永磁型无轴承电机控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁型无轴承电机是永磁交流电机与电磁轴承相结合的产物。它是根据交流电机定子与电磁轴承结构的相似性,把电磁轴承中产生悬浮力的绕组直接嵌入交流电机定子内部,利用悬浮绕组产生的气隙磁场来改变电机原有气隙磁场的分布,使其中一部分磁场增强,与其相对的部分磁场减弱,这样,不平衡的气隙磁场将在电机转子上产生一沿气隙磁场增强方向上的悬浮力,实现转子的悬浮。永磁型无轴承电机具有无摩擦、无磨损、无润滑、结构紧凑、尺寸小、功率密度大等一系列优点,在生命科学、航空航天领域具有潜在的应用前景,因而受到各国学者的高度重视。
     永磁型无轴承电机根据其转子结构形式的不同可以分为表贴式、插入式、内置式等种类,其中表贴式结构转子由于具有结构简单、永磁体易于优化设计、隐极电磁结构的优点已成为当今永磁型无轴承电机研究的热点。本文对表贴式转子结构的永磁型无轴承电机控制系统进行了较为深入的研究。
     文章针对传统的基于转矩绕组转子磁场定向解耦控制策略悬浮力算法复杂、悬浮力与控制电流不具有线性关系的缺陷,基于悬浮力产生机理,提出了一种基于转矩绕组气隙磁场定向的解耦控制策略,有效解决了转子磁场定向控制所存在的缺陷。
     针对传统悬浮控制子系统存在悬浮力延时的缺陷,基于经典控制理论中的前馈控制思想,在悬浮控制子系统中引入悬浮力前馈补偿控制环节,有效地消除了悬浮力延时。
     最后针对机械式位移传感器固有缺陷影响电机转子悬浮性能的问题,根据悬浮绕组气隙磁链互感分量中含有转子径向位移信息的特点,提出了一种旋转坐标系中利用悬浮绕组气隙磁链互感分量计算转子径向位移的转子位移自检测方法,实现了永磁型无轴承电机无位移传感器稳定运行。
The permanent magnet type bearingless motor(PMBLM) is the combination of the permanent magnet type AC motor with the electromagnetic bearing. According to the similar structure of the AC motor’s stator with the electromagnetic bearing, it embedded the windings which are used to produce suspension force in the electromagnetic bearing into the stator of AC motor, using the flux produced by the suspension windings to change the original flux distribution of the AC motor, making the flux density increase in some part of the air-gap, but decrease in the counter part, then the unbalanced distribution of the flux density will generate suspension force on the rotor towards the direction where the flux density increased, the force realized the suspension of the rotor. The permanent magnet type bearingless motor has been paid close attention due to its potential application prospect in the filed of life sciences, aviation, et al, because of its advantages of frictionless, abvasionless, lubricationless,compact structure and high power capability.
     The permanent magnet type bearingless motor can be classified in to three types based on the different structure of rotor. These are surface mounted magnet type, inset magnet type and interior magnet type. Compared with the other two types, the surface mounted magnet type has advantages of simple structure, magnet being prone to optimized non-salient electromagnetic characteristics. This paper has made in-depth study on the control strategy of the surface mounted magnet type PMBLM.
     IN view of the complexity of suspension force model and the nonlinear relationship between suspension force with its control current of the traditional control algorithm based on the motor rotor flux orientation, a decoupling control strategy based on motor air-gap flux orientation was proposed in this paper based on the principle of suspension force production, it found that it can successfully untie the limitation of the rotor flux orientation control strategy.
     There exists time delay in suspension force of the conventional suspension control system. Based on the feedforward control theory, a feedforward compensation tache of suspension force was introduced in the suspension control system, the time delay in suspension force was successfully eliminated.
     At last, in view of the problem that the inherent limitation of mechanical displacement sensor influences the motor’s suspension characteristics, according to the characteristics that the mutual flux component of suspension windings contains rotor radial displacement information, a rotor radial displacement estimation scheme using the mutual flux component of suspension windings in rotary coordinates was proposed in this paper, it fond that it is able to achieve stable sensorless suspension operation.
