四象限变频器在电机控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用三相PWM整流替代传统变频器中的不控整流而构成的四象限变频器,同时具备了交流电机优异的调速性能和三相PWM整流的能量可双向流动、网侧电流正弦度好、单位功率因数、直流母线电压可控等优点,非常符合国家重点实施的节能减排战略。本文以四象限变频器为核心,围绕PWM调制、PWM整流、异步电机控制、永磁同步电机控制、四象限变频器协调控制等关键技术、以及四象限变频器扩展应用,进行了理论分析和研究。
     PWM技术是PWM整流和交流调速的基础。本文详细分析了SPWM和SVPWM两种调制方式,阐述了一种实现简单的SVPWM调制方式;结合工程实现,采用了一种可提高了直流母线电压利用率的过调制方式,并成功实现了一种可有效减少开关次数提高系统效率的DPWM方式;重点分析了死区的形成原因和其对控制系统的影响,并阐述了基于两相同步旋转d-q坐标系下的死区补偿方式和实现特点,并给出了这种死区补偿方式的仿真和实验结果,为四象限变频的控制打下了基础。
     电流环作为电压、电流双闭环控制的内环,直接决定着三相PWM整流的电流波形好坏,影响其性能。传统电流解耦控制方法需要知道准确的电感参数,而工程实际中电感参数的测量并不方便,并且电感在流经大电流时容易饱和,导致解耦控制失败;三相PWM整流的电压外环存在非线性,若直接采用传统的PI控制器,难以取得比较好的动态特性。本文提出了一种无需知道电感参数的电流解耦内环电压平方外环的电压、电流双闭环控制策略,仿真和实验结果验证了该控制策略的可行性。
     V/F控制和矢量控制是异步电机两种非常重要的控制方式,本文分析了异步电机稳态模型,针对V/F控制下异步电机空载或轻载时容易振荡的现象,采取了基于无功电流闭环的控制方案,实验结果验证了该控制策略的可行性。同时本文给出了异步电机的动态模型,并进一步分析了异步电机转子磁场定向矢量控制,实验结果验证了基于转子磁场定向矢量控制的异步电机具有非常理想的动、静态特性。异步电机参数辨识有离线辨识和在线辨识两种方式,本文重点分析了异步电机参数的离线辨识,提出了一种简化的无需进行傅里叶变换提取正弦信号的幅值和相角的方法,实验结果证实了该方法的可行性。异步电机参数辨识为异步电机无位置传感器矢量控制提供了基础,仿真和实验结果验证了本文所提出的自适应无位置传感器矢量控制策略的可行性。
     通过更换编码器接口和控制算法,变频器同时也能够实现同步电机的驱动。针对永磁同步电机电流环,本文提出了无电感参数解耦和比例谐振控制器方案,减小电流谐波。仿真和实验均验证了该方案的可行性。
     四象限变频器逆变部分可等效成一个电阻+电感+反电势的等效电路,所以理论上讲四象限变频器的三相PWM整流和逆变部分可以独立控制,即三相PWM整流控制直流母线电压,逆变器控制电机特性。本文搭建了四象限变频器实验平台,实验结果实现了四象限变频器的基本工况。为了提高四象限变频的抗负载扰动能力,本文提出了一种在不增加直流母线电流采样的前提下,基于负载电流观测器的负载电流前馈补偿的控制策略,并分别采用了降维观测器、基于简化模型的扩展卡尔曼滤波(Extended Kalman Filter, EKF)和基于完整模型的EKF三种观测器,实验结果验证了该方案的可行性。
     拥有两个电端口的新型电机是四象限变频器的重要应用对象。本文以四象限变频器应用于无刷双馈发电机为例,描述了其应用特点,并针对防止电流冲击和改善抗负载扰动能力,提出了解决方案。实验结果验证了该方案的可行性。
Four-quadrant inverter with the boost rectifier instead of the conventional non-controlled one, is very much in line with the national focus on the implementation of energy conservation strategy, because of the advantage shown as excellent performance of the AC motor, double direction energy flow, the grid's current sinusoidal, unity power factor, and the controlled DC bus voltage. There are a large number of papers based on the boost rectifier and AC variable speed control, which provide a basis for the research on the four-quadrant inverter. This paper does some research on the theory and control strategies of the rectifier, the control of the induction motor, the control of the permanent magnet synchronous motor, the four-quadrant control and its extended application.
