs to be urgent resolved in thedevelepoment of our country’s new-style civil helicopter.
     In this paper, the numerical computation methods for bird impact were studied, and therelative theoretical formulas were derived. Combined with the characteristics of the helicopterrotor bird impact,The ALE fluid-structure method was adopted to analyze dynamic response ofone civil helicopter’s rotor bird impact and related bird impact test was carried out. Firstly, thefinite element model of one civil helicopter’s full-scale bird impact was established. Theeffectiveness of rotor finite element model was verified by analysing the inherent characteristics ofrotor blade. Strain rate effect was taken into consideration in blade material’s constitutive model,And the effect of centrifugal force was considered in the form of prestress. The influence of birdimpact parameters, such as impact speed, impact direction, impact part and bird density, on theblade’s dynamic response was analysed, and some conclusions which are of great reference valuewere reached.As for anti-bird impact’s weak aspect of blade trailing edge, some methods ofimproving blade anti-bird impact were proposed under the principle of minimum weight of aircraftdesign, and the contrastive analysis of those method was carried out.
     A bird impact test device was developed, which includes the fire mechanism, hullingmechanism, bird shot installation mechanism and gelatin birdshot. A test of pigeon and gelatinbird striking cantilever beam was carried out. In pigeon impact test, the pigeon was tied with clingfilm and directly launched to impact the target instead of being killed. The result from high speedcamera showed that the present method was even closer to real bird impact. Fluid dynamicbehavior in bird impact process was well simulated by gelatin birdshot. Thus, a certain foundation for bird replacement research in future’s blade bird impact test is built.
     The main rotor blade full-scale bird impact test is very hard to be realized due to thefollowing aspects: helicopter’s rotor diameter is larger; during rotating process, rotor consists ofdifferent motion forms such as flap, lag, torsion; boundary conditions are complicated; testcondition and test site are limited. In this paper,it was raised to adopt static bird impact withcentralized loads to replace that of rotating blade, and the effectiveness of this method was verifiedthrough numerical calculation method. Thus, theoretical basis is provided for impact test methodof helicopter’s rotating component.
引文
[1] Hild J.Worldwide bird strike statistics of Lufthansa German Airlines.AD-P004183,1984.
    [2] John Thorpe. Fatalities and destroyed civil aircraft due to bird strikes,1912-2002. International Bird Strike Committee26/WP-SA1, Warsaw, May5-9,2003.
    [3] Thorpe J, Wessum R. Bird strikes during1983to European registeredcivil aircraft. ADF616066,1986.
    [4] Turner CJ. Military aircraft bird strike analysis1983-1984. ADF616074,1986.
    [5] Thorpe J.Bird strikes during1984to European registered civil aircraft.ADF616079,1986.
    [6] Thorpe J.Analysis of bird strikes reported by European airlines1981-1985.ADF616427,1990.
    [7] Thorpe J.Serious bird strikes to civil aircraft1987-1989.ADF616428,1990.
    [8] Dolbeer R A, Wright S E and Cleary E C. Bird strikes to civil helicopters inthe United States,1990-2005. the8thmeeting of Bird Strike Committee-USA/Canada,Missouri USA, August21-24,2006:45~50.
    [9] Yang JL,Jie CX, Hao WC. Experiment and FEM study of windshield subjected to highspeed bird impact.ACTA Mechanica Sinica.2003,19(6):543~550
    [10]张志林,姚卫星.飞机风挡鸟撞动响应分析方法研究.航空学报.2004,25(6):577~580.
    [11]姚小虎,韩强,张晓晴等.飞机圆弧风挡抗鸟撞试验研究.爆炸与冲击.2005,25(5):417~412.
    [12]朱书华,童明波,王跃全.某型飞机风挡鸟撞试验与数值模拟.应用力学学报.2009,26(3):444~450
    [13]刘军,李玉龙,郭伟国等.鸟体本构模型参数反演I:鸟撞平板试验研究.航空学报.2011,32(5):802~811.
    [14]张雄,王天舒.计算动力学.北京:清华大学出版社,2007.
    [15] Gilat A,Goldberg R K, Roberts G D. Experimental study of strain-rate-dependentbehavior of carbon/epoxy composite. Composites Science and Technology,2002,62(10):1469~1476.
    [16] Harding J,Welsh L M. A tensile testing technique for fibre-reinforcedcomposites at impact rates of strain. Journal of Materials Science,1983,18(6):1810~1826.
