常规细胞遗传学和荧光原位杂交技术在垂体瘤遗传学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验应用手术刚切除的垂体瘤组织标本,联合运用直接法(direct preparation,DP)和短期培养法(short-term culmre,STC)制备染色体来探索垂体瘤中期细胞核型异常情况,同时运用荧光原位杂交(fluorescene in situ hybridization,FISH)技术检测垂体瘤间期细胞染色体的异常。结合临床资料和病理特征,探讨垂体瘤染色体的异常与肿瘤病理类型和生物学特性的相互关系,以揭示垂体瘤发生、发展的内在本质,为垂体瘤临床诊断和预后判断提供可靠依据,并且为以后的治疗开辟新的思路。
     材料和方法:实验分为两个部分,第一部分用手术刚切除的肿瘤组织迅速制作成单细胞悬液,首选DP法,多余的行STC法,共对50例标本采用了DP法,其中对25例垂体瘤组织标本进行了两种方法的检测。通过R显带进行核型分析,以了解垂体瘤染色体异常情况以及两种方法的优缺点。第二部分根据中期细胞核型分析结果,以FISH技术检测垂体腺瘤间期细胞7、8、11、12、X染色体数目的异常,结合肿瘤类型和病理特点探讨垂体瘤染色体异常与肿瘤病理类型及生物学行为的相互关系。
     结果:我们实验研究发现在25例垂体瘤中直接法获得中期分裂
    
     常规细胞遗传学和荧光原位杂交技术在垂体沤逅传学的研究 中文摘要
     相占 68刀%(17/2人 染色体异常的有 44.0%(l尺5人 短期培养法
     获得的中期分裂相有84.0oQ 人染色体有异常的为 12。0oQ/25人
    回 在染色体畸变中主要以XS、7、12、5号染色体获得性增加和11、
     9、13号染色体的丢失为主,其中染色体的丢失多见于侵袭性垂体腺
     瘤。在染色体的结构上,我们发现19号染色体与17、19号染色体形
     成端粒联合以及lp+和17旷异常* 期nSH证实了垂体腺瘤中染色
     体的获得性增加主要有X、7、8、IZ号染色体,而且发现了常规核
     型分析中未发现的7、12染色体的获得以及间期细胞染色体的异常。
     此外,在34例功能性垂体瘤中,26例出现了核型异常;而在 16例
     无功能性垂体瘤中只有6例呈现异常核型,两者之间呈显著性差异。
    匠 结论:通过实验我们认为短期培养法虽然可获得较高的中期分裂
    盯 相,但是染色体的畸变明显降低,相反直接法虽获得较低的中期分裂
     相,但是其基本反映了肿瘤的染色体异常情况,与前者相比它客观地
     反映了良恶性肿瘤的染色体异常情况,是较为适宜的方法之一。我们
     同时也发现功能性垂体腺瘤与无功能性垂体腺瘤在染色体的畸变上
     有一定的差异。运用FISH技术证实垂体染色体的畸变主要表现为整
     染色体数目变化为主,以三体、四体或单体为主要形式,主要有X、
     7、8、12号染色体的获得以及门号染色体的丢失,并且9、11、13
     号染色体的改变多见于侵袭性垂体瘤。此外我们还发现19号染色体
     结构的异常可能参与了垂体腺瘤的演进过程并与肿瘤的复发有一定
     的联系。
Objective:The purpose of this research was to explore chromosomal aberrations of metaphase cells using the DP and STC on the excised tissue samples of PAs. To increase the resolution of cytogenetic analysis,DPs from 50 PAs were investigated by interphase FISH. Combining the clinical data with pathological characters,we wanted to elucidate the correlations among chromosome changes,tumor types and biologic behaviors in order to reveal the initiation and progression of pituitary adenomas in essence. Further studies would not only provide reliable evidence of the clinical diagnosis and prognosis,and also develop a novel treatment for patients with pituitary adenomas.
    Materials and Methods:The research was divided into two parts. In part one,we used the sample excised from the patients to make the single cell suspensions. Both the DP and STC were set up. When the fragment size did not allow both methods to be used,the DP was preferred,by which 50 samples were done,and 25 samples were done by STC. Using R-banding to analyse the karyotypes of the samples,we initially found that there were some chromosomal abnormalities in our
    