     PWM is the basis of the boost rectifier and AC variable speed control. The detailed analysis of SPWM and SVPWM, and a simple SVPWM method are introduced. An overmodulation method and a DPWM method, which can improve the system's efficiency, are also described. The reason for the deadtime is also analysised, and a deadtime compensation strategy is introduced. The simulation and experimental results are given.
     The performances of the boost rectifier and currents are directly determined by the inner loop (the current loop).Conventional current decoupling control method, which is very inconvenient in engineering, needs to know the exact inductance parameters. It is difficult to obtain a well dynamic performance with the tradional PI controller, because of the changed conduction caused by saturation. A novel control strategy, which contains a current decoupling inner loop without the inductance parameter and a voltage square outer loop, is proposed in this paper. Simulaton and experimental results verifies the feasibility.
     The induction motor is a stong coupling model. And the V/F control and vector control are two very important methods for the control of the induction motor. The steady-state model of the induction motor is analysised and a control strategy with the reactive current closed-loop control is used. The feasibility is verified by the experimental results. The dynamic models in several different coodinates are also presented. The rotor field oriented vector control of induction motor is achieved to satisfactory the dynamic and static characteristics with the experment results. Off-line and on-line parameters identifications are two mainstream methods for identification of induction motor's parameters. This paper focuses on the off-line identification, and a simplified method without the Fourier transform to extract the sinusoidal signal amplitude and phase angle is proposed. The feasibility is verified by the experimental results. The feasibility of the adaptive sensorless contol strategy, with the identified parameters and the proposed method, is verfied by the experimental results.
     Induction motor and synchronous motor can both be driven by the inverter with the encoder and control algorithm changed. A current decoupling control and proportion resonant controller is proposed to reduce the current harmonics. The feasibility of the proposed method is verified by the simulation and experimental results.
     The four-quadrant inverter's inverter part can be equivalent to a resisitor+inductance+back EMF, so the boost rectifier and inverter can be independently controlled, with the rectifier contolling the DC bus voltage and the inverter controlling the motor. The four-quadrant expermental platform is built to realize the four-quadrant condition. In order to improve the anti-load disturbances of the four-quadrant, the load current based on the observer feed-forward compensation control strategy is proposed, which concluding reduced order observer, extended kalman filter (EKF) based on the simplified model, and EKF based on the complete model. The feasibility of this strategy is verified by the simulation and experimental results.
     The four quadrant inverter is also suitable to be applied to the new motors with two power ports. The brushless doubly fed generator is taken as an example to describe the applications. And a strategy, preventing the current impact and improving tha load disturbances, is also proposed. The feasibility of this strategy is verified by the experimental results.
引文
[1]马志源.电力拖动控制系统[M].北京:科学出版社,2003.
    [2]陈坚.电力电子学—电力电子变换和控制技术(第二版[M].北京:高等教育出版社,2004.
    [3]王庆义.交流变频驱动系统关键技术及应用研究[D].博士学位论文,华中科技大学,2008.
    [4]吴凤江.四象限级联多电平逆变器拓扑及其控制策略的研究[D].博士学位论文,2007.
    [5]李光叶.双PWM变换器协调控制研究[D].博士学位论文,天津大学,2011.
    [6]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [7]S. Li, Y. Li. A Novel Fast Current-control Method for the Back-Back Converters[C].2004 IEEE International Conference on Industrial Technology (ICIT), Hammamet, Tunisia,2004:351-357.
    [8]A. Uehara, A. Pratap, T. Goya, et al. A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS[J]. IEEE Transactions on Energy Conversion,2011,26(2):550-558.
