正相和反相温敏型凝胶微球的制备与感温特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度感应型凝胶微球作为智能材料系统中的一部分,正受到国际上越来越多研究工作者的关注。温度感应型凝胶微球由于其体积小、温度敏感性高,在许多领域如药物释放、化学分离、化学传感器和催化剂等方面有着诱人的潜在应用前景。尽管迄今人们已在温度感应凝胶微球方面取得了许多研究成果,但还有许多问题尚待解决。例如,在靶向给药系统(targeting drug delivery system,TDDS)中,就要求药物载体——凝胶微球的粒径小,而且要求其具有较好的单分散性。另外,在某些领域,需要随温度变化时,感温凝胶微球的体积变化趋势与现有的基于聚(N-异丙基丙烯酰胺)的感温凝胶微球的体积变化趋势相反(即要求随温度的升高,凝胶微球的体积变大)。因此,本文在基于PNIPAM的小粒径单分散感温性反相凝胶微球的制备及感温特性研究、基于氢键作用的温度感应性正相凝胶微球的研究微球种子的制备、IPN结构凝胶微球的制备及其感温特性、感温性凝胶微球在温敏控制释放过程中的“微泵作用”等方面进行了较为系统地研究,取得了创新性的成果。
     聚(N-异丙基丙烯酰胺)(PNIPAM)由于其低临界溶解温度(LCST)较低,对温度感应比较灵敏,一直是反相感温凝胶(Negative thermo-responsive hydrogel)的主要基材。本文采用无皂乳液聚合制备了聚(N-异丙基丙烯酰胺-co-苯乙烯)(Poly(NIPAM-co-St))凝胶微球,得到了表面规则、球形度好、粒径较小、单分散性好的凝胶微球。首次系统地研究了引发剂、搅拌速度、相
    
     摘要
    比以及反应时间等因素对Poly(NIPAM一co--St)微球的粒径和单分散性的影响。
    当引发剂量增加时,微球粒径先略有上升而后迅速减小,而单分散性先较好随
    后变差:随搅拌速度的增加,凝胶微球粒径总是呈下降的趋势,而粒径的单分
    散性随搅拌速度的提高,先比较好,而后变大,最后又变好;当增加相比量时,
    微球的粒径增加,单分散性先变差后变好;粒径随反应时间的增加先略减小后
    略增加,而其一单分散性总体呈逐渐变好的趋势;随聚合反应的进行,首先生成
    卜异内大红内烯酞胺聚合物,然后苯乙烯进入聚(千异丙基丙烯酞胺)微粒内部
    生成聚合物,最终形成疏水性核一亲水性壳结构。综合以上的影响因素,进行
    了优化条件下的制备实验研究,得到了粒径较小、单分散性好的微球。在无皂
    乳液聚合的基础上,进一步进行了种子聚合,得到了感温膨胀性好的核壳结构
    的复合凝胶微球。在研究过程中,考虑了龙异丙基丙烯酞胺和苯乙烯单体用
    量对微球的粒径、单分散性及感温膨胀率的影响。结果表明,当增加第二步反
    应中/卜异丙基丙烯酞胺用量时,复合微球的粒径增加,单分散性变好,同时
    微球的感温膨胀特性明显、体积变化率大。在第一步反应中,增加苯乙烯加入
    量时,核壳结构的微球的粒径呈现上升的趋势,粒径的单分散性先变好后变差;
    同时,微球的感温膨胀率儿乎不变,即增加苯乙烯量对微球的感温膨胀特性几
    乎没有多大的影响。
     了L:国内外首次x寸IF干L!凝胶微球(l,ositive thermo一responsive miero-
    spheros)(又称为热胀型凝胶微球)的制备和感温特性进行了探索性的研究,
    取得了满意的结果。借助互穿聚合物网络(Interpenetrating Polymer Network,
    简称IPN)的结构、原理和制备方法,来制备聚(丙烯酞胺一co--苯乙烯一c。甲
    基丙烯酸一J一酉旨)/聚丙烯酸(P。ly(AAM一c、St一coBMA)/PAAC)凝胶微球,并
    月_研究在两步反应过程中诸多因素对粒径、单分散性以及其感温特性的影响。
    J尸N结构感温型凝胶微球的两聚合物链通过相互之间形成氢键或破坏氢键来
    实现微球体积的收缩和膨胀,这是正相凝胶微球产生相变的根本原因。正相凝
    胶微球的种一子采用两步法制备:第一步采用无皂乳液聚合制备微球种子;第二
    步采用种子聚合,最后的微球具有疏水性核和亲水性壳结构。当制备含有甲基
    丙烯酸一丁酚的种子时一,在第二步中应选用适当的溶解度参数的混合溶剂,否则
    制备的种子球形度不太规则;随甲基丙烯酸丁酷量增加,种子的粒径变大,单
    
     摘要
    分散性变差,球形度也变差口当丙烯酸服的加入量增加时,种子的粒径增加,
    lllJ单分散性先减小后增加。随苯乙烯量增加时,种子的粒径增加,而粒径尺寸
    分布先变窄后变宽;当增加交联剂量时,种子的粒径减小,粒径的单分散性变
    好。
     在制备具有IPN结构的凝胶微球中,第一步制备的种子作为第二步反应的
    场所,因而凝胶微球和种子具有相近的单分散性。在第二步反应中,丙烯酸
    (从C)的加入量是一个重要的因素。采用物料均衡参与反应的方法,计算得
    到丙烯酸的加入量。不同丙烯酸的加入量使凝胶微球的粒径不一样,当制备凝
    胶微球中酞胺基团和梭基基团的摩尔数相等时,在低温情况下,两聚合物链的
    酞胺基[J]和狡基基团彼此形成氢键,相互作用,彼此约束,没有多余酞胺基或
    梭基’。水形成氢键,最终造成凝胶微粒的粒径最小。由于丙烯酞胺量在种子表
    l佰形成毛发状壳层,不同丙烯酞胺量在种子表面形成毛发的长度不一,这类种
    r制备的凝?
As a part of intellectual material, thermo-sensitive hydrogel microspheres are getting more and more attentions. Because of their small diameters and high sensitivity to temperature, thermo-sensitive hydrogel microspheres can be traced to their potential applications in numerous fields, including drug delivery, chemical separation, chemical sensors, and catalysis, which continue to attract more attention of scientific researchers. Although a lot of achievements have been made on the thermo-sensitive hydrogel microspheres, there are still many