    
    
    groupes,and then compared the advange and disadvange of both methods. In part two,according to the results of karyotypes,we detected the abnormal number of the 7,8,11,12,X chromosomes in interphase cells of PAs by FISH,and then combined the subtype and pathology of PAs in order to discusse the relations of the chromosomes abnormalities,subtypes and biologic behaviors of PAs.
    Results:Our research found out that the DP of 25 tumors allowed us to identify a karyotype in 17 samples (17/25,68.0%),whereas the STC of 25 tumors yielded a karyotype in 21samples (21/25,84.0%). An abnormal clonal karyotype was observed in 11 of the 25 samples (11/25,44.0%) successfully processed by the DP,however 3 of the 25 samples yielded an abnormal clonal karyotype. The most frequently found chromosomal alterations in our study were the gains of an entire copy of chromosome X,8,7,12,5 and the loss of chromosome 9,11,13. hi particular,the loss of chromosome was commonly found in invasive PAs. hi the recurrent PAs,the chromosome 19 participated in TAS with 17 and 19. As far as numerical aberrations were concerned,interphase FISH not only confirmed the gains of chromosome X,7,8,12 in metaphase cells,but also delected the gains of chromosomes 7 and 12 which counld not be found out in metaphase cells by CC. In addition,we found that 26 samples took on abnormal karyotypes in 34 functioning PAs,but only 6 samples had abnormal karyotypes in 16 non- functioning PAs.
    
    
    Conclusions:Our comparison of the cytogenetic results obtained applying both the DP and STC definitely demonstrated that there were much more metaphase cells by STC than that by DP,however the chromosomal aberrations by STC decreased much more than that by DP. The discrepancy made the DP the most suitable for the cytogenetic investigation of both the benign neoplasia and other malignant tumors. We also found that there was much discrepancy of chromosome aberrations between the functioning and non-functioning PAs. We identified the consistent gains of chromosomes X,7,8,12 and loss of chromosome 11,and also confirmed that the loss of chromosome 11 had marked correlations with the invasiveness of PAs. In addition,the structrure aberrations of chromosome 19 might participate the progression of PA,and might have some correlations with the recurrent of PA.
引文
1. Kovacs K, Horvath E Atlas of tumor pathology. Fascile 21,II series, AFPI, Washington 1986.
    2. Molitch ME, Russell EJ. The pituitary incidentaloma. Ann Intern Med,1990,112:925-931.
    3. Kovacs K, Scheithauer BW, Horvath E, et al The World Health Organization classification of adenohypophysial neoplasms: a proposed five-tier scheme. Cancer,1996,78:502-510
    4. 俞文华,惠国桢,施达仁等,PCNA、P53、 nm-23H1蛋白表达与垂体腺瘤生物学行为的关系,中华神经外科杂志, P53,nm-23
    5. Asa SL, Ezzat SZ. The cytogenesis and pathogenesis of pituitary adenomas. Endocrl Rev, 1998,19:798-827.
    6. Larsen JB, Schroder HD, Sorensen AG, et al Simple numerical chromosome aberrations characterize pituitary adenomas. Cancer Genet Cytogenet, 1999,114: 144-149.
    7. Molith ME. Pathogenesis of pituitary tumors. Endocrinol Metab Clin North Am 1987,16:503-527.
    8. Landis CA, Harsh G, Lyons J, et al. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab, 1990,71:1416-1420.
    9. Alexander JM, Biller BMK, Bikkal H, et al. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest, 1990,86. 336-340.
    10. Gicquel C, Bouc LY, Luton J-P, et al. Monoclonality of corticotroph macroadenomas in Cushing's disease. J Clin Endocrinol Metab, 1992, 75:472-475.
    11. Herman V, Fagin J, Gonsky R, et al. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab, 1990,71:1427-1433.
    12. Jacoby LB, Hedley-White ET, Seizinger BR, et al. Clonal origin of pituitary adenomas. J Neurosurg, 1990,73:731-735.
    