    [9]Y. Mishra, S. Mishra, and F. Li. Coordinated Tunig of DFIG-Based Wind Turbines and Batteries Using Bacteria Foraging Technique for Maintaining Constant Grid Power Output[J]. IEEE System Journal,2012,6(1):16-26.
    [10]屈莉莉,杨兆华,秦逸,张波.基于电流解耦控制的三相电压型PWM整流系统分析与设计[J].电工技术学报(英文版),2007,22(7):52-57.
    [11]尹忠刚.用于变频调速装置的三相PWM整流若干技术问题研究[D].博士学位论文,西安理工大学,2009.
    [12]Y. Tang, P. C. Loh, P. Wang, et al. One-Cycle-Controlled Three-Phase PWM Rectifiers With Improved Regulation Under Unbalanced and Distorted Input-Voltage Conditions[J]. IEEE Transactions on Power Electronics,2010,25(11):2786-2796.
    [13]J. Itoh, Y. Noge, and T. Adachi. A Novel Five-Level Three-Phase PWM Rectifier with Reduced Switch Count[J]. IEEE Transactions on Power Electronics,2011,26(8): 2221-2228.
    [14]张兴.PWM整理器及其控制策略的研究[D].博士学位论文,合肥工业大学,2003.
    [15]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    [16]J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, et al. PWM Regenerative Rectifiers: State of the Art[J]. IEEE Transactions on Industrial Electronics,2005,52(1):5-22.
    [17]B. Singh, B. N. Singh, A. Chandra, et al. A Review of Three-Phase Improved Power Quality AC-DC Converters[J]. IEEE Transactions on Industrial Electronics, 2004,51(3):641-660.
    [18]M. Boyra, and J. L. Thomas. A Review on Synchronization Methods for Grid-Connected Three-Phase VSC under Unbalanced and Distorted Conditions[C]. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference, Gif-sur-Yvette, France,2011 : 1-10.
    [19]M. P. Kazmierkowski, and L. Malesani. Current Control Techniques for Three-Phase Voltage-Source PWM Converters:A Survey[J]. IEEE Transactions on Industrial Electronics,1998,45(5):691-702.
    [20]M. Malinowski, M. Jasinski, and M.P. Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM)[J]. IEEE Transactions on Industrial Electronics,2004,51(2):447-454.
    [21]T. Noguchi, H. Tomiki, S. Kondo, et al. Direct Power Control of PWM Converter Without Power-Source Voltage Sensors[J]. IEEE Transactions on Industrial Applications,1998,34(3):473-479.
    [22]M. Malinowski, M. P. Kazmierkowski, S. Hansen, et al. Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers[J]. IEEE Transactions on Industrial Applications,2001,37(4):1019-1027.
    [23]A. Bouafia, J. P. Gaubert, and F. Krim. Predictive Direct Power Control of Three-Phase Pulsewidth Modulation (PWM) Rectifier Using Space-Vector Modulation (SVM)[J]. IEEE Transactions on Power Electronics,2010,25(1): 228-236.
    [24]V. Blasko, and V. Kaura. A New Mathematical Model and Control of a Three-Phase AC-DC Voltage Source Converter[J]. IEEE Transactions on Power Electronics,1997, 12(1):116-123.
    [25]B. Yin, R. Oruganti, S. K. Panda, and A. K. S. Bhat. A Simple Single-Input-Single-Output (SISO) Model for a Three-Phase PWM Rectifier[J]. IEEE Transactions on Power Electronics,2009,24(3):620-631.
    [26]F. Briz, M. W. Degner, and R. D. Lorenz. Analysis and Design of Current Regulators Using Complex Vectors[J]. IEEE Transactions on Industrial Applications,2000, 36(3):817-825.
    [27]陈耀军,钟炎平.基于合成矢量的电压型PWM整流器电流控制研究[J].中国电机工程学报,2006,26(2):143-148.
    [28]W. Zhang, Y. Hou, X. Liu, et al. Switched Control of Three-Phase Voltage Source PWM Rectifier Under a Wide-Range Rapidly Varying Active Load[J]. IEEE Transactions on Power Electronics,2012,27(2):881-890.