problems that need to be solved. For example, in the targeting drug delivery system (TDDS), some cases require small diameter and good monodispersity of microsphere drug carrier. In some fields, positive thermo-sensitive microspheres are preferred to negative ones. That is to say, with increasing environmental temperature, the microspheres volume should become larger. In this study, investigations were systematically carried out on preparation and thermo-sensitive chara
    cteristics of positive type and negative type hydrogel microspheres, and some exciting results have been gotten.
    Poly(A-isopropylacrylamide)(PNIPAM) is a preferable material for the preparation of negative thermo-sensitive hydrogel microspheres, because its lower critical solution temperature(LCST) is low and the responsiveness is fast. Thermo-responsive poly(jV-isopropylacrylamide-co-styrene) (P(NIPAM-co-St)) microspheres were prepared by surfactant-free emulsion polymerization methods in this paper. The prepared microspheres have spherical outer surface, small diameter, and good monodispersity. Effects of initiator dosage, stirring rate, phase ratio and polymerization time on the particle sizes and monodispersity were investigated systematically. Then, microspheres was prepared under optimum conditions. The
    
    
    results showed that, with increasing the initiator dosage, the mean diameter of particles increased slightly up to a maximum, and then decreased drastically; meanwhile, the monodispersity of the particles became a little better at first, and then became worse significantly. With increasing the stirring rate, the particle diameter decreased while the monodispersity became worse. When the amount of phase ratio increased, the mean diameter became larger simply, whereas the monodispersity became worse firstly and then became better again. As the polymerization proceeded, the mean diameter of the particles decreased firstly and then increased, and the monodispersity became better gradually. In the reaction, NIPAM rapidly homopolymerized, then St entered into precursor particles and polymerized, finally microspheres with hydrophobic core and hydrophilic shell are obtained. Particle size and monodispersity of the microspheres prepared under the optimum conditions were satisfied. On the base of soap-free emulsion, core-shell microspheres prepared by means of seed polymerization are thermo-sensitive. Effects of NIPAM and St dosage on the particle size and monodispersity were investigated. When increasing NIPAM dosage of the second step, the mean diameter became larger simply, whereas the monodispersity became better, and the thermo-sensitive swelling ratio became larger. When St dosage increased in the first step, the particle size also became larger, whereas the monodispersity became worse firstly and then became better again, and St dosage hardly changed the thermo-sensitive swelling ratio of the microspheres.