    [17] Cantwell W J, Morton J.Geometrical effects on the high velocity impactresponse of CFRP.Composite Structures,1988,10(3):247~265.
    [18] Hosur M V, Alexander J,Vaidya U K,etal.High strain rate compression responseof carbon/epoxy laminate composites.Composite Structures,2001,52(4):405~417.
    [19] Jadhav A, Woldesenbet E, Pang S S. High strain rate properties of balancedangle-ply graphite/epoxy composites. Composites Part B,2003,34(4):339~346.
    [20]李玉龙,石霄鹏.民用飞机鸟撞研究现状.航空学报.2011,32(5):802~811.
    [21] Zhu Shuhua, Tong Mingbo, Wang Yuequan. Experiment and Numerical Simulation ofBird Impact on Aircraft Windshield,50th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.AIAA,2009~2575.
    [22]朱书华.鸟撞飞机风挡动响应分析与仿真试验平台研究,[博士学位论文].南京:南京航空航天大学,2009.
    [23]贾建东.飞机典型结构抗鸟撞设计与分析,[博士学位论文].南京:南京航空航天大学,2010.
    [24]余元元.双轨火箭滑车高速水刹装置研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [25]朱书华,童明波.飞机全尺寸风挡抗鸟撞试验研究.实验力学.2009,24(1):61~66.
    [26] ASTM F330-79.宇航透明件的鸟撞试验方法.
    [27] Electronic code of Federal Regulations.FAA,2010.
    [28] Certification specifications for large aeroplanes CS-25.EASA,2007.
    [29]中华人民共和国国家军用标准.GJB2462-95.飞机玻璃鸟撞试验方法,1996.
    [30]中国民用航空规章-第25部-运输类飞机适航标准.中国民用航空总局,2001.
    [31] GJB246495.中华人民共和国国家军用标准.
    [32] Barber J P, Taylor H R and Wilbeck J S. Characterization of bird impact on arigid plate: part Ⅰ. AFFDL-TR-75-5, ADA021142,1975:1~44.
    [33] Wilbeck J,Reimane W.Impact behaviou of low strength projectiles.AFML-TR-77-134,1978.
    [34] Wilbeck J, Barber J. Bird impact loading. The Shock and Vibration Bulletin,1978,48(2):115~122.
    [35] Barber J P, Wilbeck J S and Taylor H R. Bird impact forces and pressures onrigid and compliant targets. AFFDL-TR-77-60, ADA061313,1978:1~78.
    [36] Wilbeck J S, Barber J P. Bird impact loading. Vibration Bulletin, Part2,1978:115~120.
    [37] Besse J, Fuertes A. Behavior of aramid epoxy composite structures to bird impact.Bird Strike Committee Europe (BSCE)18th Meeting,1986.
    [38] Airoldi A, Tagliapietra D. Bird impact simulation against a hybrid compositeand metallic vertical stabi stabilizer. Seattle: AIAA,2001.
    [39] Reglero J, Rodríguez-Pérez M, Solórzano E, etal. Aluminium foams as a fillerfor leading edges: Improvements in the mechanical behaviour under bird strikeimpact tests. Materials and Design,2011,32(2):907~910.
    [40] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraftwing leading edge made from fibre metal laminates–Part1: Material modelling.Applied Composite Materials,2004,11(5):295~315.
    [41] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraftwing leading edge made from fibre metal laminates–Part2:Modelling of impactwith SPH bird model. Applied Composite Materials,2004,11(5):317~340.
    [42] Alan D. Bird strike and analysis of S-92vertical tail cover using Dytran. TheAHS Affordable Composite Structures Conference Bridgeport, CT,October7-8,1998.
    [43] Alan D, Frank F and Robert Y. Bird strike analysis and test of a spinning S-92tail rotor. the American Helicopter Society57thAnnual Forum. Washington DC,2001.
    [44]张启桥,许宗庆,飞机圆弧风挡鸟撞动响应研究.航空学报,1991,12(2):100~105.
    [45]臧曙光.飞机风挡抗鸟撞设计研究,[硕士学位论文].北京:中国建筑材料科学研究院,1999.
    [46]关玉璞,张在坤,赵振华等.粒子分离器涡流叶片鸟撞击损伤试验.航空动力学报,2007,22(12):2094~2100.
    [47]刘军,李玉龙,石霄鹏等.鸟体本构模型参数反演Ⅱ:模型参数反演研究.航空学报,2011,32(5):812~821.
    [48] Barber J P,Boehman L I,The Modeling of Bird Impact Loads.ADA065049.1978,65~81.