引文
[1]陈宝进,朱熀秋,王德明.无轴承永磁同步电机基本原理及研究现状.排灌机械,2003,21(1):42-45
    [2]朱熀秋,邓志泉,严仰光,等.无轴承电机的原理及研究现状.微电机,2000,33(6):29-31
    [3]朱熀秋,张伟霞,费德成,等.磁悬浮无轴承电机发展、应用和前景.微特电机,2006,3:39-41
    [4]邓志泉,何礼高,严仰光.无轴承交流电机的原理及应用.机械科学与技术,2002,21(5):730-733
    [5] Oshima M , Chiba A , Fukao T , et al . Characterisitics of a permanent magnet type bearingless motor . IEEE Trans . on IA , 1996,32(2):363-370
    [6]周媛,贺益康,年珩.永磁型无轴承电机的完整系统建模.中国电机工程学报,2006,26(4):134-139
    [7]邓志泉,张宏全,王晓琳,等.基于气隙磁场定向的无轴承异步电机非线性解耦控制.电工技术学报,2002,17(5):19-23
    [8] Inagaki K , Chiba A , Rahman M . Performance characteristics of inset-type permanent magnet bearingless motor drives . Nagoka: Power conversation conference , 2000 , 202-207
    [9]朱熀秋,翟篈?无轴承永磁同步电机控制系统设计与仿真.中国电机工程学报,2005,25(14):120-124
    [10]邓志泉,仇志坚,王晓琳,等.无轴承永磁同步电机的转子磁场定向控制研究.中国电机工程学报,2005,25(1):104-108
    [11]仇志坚,邓志泉,王晓琳.计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究.中国电机工程学报,2007,27(9):64-70
    [12]仇志坚,邓志泉,王晓琳.无轴承永磁同步电动机的独立控制研究.中国电机工程学报,2006,26(1):115-118
    [13]张少如,吴爱国,李同华.无轴承永磁同步电机转子偏心位移的直接控制.中国电机工程学报,2007,27(12):65-69
    [14] Ooshima M , Kurokawa T , Sakagami M . An identification method of suspension foece and magnetic unbalance pull force parameters in buried-type IPM bearingless motors . Denver: IEEE-PES Meeting , 2004 ,1276-1279
    [15]周媛,贺益康,年珩.永磁型无轴承电机的设计与控制研究.浙江大学学报(工学版),2006,40(1):14-19
    [16]年珩,贺益康.永磁型无轴承电机的设计与运行分析.浙江大学学报(工学版),2005,39(6):891-895
    [17]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究.中国电机工程学报,2004,24(11):101-105
    [18] Kuwajima T , Nobe T , Ebara K , et al . An estimation of the rotor displacements of bearingless motors based on a high frequency equivalent circuit . In: Proc of International Conference on Power Electronics and Drive Systems . Denpasar , Bali . 2001 , 725-731
    [19] T Tera , Y Yamauchi , A Chiba , et al . Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation . IEEE Trans . on Industrial Electronics , 2005 ,53(1):187-194
    [20] Michioka C , Sakamoto T , Ichikawa O et al . A decoupling control method of reluctance-type bearingless motors considering magnetic saturation . IEEE Trans . on Industrial Applications , 1996,32(5):1204-1210
    [21]孙玉坤,费德成,朱熀秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制.中国电机工程学报,2006,26(1):120-126
    [22]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997,244-246
    [23] A Chiba , Deido T , Fukao T , et al . Analysis of bearingless AC motors . IEEE Trans . on Energy Conversion , 1994, 9(1):61-67
    [24]周媛.永磁型无轴承电机的运行控制研究:[浙江大学硕士学位论文].杭州:浙江大学电气工程学院,2006,15-16
    [25] Ooshima M , Chiba A , Rahman A , et al . An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation . IEEE Trans . on Energy conversion , 2004, 19(3): 569-575
    [26]谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005,160-161
    [27]许贤良,王传礼.控制工程基础.北京:国防工业出版社,2008,231-232
    [28]张晋格.控制系统CAD—基于MATLAB语言.北京:机械工业出版社,2004,158-164
    [29]邹伯敏.自动控制理论.北京:机械工业出版社,2002,260-265
    [30] Kiryu K , Chiba A , Fukao T. A radial force detection and feedback effects on bearingless motors. IEEE IAS Annual Meeting Conference, 2001, 64-69
    [31]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制.中国电机工程学报,2003,23(11):139-144
    [32]刘金锟.先进PID控制MATLAB仿真.第二版.北京:电子工业出版社,2004,55-58
    [33]年珩,贺益康.永磁型无轴承电机无径向位移传感器运行研究.电工电能新技术,2006,25(4):15-18
    [34]年珩,贺益康,黄雷.内插式永磁无轴承电机转子位置/位移综合自检测.中国电机工程学报,2007,27(9):52-58
    [35] Mizuno T, Araki K, Bleuler H. Stability analysis of sef-sensing magnetic bearing controllers. IEEE Trans. On Control Systems Technology, 1996,4(5): 572-579
    [36]卜文绍,黄声华,万山明.无轴承二极电机麦克斯韦磁悬浮力解析模型.电机与控制学报,2006,10(5):443-446
    [37] Chiba A , Hanazawa M , Fukao T . Effects of magnetic saturation on radial force of bearingless synchronous reluctance motors . IEEE Trans . on Industry Applications , 1996,32(2):354-362
    [38] Michioka C, Sakamoto T, Ichikawa O, et al. A decoupling control method of reluctance-type bearingless motors considering magnetic saturation. IEEE Trans. On Industry Applications, 1996,32(5): 1204-1210
    [39]雷美珍,邱建琪,林瑞光.无轴承异步电机的悬浮机理及其气隙磁场定向控制.电机与控制应用,2005,32(7):35-40
    [40]邓智泉,王晓琳,张宏荃.无轴承异步电机的转子磁场定向控制.中国电机工程学报,2003,23(3):89-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700