    The preparation and the thermo-sensitive characteristics of positive thermo-sensitive microspheres. or so-called thermo-swelling microspheres, were studied for the first time, and the results were satisfied. By adopting the structure and mechanism of interpenetrating polymer network (IPN), Poly (AAM-co-St-co-BMA) /PAAC IPN microspheres are prepared. Effects of some factors on the particle size, monodispersity and thermo-sensitive characteristics are investigated in processes of two-step reaction. Phase transition of these positive microspheres is based on the hydrogen bond between PAAC chains and
引文
[1] 张胜兰,沈新元,杨庆等.热敏水凝胶的研究进展.河南师范大学学报(自然科学版),2000,28(1):42-46
    [2] 姚康德,许美萱,成国祥,彭涛,胡文华.智能材料.天津:天津大学出版社,1996
    [3] Peiton R. Temperature-sensitive aqueous microgels. Advance in Colloid and Interface Science 2000, 85, 1-33
    [4] Jones C D, Lyon L A. Synthesis and Characterization of Multi-responsive Core-Shell Microgels. Macromolecules 2000,33:8301-8306
    [5] Gan D J, Lyon L A. Tunable Swelling Kinetics in Core-Shell Hydrogel Nanopariticles. J. Am. Chem. Soc.,2001, 123, 7511-7517
    [6] Hiroki Katono,Atsushi Maruyama, Kohei Sanui,et al.Termo-responsive Swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyi methacrylate) and poly(acrylic acid).Journal of Controlled Release, 1991,16:215-228
    [7] Ohshima H, Makino K, Kato T, Fujimoto K, Kondo T, Kawaguchi H. Electrophoretic mobility of latex particles covered with temperature-sensitive hydrogel layers. Journal of Colloid and Interface Science, 1993,159:512-514
    [8] Dingenouts N, Norhausen Ch, Ballauff M. Observation of the Volume Transition in Thermosensitive core-shell Latex Panicles by Small-Angle X-ray Scattering. Macromolccules, 1998,31:8912-8917
    [9] Seelenmeyer S. Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M. Small-Angle X-ray and neutron scattering studies of the volume phase transition in thermosensitive core-shell colloids. J. Chem. Plays. 2001 ,114:10471-10478
    [10] Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballauff M, Lindner P, Narayanan T. Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys. Chem. Chem. Phys. 2001,3:1169-1174
    [11] 胡辉聚(N-异丙基丙烯酰胺)类聚合物的合成与表征.西北工业大学硕士学位论文,2001
    [12] 曾钫,童真聚(N-异丙基丙烯酰胺)的表征及凝聚态结构.华南理工大学学报(自然科学版),1994,22(6):8-13
    [13] Erman B., Flory P.J.Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules, 1986,19:2342-2353
    [14] 曾钫.刘新星,童真.NIPA/DMAA共聚物及其水溶液相转变温度的研究.高分子材料科学与
    
    程,1997,5:100-103
    [15] 翟茂林,哈鸿飞.功能性polyNIPAM系高聚物.高分子通报.1999,2:37-44
    [16] 周啸,何其雄.N-异丙基丙烯酰胺温度敏感性水凝胶相转变动力学及其应用.高分子学报.1992,1:74-80
    [17] 祝黔江,陶朱.马培华,N-烷基取代丙烯酰胺共聚体系温敏性质研究.高分子学报,1997,5:585-588
    [18] 陶朱,马培华,刘敏.聚(N-异丙基丙烯酰胺)溶液的粘度的温度依赖性关系.高分子学报,1998,1:21
    [19] Yamaguchi T., Ito T., Shinbo T., Nakao S..Development of a fast response molecular recognition ion gating membrance,J.Am.Chem.Soc. 1991,121:4078-4079
    [20] 卓仁禧,张先正.温度pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报,1998,1:39-42