    [29]Y. Zhong, Y. Chen, D. Chen. A Linearization Voltage Control Strategy of Three-Phase PWM Rectifier[C]. Proceedings of the Electrical Machines and Systems (ICEMS2008), Wuhan, China:819-824.
    [30]王恩德,黄声华.三相电压型PWM整流的新型双闭环控制策略[J].中国电机工程学报,2012,32(15):24-30.
    [31]J. F. Silva. Sliding-Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers[J]. IEEE Transactions on Industrial Electronics,1999,46(3):594-603.
    [32]H. Komurcugil, and O. Kukrer. Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters[J]. IEEE Transactions on Power Electronics, 1998,13(5):801-813.
    [33]T. S. Lee. Input-Output Linearization and Zero-Dynamics Control of Three-Phase AC/DC Voltage-Source Converters[J]. IEEE Transactions on Power Electronics, 2003,18(1):11-22.
    [34]D. C. Lee, G. M. Lee, and K. D. Lee. DC-Bus Voltage Control of Three-Phase AC/DC PWM Converters Using Feedback Linearization[J]. IEEE Transactions on Industry Applications,2000,36(3):826-833.
    [35]D. W. Chung, and S. K. Sul. Minimum-Loss Strategy for Three-Phase PWM Rectifier[J]. IEEE Transactions on Industrial Electronics,1999,46(3):517-526.
    [36]H. S. Song, and K. Nam. Dual Current Control Scheme for PWM Converter Under Unbalanced Input Voltage Conditions[J]. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [37]Y. Suh, and T. A. Lipo. Control Scheme in Hybrid Synchronous Stationary Frame for PWM AC/DC Converter Under Generalized Unbalanced Operating Conditions [J]. IEEE Transactions on Industry Applications,2006,42(3):825-835.
    [38]Y. Suh, and T. A. Lipo. Modeling and Analysis of Instantaneous Active and Reactive Power for PWM AC/DC Converter Under Generalized Unbalanced Network[J]. IEEE Transactions on Power delivery,2006,21(3):1530-1540.
    [39]D. Roiu, R. I. Bojoi, L. R. Limongi, and A. Tenconi. New Stationary Frame Control Scheme for Three-Phase PWM Rectifiers Under Unbalanced Voltage Dips Conditions[J]. IEEE Transactions on Industry Applications,2010,46(1):268-277.
    [40]J. Dannehl, C. Wessels, and F. W. Fuchs. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters[J]. IEEE Transactions on Industrial Electronics,2009,56(2):380-388.
    [41]K. Jalili, and S. Bernet. Design of LCL Filters of Active-Front-End Two-Level Voltage-source Converters[J]. IEEE Transactions on Industrial Electronics,2009, 56(5):1674-1689.
    [42]M. Liserre, F. Blaabjerg, and S. Hansen. Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier[J]. IEEE Transactions on Industry Applications,2005, 41(5):1281-1291.
    [43]丁辉,胡协和.交流异步电动机调速系统控制策略综述[J].浙江大学学报,2011,45(1):50-58.
    [44]R. Ueda, T. Toshikatsu, and K. Koga. Stabilizing Analysis in Induction Motor Driven by V/f Controlled General-Purpose Inverter[J]. IEEE Transactions on Industry Applications,1992,28(2):472-481.
    [45]N. Mutoh, A. Ueda, K. Sakal, et al. Stabilizing Control Method for Suppressing Oscillations of Induction Motors Driven by PWM Inverters[J]. IEEE Transactions on Industry Electronics,1990,37(1):48-56.
    [46]W. Chen, D. Xu, R. Yang, et al. A Novel Stator Voltage Oriented V/F Control Method Capable of High Output Torque at Low Speed[C]. Power Electronics and Drive Systems (PEDS 2009),2009:228-233.
    [47]Z. Ma, T. Zheng, and Fei Lin. Stability Improvement of V/Hz Controlled PWM Inverter-fed Induction Motors Drives[C]. Industrial Electronics and Applications, 2006 1st IEEE Conference,2006:1-4.