    [49]张志林,张启桥等,飞机圆弧风挡鸟撞动响应分析,航空学报,1992,13(9):538~542.
    [50]张志林,飞机座舱透明件设计理论及应用,[博士学位论文].南京:南京航空航天大学,2005.
    [51]尹晶,鸟撞击的载荷因素对叶片响应的影响.航空动力学报,1992,7(1):51~54.
    [52]尹晶,高德平等,鸟撞击叶片时的载荷模型.航空动力学报,1993,8(4):363~367.
    [53]陈伟,漆文凯等,载荷与响应耦合下叶片鸟撞击响应分析.航空动力学报,1998,13(1):93~95.
    [54]王益锋,王浩文,高正.直升机旋翼桨叶的弹性碰撞动力学建模.航空动力学报,2009,24(05):2046~2050.
    [55]王益锋.直升机旋翼桨叶动力学建模与弹性碰撞动响应分析,[博士学位论文].南京:南京航空航天大学,2009.
    [56] McCarty RE. Finite element analysis of F-16aircraft canopy dynamic responseto bird impact loads.AIAA-80-0804,1980.
    [57] McCarty RE. Finite element analysis of a bird-resistant monolithic stretchedacrylic canopy design for the F-16A aircraft.AIAA-81-1640,1981.
    [58] Meguid SA, Mao RH, Ng TY. FE analysis of geometry effects of an artificial birdstriking an aeroengine fan blade. International Journal of Impact Engineering2008,35:487~498.
    [59] Mao RH, Meguid SA,Ng TY.Transient three dimensional finite element analysisof a bird striking a fan blade. International Journal of Mechanics and Materialsin Design.2008,4:79~96.
    [60]关玉璞,陈伟,黄志勇.一种鸟撞击叶片的切割模型.南京航空航天大学学报.2004,36(6):784~78.
    [61]刘军,李玉龙,刘元镛.基于SPH方法的叶片鸟撞数值模拟研究.振动与冲击.2008,27(9):90~93.
    [62]朱书华,童明波.鸟体形状对飞机风挡鸟撞动响应的影响.南京航空航天大学学报,2008,40(4):551~555.
    [63] Peterson R, Barber JP. Bird impact force in aircraft windshield design.AFFDL-TR75-150,1976.
    [64]白金泽.基于神经网络方法的鸟撞飞机风挡反问题研究,[博士学位论文],西安:西北工业大学,2003.
    [65]白金泽,孙秦.飞机风挡结构抗鸟撞一体化设计技术研究.力学与实践.2005,27(1):14~18.
    [66]王富生,李立州,王新军.鸟体材料参数的一种反演方法.航空学报.2007,28(2):344~347.
    [67]王新军,邱珠峰,王富生等.飞机风挡抗鸟撞动响应数值模拟.强度与环境.2007,34(1):28~32.
    [68]朱书华,王跃全,郭亮等.鸟撞飞机风挡非线性数值分析.南京航空航天大学学报,2011,43(6),738~743.
    [69] Yang JL,Jie CX, Hao WC. Experiment and FEM study of windshield subjected tohigh speed bird impact. ACTA Mechanica Sinica.2003,19(6):543~550.
    [70] Kirtil E,Pestal D, Kollofrath A.Simulating the impact behaviour of compositeaircraft structures.2003ABAQUS User's conference,2003.
    [71]万小朋,龚伦,赵美英等.基于ANSYS/LS-DYNA的飞机机翼前缘抗鸟撞分析.西北工业大学学报.2007,25(2):285~288.
    [72] Bouchard MP.Advanced transparency development for USAF aircraft.AIAA-93-1391-CP,1993.
    [73] Stoll F,Brockman RA.Finite element simulation of high-speed soft-body impacts.AIAA-97-1093,1997.
    [74]陈园方,李玉龙,刘军等.典型前缘结构抗鸟撞性能改进研究.航空学报,2010,31(9):1781~1787.
    [75]毋玲,郭英男,李玉龙.蜂窝夹芯雷达罩结构的鸟撞数值分析.爆炸与冲击,2009,29(6):642~647.
    [76]赵楠,薛璞,李玉龙.鸟体撞击蜂窝夹层板的动力响应分析研究.兵工学报,2010,31(+1):184~189.
    [77] Goyal V, Huertas C A, Borrero J R, et al. Robust birdstrike modeling based onSPH formulation using LSDYNA. Newport: AIAA,2006.
