ISAR成像中JEM干扰的抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当逆合成孔径雷达(ISAR)成像的目标含有螺旋桨等快速旋转部件时,目标的雷达回波中会产生螺旋桨回波调制(JEM)干扰信号。这种JEM干扰信号一方面自身无法正常成像,另一方面又会影响正常目标的成像效果。JEM干扰信号会影响运动补偿算法的实现,也会在最终成像时形成条带干扰影响成像质量。针对这一问题,本文对螺旋桨目标ISAR回波信号进行了数学分析和计算机仿真,并研究了JEM信号的规律性及抑制方法。
     首先本文研究了ISAR成像的原理及在ISAR转台成像中螺旋桨目标回波的JEM调制原理。分析螺旋桨回波时域、频域的特征;讨论了螺旋桨散射点回波与普通散射点回波在成像过程中的差异。并对不同旋转速度和不同桨叶尺寸的螺旋桨目标进行了成像对比和分析,深入了解ISAR成像中JEM信号的特性。
     然后本文介绍了螺旋桨部件散射点回波在ISAR中的多普勒效应。先介绍了窄带信号下多普勒效应的表达式和物理意义,又讨论了由于宽带信号的转台中心与螺旋桨的旋转中心位置的不同而导致的雷达回波多普勒频率的差异。并在此基础上研究了影响多普勒频率变化的相关因素,而后用仿真模型加以分析。
     本文的最后也是中心环节,就是讨论了ISAR成像中JEM干扰的抑制方法。首先介绍了chirplet基信号的原理和参数的特性,然后阐述了如何应用chirplet基信号进行信号的分解和重建。随后详细说明了在使用chirplet基信号分解ISAR回波信号时,JEM干扰信号和正常信号在信号分解后参数的差异。利用这种差异就可以在信号重建的过程中抑制JEM信号分量,实现ISAR成像中JEM信号的抑制。文章的最后用仿真模型进行了JEM抑制处理的实验并用实测数据对该抑制方法进行了验证。
Targets including propeller or other fast-rotating components can cause Jet Engine Modulation (JEM) interference in the received radar signal in the Inverse Synthetic Aperture Radar (ISAR) imaging. The JEM signal will not be normally imaged and it will do harm to natural scatters of interest while imaging. JEM signal make it difficult to do motion compensation and will even disturb the ultimate image. Consequently, this paper proposes a model of ISAR echoes from propeller blades and then researches into characteristics of the JEM signal and how to restrain them.
     Firstly, this paper describes fundamental principle of ISAR imaging and how the JEM signal modulates received radar signal. This paper presents time-domain and frequency-domain analysis of echoes from propeller blades and also discusses the difference between echoes from propeller and echoes from rigid body. Then the papers pay attention to the contrast and analyze of the JEM signals due to propellers with different size and circumrotating rate. After the above research we would have insight knowledge about JEM signal in ISAR imaging.
     Secondly, we take aim at Doppler Effect of the JEM signal in ISAR imaging. The expression and signification of Doppler Effect in the narrow band radar system is introduced. Again we discuss the difference of Doppler frequency caused by location shift between the centre of rotating part and the centre of turntable in ISAR imaging. Based on these works, we find out the factors that can work on the Doppler frequency and give emulation at last.
     Finally, we conclude the method of restraining the JEM interference signal in ISAR imaging. The paper introduced the chirplet basis function and its parameter characteristics, followed by the way of how to make use of the chirplet basis function to decompose and rebuild signals of interest. Noticing that there exist differences between the parameters of JEM interference signal and natural signal when we are decomposing return signal of ISAR, we can make use of these differences to restrain the JEM signal in ISAR imaging. At last an experiment is given to simulate the process of JEM signal restraining and the method is also validated using real data.
引文
1 C. R. Smith, P. M. Goggans. Radar target identification. IEEE Transactions on Antennas and Propagation. 1993, 35(2): 27~38
    2 C. C. Vitor. Radar signatures of rotor blades. Proceedings of SPIE-The International Society for Optical Engineering. 2001, Vol. 4391: 63~70
    3 Wu Jie, Zhang Yun-hua. A new motion compensation method for ISAR based on time-frequency analysis and image processing. IEE Proceedings on Radar, Sonar and Navigation. 2005, 33(5):87 ~91
    4 Schlachta K V A. Contribution to Radar Target Classification. Proceedings of the IEEE International Radar Conference. London: IEE Electronics Division. 1977: 135~139
    5丁建江,张贤达.基于调制特征的飞机目标自动分类.清华大学学报. 2003, 43(7): 887~890
    6 M, R. Bell, R. A. Grubbs. JEM modeling and measurement for radar target identification. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 73~87
    7丁建江,张贤达.复AR双谱及在常规雷达目标分类中的应用.信号处理. 2002, 18(6): 556~559
    8丁建江.飞机目标调制特征的研究及应用.北京:清华大学. 2002
    9丁建江,张贤达.常规雷达JEM特征分析与目标分类的研究.电子与信息学报,2003, 25(7): 956~962
    10 Gardner, R. E. Report 5656, Naval Research Labrary. Washington, DC, Aug. 1961
    11 Fliss G G, Mensa D L. Instrumentation for RCS Measurements of Modulation Spectral of Aircraft Blades. Proceedings of the IEEE National Radar Conference, Los Angeles(USA): IEEE AES Society. 1986: 95~98
    12 Schneider, H. On the Maximum Entropy Method for Doppler Spectral Analysis of the Radar Echoes from Rotating Objects. IEE International Conference. 1987, RADAR-87:279~291
    13 J. Martin, B. Mulgrew. Analysis of the theoretical return signal from aircraft blades. The record of the IEEE International Conference Radar, New York(USA). 1990: 569~572
    14 J. Martin, B. Mulgrew, Analysis of the effects of blade pitch on the radar return signal from rotating aircraft blades. 1992 IEE International Radar Conference, London (UK), IEE Conference Publication 365. 1992: 446~449
    15 E. Piazza. Radar signals analysis and metallization in the presence of JEM application to civilian ATC radars. IEEE Transactions on Aerospace and Electronic Systems. 1999, 14(1): 35~40
    16丁建江,张贤达.防空雷达飞机目标调制周期特征的研究.电子学报, 2003, 31(6): 903~906
    17丁建江,张贤达.低分辫雷达螺旋桨飞机回波调制特性的研究.电子与信息学报. 2003, 26(3): 460~466
    18丁建江,张贤达.防空雷达螺旋桨飞机回波JEM特征的模型与分析.清华大学学报(自然科学版). 2003, 43(3): 418~421
    19丁建江,张贤达,吕金建.常规雷达飞机回波调制特性建模.系统工程与电子技术. 2003, 25(11): 1407~1410.