    
    13. Shimon I, Melmed S. Genetic basis of endocrine disease pituitary tumor pathogenesis. J Clin Endocrinol Metab, 1997,82:1675-1681.
    14. Fearon ER, Vogelstein. A genetic model for colorectal tumorigenesis. Cell, 1990,61:759-767.
    15. Herman-Bonert V, Fagin J. Molecular pathpgenesis of pituitary tumors. In:Fagin J. Pituitary tumors. Bailliere's clinical endocrinology and metabolism. London: Bailliere Tindall, 1995:203-205.
    16. Rey JA. Bello MJ,de Campos JM, et al A case of pituitary adenoma with 58 chromsomes. Cancer Genet Cytogenet, 1986,23:171-174.
    17. Capra E, Rindi G, Santi G, et al. Chromosome abnormalities in a case of a pituitary adenoma. Cancer Genet Cytogenet, 1993,68:118-121.
    18. Dietrich CU, Pandis N, Bjerre P, et al Simple numerical chromosome aberrations in two pituitary adenomas. Cancer Genet Cytogenet 1999,114:144-149.
    19. Papi L, Baldassarri G, Montalli E, et al Cytogenetic studies in sporsdic and multiple endocrine neoplasia type 1 associated pituitary adenomas. Genes Chrom Cancer, 1993,7:63-65.
    20. Rock J, Babu R, Drumheller T, et al Cytogenetic findings in pituitary adenoma: results of a pilot study. Surg Neurol, 1993,41:224-229.
    21. Capra E, Scappaticci S, Spina M. Chromosome abnormalities in tumor and lymphocyte cultures from patients with pituitary adenomas. Cancer Genet Cytogenet, 1995,84:89.
    22. Bettio D, Rizzi N, Giardino D, et al Cytogenetic study of pituitary adenomas. Cancer Genet Cytogenet, 1997,98:131-136.
    23. Finelli P, Ginrdio D, Rizzi N, et al Non-random trisomy of chromosomes 5,8 and 12 in the prolactinoma sub-type of pituitary adenomas: conventional cytogenetics and interphase FISH study. Int J Cancer, 2000,86:344-350.
    24. Buonamici L, Roncaroli F, Frank G, et al Cytogenetic analysis of hypophyseal adenoma. Study of 9 cases and review of literature. Pathologic, 1998, 90: 116-119.
    25. Metzger A, Mohapatra G, Minn Y, et al Multiple geneyic aberration including
    
    evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg, 1999,90:306-314.
    26. Pihan GA, Doxsey SJ. The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol, 1999,9:289-302.
    27. Sen S. Aneuploidy and cancer. Curr Opin Oncol,2000,12:82-88.
    28. Butler MG, Sciadini M, Hedges LK, et al Chromosome telomere integrity of human solid neoplasms. Cancer Genet Cytogenet, 1996,86:50-53.
    29. Li YS, Fan YS, Asmstrong RS. Endoreduplication and telomeric association in a choroids plexus carcinoma. Cancer Genet Cytogenet, 1996,87:7-10.
    30. Bello MJ, de Campos JM, Kusak ME, et al Chromosomal abnormalities in pituitary adenomas. Cancer Genet Cytogenet, 2001,124:76-79.
    31. Di Vinci A,Infusini E, Nigro S, et al Intratumor distribution of 1p deletions in human colorectal adenocarcinoma is commonly homogeneous: indirect evidence of early involvement in colorectal tumorigenesis. Cancer. 1998,83:415-22.
    32. 马文雄,惠国桢,徐庚达等,人脑垂体瘤染色体分析,中华医学遗传学杂志,1994,11: 270-273.
    33. Johansson B, Heim S, Mandahl N, et al Trisomy 7 in monopolistic cells. Genes Chromosome Cancer, 1993,6:199-205.
    34. Parad LA, Hallen M, Tranberg KG, et al Frequent rearrangement of chromosomes 1, 7 and 8 in primary liver cancer. Genes Chromosomes Cancer, 1998,23:26-35.
    35. Fejzo MS, Godfrey T, Chen C, et al Molecular cytogenetic analysis of consistent abnormalities at 8q12-q22 in breadt cancer. Genes Chromosomes Cancer, 1998,22:105-113.
    36. Bates AS, Farrell WE, Bicknell EJ, et al Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab, 1997,82(3) :818-824.
    37. Schlegel J, Scherthan H, Arens N, et al Detection of complex genetic alterations in human glioblastoma multiforme using comparative genomic hybridization. J
    
    Neuropathol, Exp, Neurol, 1996,55:81.
    38. Kallioniemi A, Kallioniemi OP, Citro G, et al Indentification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer, 1995,12:213.
    39. Schoenmarkes EFPM, Wanschura S, Mols R, et al Recurrent rearrangements in the high-mobility-group-protein gene, HMGI-C, in benign meserchymal tumors. Nrure Genet, 1995,10:436-444.
    40. Tanaka C, Yoshimoto K,Yang P, et al Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab, 1997,82:3141-3147.
    41. Daniely M, Aviran A, Adams E, et al Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab ,1997,83:1801-1805.
    42. Russell AJ, Sibbald J, Keith WN, et al Increase genome instability in adrenocortical carcinoma progression with involvement of chromosomes,9 and X at the denoma stage. Br J Cancer,1999,81:684-689.
    43. Thapar K, Kovacs K, Scheithauer BW. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MEB-1 antibody. Neurosurgery, 1996,38:99-107.
    44. Trautmann K, Thakker RV, Ellison DW, et al Chromosomal aberrations in sporadic pituitary tumours. Int J Cancer, 2001,91:809-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700