    [48]陈伟,杨荣峰,王高林等.新型电压矢量控制算法极低速性能研究[J].中国电机工程学报,2010,5(25):99-105.
    [49]B. K. Bose. Modern Power Electronics and AC Drives(英文版)[M].北京:机械工业,2003.
    [50]阮毅,陈伯时.电力系统自动控制系统——运动控制系统(第4版)[M].北京:机械工业,2009.
    [51]陈坚.交流电机数学模型及调试系统[M].北京:机械工业,2009.
    [52]王斯然.异步电机高性能变频器若干关键技术的研究[D].博士学位论文,浙江 大学,2011.
    [53]F. Bonanno, A. Consoli, A. Raciti, et al. An Innovative Direct Self-Control Scheme for Induction Motor Drives[J]. IEEE Transactions on Power Electronics,1997,12(5): 800-806.
    [54]L. A. Cabrera, M. E. Elbuluk, and D. S. Zinger. Learning Techniques to Train Neural Networks as a State Selector for Inverter-fed Induction machines using direct torque control[J]. IEEE Transactions on Power Electronics,1997,12(5):788-799.
    [55]P. Z. Grabowski, M. P. Kazmierkowski, B. K. Bose, et al. A Simple Direct-torque Neuro-fuzzy control of PWM-Inverter-Fed Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics,2000,47(4):863-870.
    [56]M. P. Kazmierkowski. Direct Torque Control of PWM Inverter-Fed AC Motors-a Survey[J]. IEEE Transactions on Industrial Electronics,2004,51(4):744-757.
    [57]J. Holtz. Sensorless Control of Induction Motor Drivers[J]. Proceedings of the IEEE, 2002,90(8):1359-1394.
    [58]A. Makouf, M. E. H. Benbouzid, D. Diallo, et al. A Practical Scheme for Induction Motor Speed Sensorless Field-Oriented Control[J]. IEEE Transactions on Energy Conversion,2004,19(1):230-231.
    [59]F. Briz, M. W. Degner, P. Garcia, et al. Comparison of Saliency-Based Sensorless Control Techniques for AC Machines[J]. IEEE Transactions on Industrial Applications,2004,40(4):1107-1115-
    [60]J. Ha, and S. Sul. Sensorless Field-Orientation Control of an Induction Machine by High-Frequency Signal Injection[J]. IEEE Transactions on Industrial Applications, 1999,35(1):45-51.
    [61]M. Hinkkanen, and J. Luomi. Stabilization of Regenerating-Mode Ooperation in Sensorless Induction Motor Drives by Full-Order Flux Observer Design[J]. IEEE Transactions on Industrial Electronics,2004,51(6):1328-1328.
    [62]H. Tajima and Y. Hori. Speed Sensorless Field-Orientation Control of the Induction Machine[J]. IEEE Transactions on Industrial Applications,1993,29(1):175-180.
    [63]K. L. Shi, T. F. Chan, Y. K. Wong, et al. Speed Estimation of an Induction Motor Drive Using an Optimized Extended Kalman Filter[J]. IEEE Transactions on Industrial Electronics,2002,49(1):124-133.
    [64]M. Hasegawa. Robust-Adaptive-Observer Design Based on Y-Positive Real Problem for Sensorless Induction-Motor Drivers[J]. IEEE Transactions on Industrial Electronics,2005,53(1):76-85.
    [65]周熙炜,钟彦儒,李洁等.基于智能控制的异步电机参数辨识的研究进展[J].中国电工技术学会电力电子学会第八界学术年,2002:598-602.
    [66]M. Rodic, and K. Jezernik. Speed-Sensorless Sliding-Mode Torque Control of an Induction Motor[J]. IEEE Transactions on Industrial Electronics,2002,49(1):87-95.
    [67]L. Salvatore, S. Stasi, and L. Tarchioni. A New EKF-Based Algorithm for Flux Estimation in Induction Machines[J]. IEEE Transactions on Industrial Electronics, 1993,40(5):496-504.