    [78] Anghileri M, Castelletti LL,Mazza V. Birdstrike: approaches to the analysisof impacts with penetration.WITT ransactions on EngineeringSciences.2005,49,Impact loading of light weight structures.
    [79] McCallum SC,Constantinou C.The influence of bird-shape in bird-strikeanalysis.5th European LS-DYNA users conference Birmingham,UK,2005.
    [80]温海涛.直升机主桨叶的鸟撞计算机仿真,[硕士学位论文].南京:南京航空航天大学,2008.
    [81]温海涛,关玉璞,高德平.直升机主桨叶的鸟撞有限元数值模拟.航空动力学报.2009,24(5):1150~1157.
    [82]林长亮,王浩文,陈仁良等.采用流固耦合方法的直升机桨叶鸟撞数值模拟.科学技术与工程,2012,12(1):1~6.
    [83] Nizampatnam L S.Models and methods for bird strike load predictions. Wichita:the department of aerospace engineering, Wichita state university,2007.
    [84] Nizampatnam L S.Horn W J. Investigation of equation of state models forpredicting bird impact loads. Reno: AIAA,2008.
    [85] Nizampatnam L S.Horn W J. Investigation of material density variations forpredicting bird impact Loads. Schaumburg: AIAA,2008.
    [86] Wilbeck J S, Rand J L.The development of substitute bird model.ASME Journalof Engineering for Power,1981,103(6):725~730.
    [87] Budgey R.The development of artificial bird designs for birdstrike resistencetesting, Amsterdam:IBSC25/WP-IE3,2000.
    [88] Lavoie M A, Gakwaya A, Ensan M N, et al.Birds substitute tests results andevaluation of available numerical methods.International Journal of ImpactEngineering.2009,36(10-11):1276~1287.
    [89]陈伟,关玉璞,高德平.发动机叶片鸟撞击瞬态响应的数值模拟.航空学报,2003,24(16):531~533.
    [90] Smojver I,Ivancevic D.Numerical simulation of bird strike damage predictionin airplane flap structure.Composite Structures,2010,92(9):2016~2026.
    [91]王爱俊.层合透明材料抗冲击有限元数值模拟.工程力学.1999,16(5):58-62.
    [92]王新军,邱珠峰,王富生等.飞机风挡抗鸟撞动响应数值模拟.强度与环境.2007,34(1):28~32.
    [93] Goyal V K, Huertas C A, Borrero J R, etal. Robust bird-strike modeling basedon ALE formulation using LS-DYNA.Newport: AIAA,2006.
    [94] Hanssen A G, Girardet Y, Olovsson L, et al. Numerical model for bird strikeof aluminium foam-based sandwich panels.InternationalJ ournal of ImpactEngineering,2006,32(7):1127~1144.
    [95] Lucy L.A.Numerical approach to testing the fission hypothesis.AstronJournal.1995,82:1013~1024.
    [96] Gingold R A,Moraghan J J. Smooth particle hydrodynamics-theory andapplications To non-spherical stars.Royal Astronomical Society,MonthlyNotices.1977,181:375~389.
    [97] Audic S,Berthillier M, Bonini J,etal.Prediction of bird impact in hollow fanblades.Huntsville: AIAA,2000.
    [98] Georgiadis S,Gunnion A J,Thomson R S,etal. Birdstrike simulation forcertification of the Boeing787composite moveable trailing edge. CompositeStructures,2008,86(1-3):258~268.
    [99] Liu W K, Belytschko T, etal. Anarbitrary Lagrangian-Eulerian finite elementmethod for path-dependent materials. Compute Meths,1986,58:227~245.
    [100]Hughes T J R, Liu W K and Zimmerman T K.Lagrangian-Eulerian finite elementformulation for incompressible viscous flows. Comput Meths ApplMech.1981,29:329~349.
    [101]庄茁.连续体和结构的非线性有限元.北京:清华大学出版社,2002.
    [102]张阿漫,戴绍仕.流固耦合动力学.北京:国防工业出版社,2011.
    [103]张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [104] Minki Kim,Anthony Zammit,Aaron Siddens, etal.An Extensive CrashworthinessMethodology for Advanced Propulsion Systems,Part I:Soft Impact DamageAssessment of Composite Fan Stage Assemblies.49th AIAA2011-980:1~15.
    [105]卞文杰,万力,吴莘馨.MSC.Dytran基础教程.北京:北京大学出版社,2004.
    [106]万力,吴莘馨,卞文杰.MSC.Dytran实例教程.北京:北京大学出版社,2004.