    [21] 黄月文,罗宣干,卓仁禧.蜗牛酶在聚(N-异丙基丙烯酰胺)中的固定化及应用.功能高分子学报,1996,4:523-531
    [22] 刘锋,卓仁禧.水凝胶的制备及应用.高分子通报,1995,1:205-214
    [23] Zeng Fang, Tong Zhen. NMR investigetion of phase separation in poly(N-isopropylacrylamide)/ water solution.Polymer, 1997,38:5539-5544
    [24] Zeng Fang, Zheng Xu, Tong Zhen. Network formation in poly(N-isopropylacrylamide)/ water solutions during phase separation. Polymer, 1998, 39:1249-1251
    [25] 谢小莉,曾钫,童真.聚(N-异丙基丙烯酰胺)的分级和表征.华南理工大学学报(自然科学版),1998,26:64-67
    [26] 曾钫,童真,佐藤尚弘.聚(N-异丙基丙烯酰胺)的分子链表征.中国科学(B),1999,5:426-431
    [27] Kim E J, Cho S H, Yuk S H. Polymeric microspheres composed of pH/temperature-sensitive polymer complex. Biomaterials 2001,22:2495-2499
    [28] Kratz K, Hellweg T, Eimer W. Influence of charge density on the swelling of colloidal poly((N-isopropylacrylamide-co-acrylic acid) mircrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,170:137-149
    [29] Makino K, Kado H, Ohshima H. Aggregation behavior of poly(N-isopropylacrylamide) microspheres. Colloids and Surfaces B: Biointerfaces,2001,20:347-353
    [30] Kondo A, Kaneko T, Higashitani K. Development and application of thermo-sensitive immunornicrospheres for antibody purification. Biotechnology and bioengineering, 1994,44,1-6
    
    
    [31] Zhu P W, Napper D H. Effect of heating rate on nanoparticle formation c poly((N-isopropylacrylamide)-poly(ethylene glycol) block copolymer microgel Langmuir,2000,16,8543-8545
    [32] Zhu P W. Napper D H. Aggregation of block copolymer microgels of poly(N-isopropylacrylamide and poly(ethylene glycol). Macromolecules, 1999, 32: 2068-2070
    [33] 曹同玉,刘庆普,胡金生.聚合物乳液合成、原理、性能及应用.北京:化学工业出版社,2000
    [34] Matsuoka H, Fujimoto K, Kawaguchi H. Stimuli-response of microsphere havin poly(N-isopropylacrylamide) shell. Polymer Journal,1999,31, 1139-1144
    [35] Pelton R H. Polystyrene and polystyrene-butadiene latexes stabilized b poly(N-isopropylacrymide). Journal Polymer Science,1988,26,9-18
    [36] Makino K, Yamamoto S, Fujimoto K, Kawaguchi H, Ohshima H. Surface structure of late particles covered with temperature-sensitive hydrogel layers. Journal Colloid & Interfac Science, 1994,166,251-258
    [37] Duracher D, Sanzedde F. Elaissari A, Perrin A, Pichot C. Cationic amino-containin N-isopropylacrylamide-styrene copolymer latex particles: 1-particles size and morphology vs polymerization process. Colloid Polymer Science, 1998,276:219-231
    [38] Duracher D. Sanzedde F, Elaissari A, Pichot C, Nabzar L. Cationic amino-containin N-isopropylacrylamide-styrene copolymer latex particles: 2-surface and colloidal characteristic Colloid Po!ymer Science, 1998,276:920-929
    [39] Takeuchi S, Oike M, Kowitz C, Shimasaki C, Hasegawa K, Kitano H. Microspheres prepared wi a temperature-responsive macromonomer. Makromol Chem., 1993,194:551-558