    [68]M. N. Cirstea, and A. Dinu. A VHDL Holistic Modeling Approach and FPGA Implementation of a Digital Sensorless Induction Motor Control Scheme[J]. IEEE Transactions on Industrial Electronics,2007,54(4):1853-1864.
    [69]H. A. Toliyat, E. Levi, and M. Raina. A Review of RFO induction Motor Parameter Estimation Techniques[J]. IEEE Transactions on Energy Conversion,2003,18(2): 271-283.
    [70]A. Ganji, P. Guillaume, R. Pintelon, et al. Induction Motor Dynamic and Static Inductance Identification Using a Broadband Excitation Technique [J]. IEEE Transactions on Energy Conversion,1998,13(1):15-20.
    [71]A. Gastli. Identification of Induction Motor Equivalent Circuit Parameters Using the Single-Phase Test[J]. IEEE Transactions on Energy Conversion,1999,14(1):51-56.
    [72]罗慧,刘军锋,万淑芸.感应电机参数的离线辨识[J].电气传动,2006,36(8):16-21.
    [73]刘晖.异步电机参数离线自整定及参数辨识研究[D].硕士学位论文,北京交通大学,2008.
    [74]贺艳晖,王跃,王兆安.异步电机参数离线辨识改进算法[J].电机与控制学报,2005,9(2):161-165.
    [75]W. M. Lin, T. J. Su, and R. C. Wu. Parameter Identification of Induction Machine with a Starting No-Load Low-Voltage Test[J]. IEEE Transactions on Industry Electronics,2012,59(1):352-360.
    [76]D. Telford, M. W. Dunnigan, and B. W. Williams. Online Identification of Induction Machine Electrical Parameters for Vector Control Loop Tuning[J]. IEEE Transactions on Industry Electronics,2003,50(2):253-261.
    [77]L. A. D. S. Ribeiro, C. B. Jacobina, A. M. N. Lima, et al. Real-Time Estimation of the Electric Parameters of an Induction Machine Using Sinusoidal PWM Voltage Waveforms[J]. IEEE Transactions on Industry Applications,2000,36(3):743-754.
    [78]E. D. Mitronikas, A. N. Safacas, and E. C. Tatakis. A New Stator Resistance Tunig Method for Stator-Flux-Oriented Vector-Controlled Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics,2001,48(6):1148-1157.
    [79]L. C. Zai, C. L. DeMarco, and T. A. Lipo. An Extend Kalman Filter Approach to Rotor Time Constant Measurement in PWM Induction Motor Drives[J]. IEEE Transactions on Industry Application,1992,28(1):96-104.
    [80]E. Laroche, E. Sedda, and C. Durieu. Methodological Insights for Online Estimation of Induction Motor Parameters[J]. IEEE Transactions on Control Systems Technology,2008,16(5):1021-1028.
    [81]H. Sugimoto, and S. Tamai. Secondary Resistance Identification of an Induction-Motor Applied Model Reference Adaptive System and Its Characteristics[J]. IEEE Transactions on Industry Applications,1987, 1A-23(2): 296-303.
    [82]D. Casadei, F. Profumo. FOC and DTC:Two viable schemes for induction motors torque control[J]. IEEE Transactions on Power Electron,2002,17(5):779-787.
    [83]M. R. Zolghadri, and D. Roye. A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle[J]. IEEE Transactions on Industrial Electronics,2011, 58(7):2848-2859.
    [84]刘军,吴春华,黄建明等.一种永磁同步电机参数测量方法[J].电力电子技术,2010,44(1):46-48.
    [85]K. Liu, Q. Zhang, J. Chen, et al. Online Multiparameter Estimation of Nonsalient-Pole PM Synchronous Machines With Temperature Variation Tracking[J]. IEEE Transactions on Industrial Electronics,2011,58(5):1776-1788.
    [86]M. J. Corley, and R. D. Lorenz. Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speed[J]. IEEE Transactions on Industry Applications,1998,34(4):784-789.
    [87]A. Sarikhani, and O. A. Mohammed. Sensorless Control of PM Synchronous Machines by Physics-Based EMF Observer[J]. IEEE Transactions on Energy Conversion,2012,27(4):1009-1017.
