潜水器运动控制关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索水下资源、监测水下环境,水下勘测平台的研究正越来越受到关注。众所周知,因为而水下环境变幻莫测,水下航行一直就是一个危险的领域。伴随着水下测量技术、水下通信技术以及潜水器制造技术的发展,无人潜水器(Unmanned Underwater Vehicle,UUV)开始应用在水下勘测平台上。同时,自动控制技术以及信息技术的长足进步又使得无人潜水器的运动控制开始朝着自动化的方向发展。
     潜水器的运动控制系统首先需要使用传感器技术以及水下测量技术对水下多变环境以及自身状态进行正确判断,然后结合适当的算法操作潜水器的动力系统,从而对潜水器的各种非正常状态进行修正,使得无人潜水器按照设计的要求准确、高效地完成既定任务。
     本课题所涉及的潜水器由五个子系统组成:运动控制系统、主动避碰系统、定深及姿态控制系统、信息系统、水声通信系统。本课题以该潜水器为依托,将当前流行的数字信号处理器(Digital Signal Processor,DSP)处理系统应用在潜水器运动控制系统上。系统借助电罗经、水下定位装置提供状态信息,以直流永磁电机提供动力,通过适当的自动控制算法来对无人潜水器进行控制,最终使整个运动控制系统达到高效性、稳定性、以及控制效果的优良性。
     本文首先介绍当前无人潜水器的研究现状以及研究前景,然后对本课题所针对的潜水器进行分析,紧接着详细介绍了课题所采用的控制算法的原理以及整个潜水器运动控制系统的硬件系统、软件系统的设计过程与方法。最后针对实际潜水器的特点介绍了整个实验过程以实验结果的分析,包括陆地模拟实验和实际潜水器实验。
     本课题对于设计的项目的完成以及未来水下勘测的发展有一定的实际意义。
Submarine resources exploration and environmental monitoring is becoming more and more significant for mankind,which promoted the research of underwater survey platform.However,the changeable underwater environment leads to the high-risk feature of underwater operation.Along with the development of underwater measurement technology,UUV(Unmanned Underwater Vehicle) is being used in the underwater survey platform.At the same time,the considerable progress of automatic control technology and information technology accelerated the development of UUV.
     The motion control system of underwater vehicle firstly requires the correct judgment of the changeable underwater environment and the state of itself,which is relied on the sensor and underwater measurement techniques.And then the system adapts the non-normal states with appropriate algorithm to complete the mission correctly and efficiently at last.
     This subject is concentrated on the research of motion control system and motion control algorithm which is based on a specific underwater vehicle.The whole control system of this vehicle is composed of movement control system,active collision avoidance system,depth keep and posture control system,information system and underwater acoustic communication system.
     The prevalent DSP(Digital Signal Processor) system was used in this motion control system.Receiving the heading direction information from gyro compass and the location information from underwater location instrument,and through the appropriate algorithm,the motion control system can adjust the three DC permanent magnet motors to appropriate output.In consequence,the whole motion control system can implement desired efficiency and stability,as well as the efficient control.
     This paper firstly introduces the research status and research prospects of UUV, and analyzes the specific underwater vehicle of this subject.And then introduces the design method and procedure of the hardware and software systems of the vehicle in details.The last part of the paper is the introduction of simulation and experimental methods and results,including the result analysis land-based simulation experiment and vehicle experiment.
     This research has considerably practical significance in the relational project and the development of underwater survey in the future.
引文
[1]刘淮.应用前景广阔的无人水下航行器.船舶工业技术经济信息.2004,12:23-27.
    [2]李书甫.翻江倒海的水下“特工”水下无人航行器.舰载武器.2003,4:57-60.
    [3]孙柏林.无人平台在军事领域里的应用.自动化博览.2003,1:145-149.
    [4]孙元康,马远义,邓志纯.潜艇和深潜器的现代操纵性理论与应用.北京:国防工业出版社,2001.
    [5]周琴.美国海军研制新型水下无人航行器.中外船舶科技.2000,4:9-13,16.
    [6]时兆峰.美国海军推进无人水下航行器的研制.飞航导弹.2001,8:17-19.
    [7]杨彬.基于水下传感器网络的AUV通信算法研究:(硕士学位论文).青岛:中国海洋大学,2006.
    [8]王麟.美军的水下无人舰队.航海.2005,3:23-25.
    [9]李锡群,王志华.无人水下航行器(UUV)技术综述.船电技术.2003,6:12-14,29.
    [10]http://www.ti.com/
    [11]孙云利.美国海军的新一代舰载反水雷作战系统.水雷战与舰船防护,2005,1:60.
    [12]封锡盛,刘永宽.自知水下机器人研究开发的现状和趋势。高技术通讯,1999,9:55-59.
    [13]李天森.鱼雷操纵性.北京:国防工业出版社,1999.
    [14]邱醒亚,S.J.Shepherd.海洋开发中的定位与测量技术.北京:国防工业出版社,1986.