    [40] Chen C W, Chen M Q, Serizavva T, Akashi M. In situ synthesis and the catalytic properties platinum colloids on polystyrene microspheres vvith surface-grafted poly(N-isopropylacrylamide Chem. Commun., 1998,831-832
    [41] Yasui M, Shiroya T. Fujimoto K, Kawaguchi H. Activity of enzymes immobilized on microsphe with thermosensitive hairs. Colloids Surf. B: Biointerfaces, 1997,8:311-319
    [42] Matsuoka H, Fujimoto K, Kawaguchi H. Monodisperse microspheres exhibiting discontinuc response to temperature change. Polymer Gels and Networks, 1998,6,319-332
    [43] McPhee W, Tam K. C, Pelton R. Poly(N-isopropylacrylamide) latices prepared with sodium dode sulfate. J. Colloid Interface Sci., 1993,156:24-30
    [44] Winnik F M, Ringsdorf H, Venzmer J. Methanol-water as a co-nonsolvent system
    
    poly(N-isopropylacrylamide). Macromolecules, 1990,23:2415-2416
    [45] Schild H G, Muthukumar M, Tirrell D A. Cononsolvency in mixed aqueous solution of poly(N-isopropylacrylamide). Macromolecules 1991,24:948-952
    [46] Winnik F M, Ottaviani M F, Bossmann S H, Garcia-Garibay M, Turro N J. Cononsolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions: a look at spin-labeled polymers. M acromolecules, 1992,25:6007-6017
    [47] Crowther H M, Vincent B. Swelling behavior of poly(N-isopropylacrylamide) microgel particles in alcoholic solutions. Colloid Polymer Science, 1998,276:46-51
    [48] 王平,钟兴.王宇新等.用图像处理方法研究凝胶溶胀特性.高分子材料科学与工程,1996,3:1-5
    [49] Hirotsu S., Hirokawa Y., Tanaka T..Volume-phase transition of ionized N-isopropylamide gels.J.Chem. Phys., 1987,87:1392-1395
    [50] 高均,吴奇.聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究.高分子学报,1997,3:324-330
    [51] Marchetti M.,S.Prager E.L.Thermodynamic predictions of volume changes in temperature-sensitive gels. I .theory. 1760-1765; Ⅱ experiments.3445-3450 Macromolecules, 1990,23
    [52] Grosberg A Yu,Nechaev S.K..Toplogical constraints in polymer network strong collapse. Macrornolecules, 1991,24:2789-2793
    [53] 陆大年、胡英.温度敏感性水凝胶的分子热力学模型.化工学报,1995,5:524-531
    [54] 刘文广.周军,姚康德.高分子中水的特异性的理论研究.化学通报,1997,7:12-16
    [55] 刘文广.壳聚糖-明胶的溶胀行为及其与水的相互作用研究.天津大学博士论文,1998
    [56] Shigeo Sasaki,H.Kawasaki,H.Maeda. Volume phase transition behavior of N-isopropylacrylamide gels as a function of chemical potential of water molecules.Macromolecules, 1997,30:1847-1848
    [57] Lele A.K., Hirve M.M., Badiger M.V., Mashelkar R.A.. Predictions of bound water content in poly(N-isopropylacrylamide)gel. Macromolecules, 1997,30:157
    [58] Lele A.K., Badiger M.V., Hirve M.M., Mashelkar R.A..Chem.Eng.Sci.,1995,50:3535
    [59] Li Y., Tanaka T..Ann.Rev. Materials Science, 1992,101:4184
    [60] Tamai Y., Tanaka H..Molecular dynamics study of polymer-water interaction in hydrogels. I .Hydrogen-bond structure.Macromolecules,1996,29:6750-6760
    [61] Tamai Y.. Tanaka H., Nakanishi K.. Molecular dynamics study of polymer-water interaction in hydrogels. Ⅱ .Hydrogen-bond dynamics. Macromolecules, 1996, 29:6761-6769