    [88]张加胜,李浩光,冯兴田.PWM逆变器的直流侧等效模型研究[J].中国电机工程学报,2007,27(4):103-107.
    [89]张加胜,张磊.四象限变流器的负载等效模型研究[J].电工技术学报,2008,23(1):72-76.
    [90]王恩德,黄声华,宁国云.带电机负载的四象限变流器运行特性研究[J].湖北工业大学学报,2011,26(1):37-43.
    [91]L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin. AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link[J]. IEEE Transactions on Industry Applications,1995,31(2):287-292.
    [92]A. Uehara, A. Pratap, T. Goya, et al. A Coordinated Control Method to Smooth Wind Power Fluctuation of a PMSG-Based WECS[J]. IEEE Transactions on Energy Convertion,2011,26(2):550-558.
    [93]N. Hur, J. Jung, and K. Nam. A Fast Dynamic DC-Link Power-Balancing Scheme for a PWM Converter-Inverter System[J]. IEEE Transactions on Industrial Electronics,2001,48(4):794-803.
    [94]B. G. Gu, and K. Nam. A DC-Link Capacitor Minimization Method Through Direct Capacitor Current Control [J]. IEEE Transactions on Industry Applications,2006, 42(2):573-581.
    [95]万山明.TMS320F2812/2810原理及应用实例[M].北京:北京航空航天大学出版社,2007.
    [96]周卫平,吴正国,唐劲松等.SVPWM的等效算法及SVPWM与SPWM的本质联系[J].中国电机工程学报,2006,26(2):134-137.
    [97]D. G. Holmes, T. A. Lipo(著),周克亮(译).电力电子变换器PWM技术原理与实践[M].北京:人民邮电出版社,2010.
    [98]J. Holtz, W. Lotzkat, and A. M. Khambadkone. On Continuous Control of PWM Inverters in the Overmodulation Range Including the Six-Step Mode[J]. IEEE Transactions on Power Electronics,1993,8(4):546-553.
    [99]D. C. Lee, and G. M. Lee. A Novel Overmodulation Technique for Space-Vector PWM Inverters[J]. IEEE Transactions on Power Electronics,1998,13(6):1144-1151.
    [100]A. M. Hava, S. K. Sul, R. J. Kerkman, et al. Dynamic Overmodulation Characteristic of Triangle Intersection PWM Methods[J]. IEEE Transactions on Industry Applications,1999,35(4):896-907.
    [101]K. Sun, Q. Wei, L. Huang, et al. An Overmodulation Method for PWM-Inverter-Fed IPMSM Drive with Single Current Sensor[J]. IEEE Transactions on Industrial Electronics,2010,57(10):3395-3404.
    [102]吴芳,万山明,黄声华.一种过调制算法及其在永磁同步电动机弱磁控制中的应用[J].电工技术学报,2010,25(1):58-63.
    [103]F. Casanellas, CEng, and MIEE. Losses in PWM inverters using IGBTs[J]. IEE Proc. Electr. Power Appl.,1994,141(5):235-239.
    [104]D. Gravac, and M. Purschel. IGBT Power Losses Calculation Using the Data-Sheet Parameters[M]. Application Note of Infineon (V 1.1),2009:1-17.
    [105]A. M. Hava, R. J. Kerkman, and T. A. Lipo. AHigh-Performance Generalized Discontinuous PWM Algorithm[J]. IEEE Transactions on Industry Applications, 1998,34(5):1059-1071.
    [106]A. M. Hava, R. J. Kerkman, and T. A. Lipo. Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives[Jj. IEEE Transactions on Power Electronics,1999,14(1):49-61.
    [107]刘军锋,李叶松.一种新颖的死区补偿和电机相电压检测方法[J].电力电子技术,2007,41(1):33,34,89.
    [108]Z. Wu, J. Ying. A Novel Dead Time Compensation Method for PWM Inverter[J]. The Fifth International Conference on Power Electronics and Drive Systems,2003, shanghai, China,2(2):1258-1263.