    [107]刘兵山,黄聪.Patran从入门到精通.北京:中国水利水电出版社,2003.
    [108]杨乃宾,倪先平.直升机复合材料结构设计.北京:国防工业出版社,2008.
    [109]陈祥宝.聚合物基复合材料手册.背景:化学工业出版社,2004.
    [110]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006.
    [111] Harding J,Welsh L M.A tensile testing technique for fibre-reinforcedcomposites at impact rates of strain.Journal of Materials Science,1983,18(6):1810~1826.
    [112] Cantwell W J, Morton J.Geometrical effects on the high velocity impactresponse of CFRP.Composite Structures,1988,10(3):247~265.
    [113]夏源明,杨报昌,贾德兴,等.摆锤式杆杆型冲击拉伸试验装置和低温动态测试技术.试验技术,1989,4(1):59~65.
    [114]周元鑫,江大志,夏源明.炭纤维静、动态加载下拉伸力学性能的试验研究.材科学与工艺,2000,8(1):12~15.
    [115] Gilat A,Goldberg R K, Robert s G D. Experimental study of Strain-rate-dependentbehavior of carbon/epoxy composite.Composites Science and Technology,2002,62(10/11):1469~1476.
    [116] Hosur M V,Alexander J,Vaidya U K, et al.High strain rate compression responseof carbon/epoxy laminate composites.Composite Structures,2001,52(3/4):405~417.
    [117] Jadhav A,Woldesenbet E,Pang S S.High strain rate properties of balancedangle-ply graphite/epoxy composites.Composites Part B,2003,34(4):339~346.
    [118]王正浩,赵桂平,马君峰,等.碳/环氧树脂复合材料应变率效应的实验研究.复合材料学报,2007(24):113~119.
    [119]白震平,韩小平.复合材料层板动态力学性能和本构关系研究.陕西工学院报,2000(16)35~39.
    [120]卢子兴,田常津,韩铭宝,等.聚氨酯泡沫塑料在应力波加载下的压缩力学性能研究.爆炸与冲击,1995,15(4):374~380.
    [121] Zhao H.Testing of Polymeric Foams at High and Medium Strain Rates.PolymerTesting,1997,16:507~516.
    [122]卢子兴,袁应龙.高应变率加载下复合泡沫塑料的吸能特性及失效机理研究.复合材料学报,2002,19(5):114~117.
    [123]范俊奇,董宏晓,高永红,等.高应变率下聚氨酯泡沫材料动态力学性能研究.建筑材料学报,2012(15):356~360.
    [124]陈伟,宋迎东等,离心载荷作用下平板叶片鸟撞击响应计算,航空动力学报,1997,12(2):122~124.
    [125] Jenq S.T,Hsiao F.B,Lin I.C. Simulation of a rigid plate hit by a cylindricalhemi-spherical tip-ended Soft impactor.Computational MaterialsScience.2007,39(1):518-526.
    [126]廖建.纤维金属层板(FMLs)基本力学性能实验研究.西安:西北工业大学材料学院,2007.
    [127]梁中全,武文静,朱斌,等.GLARE层板与铝合金板在力学性能上的比较及其应用.玻璃纤维,2005(3):11~13.
    [128]瞿承玮,郑百林. GLARE层板鸟撞数值模拟分析.力学季刊,2007,28(1):65~69.
    [129]Bardella L,Genna F.Study on the elastic behavior of syntactic foams.InterSolids and Struct,2001,38(40-41):7235~7260.
    [130]Gupta N,Woldesenbet E, Mensh P.Compression properties of syntactic foams:Effect of cenosphere radius ratio and specimen aspect ratio.Composites PartA,2004,35(1):103~111.
    [131]卢子兴,王仁,黄筑平等.泡沫塑料力学性能研究综述.力学进展,1996,26(3):306-323.
    [132]卢子兴,袁应龙.高应变率加载下复合泡沫塑料的吸能特性及失效机理研究.复合材料学报,2002,19(5):114~1117.
    [133]卢子兴.聚氨酯泡沫塑料拉伸本构关系及其失效机理的研究.航空学报,2002,23(2):151~154.
    [134]吴志斌,宋春艳,许志香.飞机尾翼鸟撞试验与分析模型验证.第十届全国振动理论及应用学术会议论文集,江苏南京:中国振动工程学会,2011:1805~1810.
    [135]林长亮,王浩文,陈仁良.直升机桨叶鸟撞试验方法的数值模拟.振动工程学报,2012,25(6):667-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700