    [62] Bellissent M.C.F., Dore J.C.,Ed.,Hydrogen bound networks,Kliwer, Academic publishers. Dordrecht,The Netherlands, 1994
    
    
    [63] Xantheas S.S., Dunning T.H.. Abiniito studies of cyclic water clusters (H_2O)n, n=1-6.I.optimal structures and vibrational spectra. J, Chem. Phys.,1993,99:8774-8792
    [64] Knochenmuss R., Leutwyler S.. Structure and vibration spectra of water clusters in the self-consistent-field approximation. J.Chem. Phys., 1992,96:5233-5244
    [65] Suzuki Y., Suziki N., Takasu Y., Nishio I..A study on the structure of water in an aqueous solutior by the solvent effect on a volume phase transition of N-isopropylacrylamide gel and low-frequency Raman spectroscopy. J.Chem.Phys. 1997, 107:5890-5897
    [66] Lin Shan-Yang, Chen K., Run-Chu L. Thermal micro ATR/FT-Irspectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer, 1999,40:2616-2624
    [67] Appel Rainer, Xu Wei, Zerda T W, et al.Direct observation of polymer network structure in maeroporous N-isopropylacrylamide gel by Raman Microscopy. Maceomolecules, 1998,31:5071-5074
    [68] Ito Kenji, Ujihira Y, Yamashita Y, et al.Change in free volume during volume phase transition of poly(N-isopropylacrylamide) gel as studied by positron annihilation lifetimes:temperature dependence.Polymer,1999,40:4315-4323
    [69] Zheng XU, Tong Zhen, Xie Xiaoli,et,al. Phase separation in poly(N-isopropylacrylamide)/water solution Ⅰ : cloud point curves and microgelation.Polymer Joural,1998,30:248-288
    [70] Suetoh Y., Shibayama M..Effects of non-uniform solvation on thermal response in poly(N-isopropylacrylamide)gels,polymer,2000,41:505-510
    [71] Norisuye T.. Shibayama M., Nomura S..Time-resolved light scattering study on the gelation process of poly(N-isopropylacrylamide).polymer, 1998,39:2769-2775
    [72] Wu Chi. Zhou Shuiqin.Volume phase transition of swollen gels:discontinuous or continuous? Macromolecules, 1997,30:574-576
    [73] Wang Xiaohui,Xingping Qiu,Chi Wu.Comparation of the coil-to-globule and the glouble-to-coil transition of a single poly(N-isopropylacrylamide)homepolymer chain in water.Macromolecules, 1998,31:2972-2976
    [74] 吴奇.汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(上).高分子通报,1998,3:9-16
    [75] 吴奇,汪晓辉.高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中
    
    的相变(下).高分子通报,1998,4:1-9
    [76] 浦鸿汀.丁中立,马瑞得.EVA—g—N I P A Am中接枝亲水性对温敏性的影响.高分子材料科学与工程,1997,5:79-84
    [77] 何庆,盛京.响应性凝胶及其在药物控释上的应用.功能高分子学报,1997,1:118-127
    [78] 姚康德,彭涛,高伟。智能性水凝胶.高分子通报,1994,2:103-111
    [79] 聚合物共混改性.吴培熙,张留城.中国轻工业出版社,1996
    [80] 钟以诚,肖红戴.丙烯酸系互穿网络聚合物乳胶涂料的研究.化学建材,1992.3:109-112
    [81] Hiroki Katono,Kohei Sanui,Naoya Ogata,et al.Drug release off behavior and swelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid).Polymer Journal ,1991,23(10):1179-1189
    [82] Noriko Endo,Hideaki Shirota, Kazuyuki Horie.Deuterium isotope effect on the phase separation of Zipper-type Hydrogen-bonding inter-Polymer Complexes in solution.Macromol. Rapid commun.2001,22:593-597