    [109]N. Urasaki, T. Senjyu, K. Uezato, et al. An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives[J]. IEEE Transactions on Power Electronics,2005,20(5):1150-1160.
    [110]L. B. Brahim. On the Compensation of Dead Time and Zero-Current Crossing for a PWM-Inverter-Controlled AC Servo Drive[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1113-1117.
    [111]J. W. Choi, and S. K. Sul. Inverter Output Voltage Synthesis Using Novel Dead Time Compensation[J]. IEEE Transactions on Power Electronics,1996,11(2):221-227.
    [112]孙向东,钟彦儒,任碧莹等.一种新颖的死区补偿时间测量方法[J].中国电机工程学报,2003,23(2):103-107.
    [113]王颢雄,马伟明,肖飞等.双dq变换软件锁相环的数学模型研究[J].电工技术学报,2011,26(7):237-241.
    [114]周亮.基于内模原理的逆变器波形控制技术研究[D].硕士学位论文,华中科技 大学,2006.
    [115]A. Nasiri. Full Digital Current Control of Permanent Magnet Synchronous Motors for Vehicular Applications[J]. IEEE Transactions on Vehicular Technology,2007,56(4): 1531-1537.
    [116]A. Nasiri, S. A. Zabalawi, and D. C. Jeutter. A Linear Permanent Magnet Generator for Powering Implanted Electronic Devices[J]. IEEE Transactions on Power Electronics,2011,26(1):192-199.
    [117]M. N. Uddin, T. S. Radwan, G. H. George, et al. Performance of Current Controllers for VSI-Fed IPMSM Drive [J]. IEEE Transactions on Industry Applications,2000, 36(6):1531-1538.
    [118]王宏佳,杨明,刘里等.交流伺服系统电流环带宽扩展研究[J].中国电机工程学报,2010,30(2):56-62.
    [119]唐任远.现代永磁电机理论与设计(第1版)[M].北京:机械工业出版社,2010.
    [120]李景灿,廖勇.考虑饱和及转子磁场谐波的永磁同步电机模型[J].中国电机工程学报,2011,31(3):60-66.
    [121]A. C. Oliverra, C. B. Jacobina, and A. M. Lima. Improved Dead-Time Compensation for Sinusoidal PWM Inverters Operating at High Switching Frequencies [J]. IEEE Transactions on Industrial Electronics,2007,54(4):2295-2304.
    [122]王高林,于泳,杨荣峰等.感应电机空间矢量PWM控制器死区效应补偿[J].中国电机工程学报,2008,28(15):79-83.
    [123]王恩德,黄声华.表贴式永磁同步电机伺服系统电流环设计[J].中国电机工程学报,2012,32(33):82-88.
    [124]K. B. Lee, J. Y. Yoo, J. H. Song, et al. Improvement of Low Speed Operation of Electric Machine with an Inerta Identification Using ROELO[J]. IEE Proceedings-Electric Power Applications,2004,151(1):116-120.
    [125]S. Bolognani, L. Tubiana, and M. Zigliotto. Extended Kalman Filter Tuning in Sensorless PMSM Drives[J]. IEEE Transactions on Industry Applications,2003, 39(6):1741-1747.
    [126]E. Wang, and S. Huang. Robust Control of the Three-Phase Voltage-Source PWM Rectifier Using EKF Load Current Observer[J]. Prezeglad Electrotechniczny (Electrical Review),2013, R.89NR,3a:189-193.
    [127]R. E. Betz, and M. G. Jovanovic. The Brushless Dobly Fed Reluctance Machine and the Synchronous Reluctance Machine-a Comparision[J]. IEEE Transactions on Industry Applications,2000,36(4):1103-1110.
    [128]M. S. Boger, A. K. Wallace, and R. Spee. Investigation of Appropriate Pole Number Combinations for Brushless Doubly Fed Machines Applied to Pump Drives [J]. IEEE Transactions on Industry Applications,1996,31(1):189-194.
    [129]黄守道,王耀南,王毅等.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,25(4):87-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700