    [15]扶庆华,刘卫东,丁艺林.基于CAN总线的AUV实验平台数据传输方法.鱼雷技术,2007,15(3):37-40.
    [16]http://www.seeddsp.com/
    [17]Xu Jian,Yan Zheping,Bian Xinqian.Application of Improved Analytic Hierarchy Process to AUV's Decision-making.Mechatronics and Automation.2007,7:571-575.
    [18]Cho Kyu Nam,Kim Min,Song Ha Cheol.Analysis of normal mode vibration of UUV support system considering pre-stress effect.Proceedings of the International Offshore and Polar Engineering Conference.2005:273-276.
    [19]Hino,James H.Intelligent planning for a search and surveillance unmanned underwater vehicle(UUV).Proceedings of the 6th International Symposium on Unmanned.1989:236-245.
    [20]Glassborow Katy.General atomics-led team plan bid for US UUV.Jane's Navy International.2006,4:23-24.
    [21]Pouliot M,Smith J T.Integrated mission planning architectures for unmanned underwater vehicles.Autonomous Underwater Vehicle Technology.1992,6:85-90.
    [22]Larkin L,Tangirala S.Validation of a Sub-sea Navigation hnalysis Program.Oceans 2007.2007,4:1-10.
    [23]Bilik I,Krolik J.Comparative Theoretical Performance of Maneuverable Unmanned Vehicles versus Conventional Towed-Arrays for Passive Sonar.OCEANS 2007-Europe.2007,6:1-5.
    [24]Miller D P.Design of a small,cheap UUV for under-ship inspection and salvage.Autonomous Underwater Vehicle Technology.1996,6:18-20.
    [25]http://www.21ic.com/
    [26]Ruth M J,Humphreys D E.A robust depth and speed control system for a low-speed undersea vehicle.Autonomous Underwater Vehicle Technology.1990,6:51-58.
    [27]http://www.hellodsp.com/
    [28]Donald P Brutzman.A Virtual World for an Autonomous Underwater Vehicle.Ph.D:(Thesis).Monterey California:Naval Postgraduate School,1994.
    [29]Zsukioka S,Aoki T,Yamamoto I.Results of a long distance experiment with the AUV "Urashima".OCEANS.2004,3(11):1714-1719.
    [30]Thor I.Fossen,Ola-Erik Fjellstad.Robust Adaptive Control of Nonlinear Underwater Vehicles:A Comparative Study.Proceedings of the 3rd IFAC Workshop on Control Applications in Marine Systems(CAMS' 95),Trondheim,Norway,1995:66-76.
    [31]Araki S,lshii K.Development of glider type small AUV SeaBird.Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007,4:320-325.
    [32]Inzartsev A.V,Pavin A.M.AUV Cable Tracking System Based on Electromagnetic and Video Data.OCEANS.2008,4:1-6.
    [33]黄义新,方怡冰.基于单片机的船舶自动舵模糊控制系统.船舶工程,2001,5:34-40.
    [34]Podder T,Sibenac M,Bellingham J.AUV docking system for sustainable science missions.Robotics and Automation,2004:4478-4484.
    [35]Chardard Y,Copros T.Swimmer:final sea demonstration of this innovative hybrid AUV/ROV system.Underwater Technology.2002,4:17-23.
    [36]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [37]冯桂宁,蒋翔俊.单片机模糊PID自整定控制算法的实现及仿真.电子元器件应用.2007,9(5):59-62.
    [38]任丽香,马淑芬,李芳慧.IMS320C6000系统DSPs的原理与应用.北京:电子工业出版社,2000.
    [39]袁思鸣,陈强.美国海军水下无人航行器发展综述.中外船舶科技.2006,4:23-28.
    [40]姜长生,王从庆,魏海坤等.智能控制与应用.北京:科学出版社,2007.
    [41]陈文英.无人潜航器(UUV)的发展综述.电子信息工程.2006,2:23-28.
    [42]程启明,刘其明,王志宏等.船舶自动舵控制技术发展研究.计算机自动测量与控制.2000,8(6):1-4.
    [43]孟浩.船舶航行的智能自适应控制研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2003.
    [44]申冬慧.基于模糊控制与GA的潜艇自动舵的设计与实现:(硕士学位论文).哈尔滨:哈尔滨工程大学,2003.
    [45]黄继起.自适应控制理论及其在船舶系统中的应用.北京:国防工业出版社,1992.
    [46]刘凯.智能控制的发展及其系统简介.科技咨询导报.2007,7:1.
    [47]吕俊伟,王文成,黄海东.一种改进的模糊控制器及其在渗碳炉温度控制系统中的应用.自动化与仪表.1997,4:24-27.
    [48]曾光奇,胡均安,王东等.模糊控制理论与工程应用.武汉:华中科技大学出版社,2006.
    [49]刘普寅,吴孟达.模糊理论及其应用.长沙:国防科技大学出版社.1998.
    [50]李国勇.智能控制在电控发动机中的应用.北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700