    [83] Hiroyuki Sasase, Takashi Aoki, Kiroki Katona,et al. Regulation of temperature- response swelling behavior of interpenetrating polymer networks composed of hydrogen bounding polymers. Makromol. Chem. Rapid Commun. 1992,13:577-581
    [84] Franck Limain,Toyoichi Tanaka,& Etsuo Kokufuta.Volume transition in a gel driven by hydrogen bound ing.Nature, 1991,349(31):400-401
    [85] Takashi Aoki,Masahika Kawashima,Hiroki Katono,et al.Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules. 1994,27,947-952
    [86] 罗宣干.王坦,N-异丙基丙烯酰胺系温度敏感聚合物和水凝胶的研究进展.化学通报,1996,4:10-15
    [87] 李雄伟.严吕虹,廖奇.接枝聚合物PAA-b-PIPA微球的制备及其温控释药研究.高分子学报,1994,2:156-161
    [88] 褚良银,朱家骅.陈文梅等.温度感应型控制释放微胶囊的研究进展.化工进展,2003,22(2):135-139
    
    
    [89] Chu L.Y.,Park S.H. Yanmaguchi T.et al.Preparation of thermo-responsive core-shell microcapsules with a porous membrance and poly(N-isopropylacrylamide) gates. J. Membrance Sci.,2001,192:27-39
    [90] 王锦堂,仲慧,朱红军等.温敏性水凝胶对蛋白质和酶浓缩分离性能.南京化工大学学报,1998,20(2):75-77
    [91] 仲慧,王锦堂,朱红军等.温敏超细颗粒对亲水药物的吸附.精细化工,2000,17(5):265-266
    [92] 张剑波.温敏性水凝胶对金属离子Y~(3+),UO_2~(2+)的浓集分离.环境科学,1999,20:87-90
    [93] 王吕华,曹维孝.温敏水凝胶.化学通报.1996,1:33—35
    [94] 金曼蓉,吴长发.张桂英等.聚N-烷基丙烯酰胺类凝胶及其温敏特性.高分子学报,1995,3:321-325
    [95] 金曼蓉,吴长发,王世吕.聚-N异丙基丙烯酰胺类凝胶及其温敏性和敏酸性的研究.化学工程,1991,2:13-18
    [96] 杨晓春,张强。吴霖.我国药剂学靶向制剂研究的基本思路.中国药学杂志,2001,36(12):795-799
    [97] 郭振良,王锦堂,朱红军.微乳液聚合制备聚N-异丙基丙烯酰胺温敏超细微粒.高分子学报,2001,(4):489-493
    [98] 郭振良,微乳液聚合聚N-异丙基丙烯酰胺超细微粒的结构表征.烟台师范学院学报(自然科学版),1999.15(2):113-116
    [99] Chu L-Y, Park S H. Yamaguchi T, et al. Preparation of micro-sized monodispersed thermoresponsive core-shell microcapsules. Langmuir, 2002, 18:1856-1864
    [100] Thews G, Mutschler E, Vaupel P. Anatomie, physiologie, pathophysiologie des manschen; wissenschaftl. Verlageges: Stuttgart, 1980
    [101] Shiga K, Muramatsu N, Kondo T. Preparation of poly(D,L-Lactide and copoly(latide-glycolide) microspheres of uniform size. J. Pharm. Pharmacol., 1996, 48:891-895
    [102] Little K, Parkhouse J, Lancet, 1962, 11(7261): 857-861
    [103] 张凯,雷毅,贾利军等.核壳高分子微球的制备及应用.化工新型材料,2001,29(10):27-41
    [104] 张凯,曾敏,雷毅等.核壳高分子微球的制备.材料导报.2002,16(6):74-76
    [105] 马千里,顾利霞.复合微球的制备、性能及应用.离子交换与吸附,2000,16(1):88—96
    [106] 徐雅君.李秀错,金日光.单分散型高分子微球的合成技术及进展.北京联合大学学报,1998,12(2):73-78
    [107] 朱世雄,杜金环,金熹高等.无乳化剂乳液聚合法合成单分散大粒径高分子微球的研究.高分
    
    子学报.1998.1:118-123
    [108] 钟以诚,刘立雄,喻小琦.涂料用P(S-AA)/P(nBA-AA)乳胶互穿网络聚合物的研究.湘潭大学自然科学学报,1999,12(3):62-68
    [109] 黄鹤,李建宗,程时远.乳胶型互穿聚合物网络.高分子材料与工程.1995,11(2):1-6
    [110] 陈建海,王丽.四元核壳结构LIPN的合成.高分子材料科学与工程,1995,11(3):46-50
    [111] 唐业仓.罗时忠,孙益民.微波种子聚合制备单分散PMMA高分子微球.合成化学,2002,10(4):324-325
    [112] 徐克勋.精细有机化工原料及中间体手册.北京:化学工业出版社,1998
    [113] 宋吉照.顾利霞,核壳乳液聚合综述.上海化工,2000,6:29-32
    [114] 施良和.胡汉杰.高分子科学的今天与明天.北京:化学工业出版社,1994
    [115] Tanaka,T.Fillmore,D.J. Kinetics of swelling of gels .J.Chem.Phys.1979,70:1214-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700