    20吕金建,丁建江.基于WVD的防空雷达直升机信号特征分析.雷达与对抗. 2004, 4: 37~39
    21 V. C. Chen, H. Wechsler. Analysis of micro-Doppler signatures. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4):201~207
    22 T. Sparr, B. Krane. Micro-Doppler analysis of vibrating targets in SAR. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4):277~283
    23 Victor C. Chen, Fayin Li, Shen-shyang. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1):2~21
    24 T. Thayaparan, S. Abrol. Analysis of radar micro-Doppler signatures from experimental helicopter and human data. IEE Proceedings on Radar, Sonar and Navigation. 2007, 1(4):289~299
    25 Bao Zheng, Deng Wenbiao, Yang Jun. A new motion compensation scheme for ISAR imaging. Proceedings of CIE International Conference on Radar,Beijing,China. 1991:327~330
    26 Bao Zheng, Ye Wei. ISAR echoes coherent processing and imaging. Chinese Journal of Electronics. 2004, 13(2):187~193
    27 H. Wu, D. Grenier. Translational motion compensation in ISAR imageprocessing. IEEE Transactions on Image Processing. 1995, 4(4):1561~1571
    28 Haywood, B, and Evans, R.J. Motion compensation for ISAR imaging. Proceedings of Australian Symposium on Signal processing and applications. 1989:112~117
    29 Wong, S. K, Duff, G.. , Riseborough, E. Analysis of distortion in the high range resolution profile from a perturbed target. IEE Proceedings on Radar, Sonar and Navigation. 2001, 148(6):353~362
    30 I.-S. Choi, B.-L. Cho, H.-T. Kim. ISAR motion compensation using evolutionary adaptive wavelet transform. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4):229~233
    31 G. Zweig. Super-resolution fourier transforms by optimization, and ISAR imaging. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4):247~252
    32胡国胜,张国红.一种新的信号处理方法:线调频小波变换.数学的实践与认识. 2003, (2):52~57
    33尉宇,孙德宝,岑翼刚.高斯线调频小波变换及参数优化.电子与信息学报. 2005, (9):1399~1403
    34邱剑锋,汪继文.线调频小波变化及其应用.合肥学院学报(自然科学版). 2006, (3):58~61
    35 Shie Qian, Dapang Chen. Adaptive chirplet based signal approximation. IEEE International Conference on Acoustics on Speech and Signal Processing - Proceedings,1998:1781~1784
    36 Zou Hong, Bao Zheng. An efficient algorithm for adaptive chirplet-based signal decomposition. Proceeding of ICSP. 2000:366~368
    37 Aykut, Bultan. Four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing. 1999, 47(3):731~745
    38 Qinye Yin, Shie qian, Aigang Feng. A fast refinement for adaptive Gaussian chirplet decomposition. IEEE Transactions on Signal Processing. 2002, 50(6): 1298~1306
    39 S. Mann and S. Haykin. The chirplet transform: Physical considerations. IEEE Transactions on Signal Processing. 1995, 43(11):2745~2761
    40 J. Li, H. Ling. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts. IEE Proceedings on Radar,Sonar and Navigation. 2003, 150(4):284~291
    41 Stephane G. Mallat, Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing. 1993, 41(12): 3397~3415
    42 J. M. Greenberg, Zhisong Wang, Jian Li. New approaches for chirplet approximation. IEEE Transactions on Signal Processing. 2007, 55(2): 734~741
    43 Yufeng Lu, Ramazan Dermirli, Guilherme Cardoso. A successive parameter estimation algorithm for chirplet signal decomposition. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006, 53(11):2121~2131
    44 A. Feng, X. Wu, Q. Yin. Fast algorithm of adaptive chirplet-based real signal decomposition. IEEE International Symposium on Circuits and Systems. 2001, 2:97~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700