曲格列酮对体外培养的GH3细胞的影响及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂体腺瘤发病率高,约占颅内肿瘤的15%。大部分垂体腺瘤能分泌激素,如催乳素、生长激素,在催乳素细胞腺瘤和/或生长激素细胞腺瘤中,多巴胺受体激动剂和/或生长抑素大部分能有效地抑制催乳素或生长激素的分泌,并且能明显的抑制肿瘤生长或使肿瘤缩小。然而,一部分催乳素细胞腺瘤和生长激素细胞腺瘤患者对于这些药物治疗不敏感或呈耐受状态。无功能性垂体腺瘤也有很高的发病率,目前尚没有有效的药物治疗手段。因此,随着垂体腺瘤分子发病机理研究的深入,寻找合适的药物作用靶点、开发新的安全而有效的治疗药物,对于提高垂体腺瘤,尤其是无功能垂体腺瘤、巨大垂体腺瘤以及侵袭性垂体腺瘤的整体治疗水平至关重要。
     目的:本文研究PPAR-γ高亲和力配体——噻唑烷二酮类药物中的曲格列酮,对大鼠垂体腺瘤GH3细胞系的抗瘤作用,并初步的探讨其作用机制。
     方法:以GH3细胞为研究对象,将实验对象分为空白对照组、DMSO对照组、10~(-7)M曲格列酮组、10~(-6)M曲格列酮组、10~(-5)M曲格列酮组。在药物干预后5d内,用MTT法连续检测各组GH3细胞的增殖抑制率;在药物干预前及干预后3d内,用放射免疫法连续测定各组GH3细胞的上清液的PRL量;在药物干预后72h,用流式细胞技术检测各组GH3细胞周期的变化,用免疫组化法检测各组PCNA蛋白表达,用RT-PCR方法检测各组Survivin、Cyclin D_1、Caspase3基因mRNA表达。结果: MTT实验显示,GH3细胞在曲格列酮干预下,随着药物作用时间的延长,药物浓度的增加,GH3细胞增殖抑制率进行性增加,尤其在药物作用后72h,各干预组与DMSO对照组的GH3增殖抑制率比较有显著的差
Pituitary adenomas acount for approximately 15% of intracranial tumors. Some pituitary tumors secret hormone such as prolactin and growth hormone, and in most of these PRL- and GH-secreting pituitary adenomas, dopamine agonists and /or somatostatin analogues effectively suppress PRL and GH hypersecretion, respectively and control tumor growth or induce tumor shrinkage. Nevertheless ,a subset of patients with PRL- and GH-secreting pituitary adenomas do not respond to or are intolerant of these drugs. Non-functioning pituitary adenomas are general macroadenomas and cause significant morbidity and ultimately mortality. No effective drug therapies for nonfunctioning pituitary adenomas currently exist. Therefore, with the thorough development of research on molecular pathogenesis of pituitary adenomas. It’s essential to search suitable target of drug action and exploit novel, safe and effective drug for pituitary adenomas, which can enhance the curative effect of pituitary adenomas, especially nonfunctioning pituitary adenomas, macro-pituitary adenomas and invasive pituitary adenomas.
     Objective
     To study the antitumor effects of thiazolidinedione compounds—troglitazone, which is a strong affinity ligand of peroxisome proliferrator- activated receptor–γ, on rat pituitary adenomas GH3 cell line in culture and explore the mechanisms for this antitumor effects preliminarily.
     Methods
引文
[1] 任祖渊.垂体腺瘤[M].见:王忠诚主编.神经外科学,武汉:湖北科学技术出版社,1998:489-520.
    [2] Ciric I. Ragin A. Baumgartner C et al. The transsphenoidal surgery: A historical perspective[J]. Neurosurg Focus, 2005, 18(4):1-4.
    [3] Mary LV. Treatment of patients with a pituitary adenoma: one clinican’s experience[J]. Neurosurg Focus, 2004, 16(4):1-6.
    [4] Thomas CW. Stereotactic radiosurgery for pituitary adenoma[J]. Neurosurg Focus, 2003, 14(5):1-12.
    [5] Freda PU. Wardlaw SL. Diagnosis and treatment of pituitary tumors[J]. J Clin Endocrinol Metab. 1999, 84: 3859-66.
    [6] James KL. William TC. Comtemporary management of prolactinomas[J]. Neurosurg Focus, 2004, 16(4):7-17.
    [7] Nobel FR. The long-term treatment with the dopamine agonist quinagolide of patients with clinical nonfunctioning pituitary adenoma. Eur J Endocrinol. 2000, 143: 615-21.
    [8] Schmidt A. Endo N. Rutledge SJ. et al. Identification of a new member of the steroid receptor superfamily that is activated by a peroxisome proliferators and fatty acid[J]. Mol Endocrinol.1992,6:1634-41.
    [9] Hu E. Kim JB. Sarraf P et al. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma[J]. Science,1996,274 (5295):2100-3.
    [10] Wahli W. Braissant O. Desvergne B. Peroxisome proliferators activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more…[J].Chem Biol,1995,2(5):261-6.
    [11] Camp HS. Tafuri SR. Leff T et al. c-jun N-terminal kinase phosphorylates pesoxisome proliferators-activated receptor-gamma and negatively regulates its transcriptional activity[J]. Endocrinology,1999,140(1):392-97.
    [12] Bogazzi F, Ultimieri F, Raggi F et al. PPAR gamma inhibits GH synthesis and secretion and increase apoptosis pituitary GH-secreting adnomas[J]. Eur J Endocrinol, 2004;150(6):863-75.
    [13] Heaney AP. Novel Pituitary Ligands: Peroxisome Proliferator Activating Receptor-gamma[J]. Pituitary; 2003; 6,(3):153-159.
    [14] Lehmann JM. Moore LB. Smith-Oliver TA et al. An antidiabetic thiazolidinedione is a high affinity ligand for pesoxisome proliferators-activated receptor gamma(PPAR gamma) [J]. J Bio Chem,1995,270(22):12953-6.
    [15] Mitchner NA. Garlick C. Steinmetz RW et al. Differential regulation and action of estrogen receptors alpha and beta in GH3 cells[J]. Endocrinology, 1999, 140:2651-8.
    [16] Heaney AP. Melmed S. Molecular pathogenesis of pituitary tumors[M]. In oxford texbook of endocrinology. J a.h Wass and SM Shalet. Editors. Oxford University Press. Oxford. United Kingdom.2002.2:109-20.
    [17] Yu J. Qiao L. Zimmermann L et al. Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo[J]. Hepatology. 2006 ;43(1):134-43.
    [18] Elstner E. Muller C. Koshizuka K et al. Ligands for pesoxisome proliferators-activated receptor gamma and retinoid acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice[J]. Proc Nati Acad Sci USA,1998,95(15):8806-11.
    [19] ZanderT. Kraus JA. Grommes C et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPAR gamma[J]. J Neurochem,2002,81(5): 1052-60.
    [20] Radrigo B. Rainer F. Patricia A et al. Cyclin/PCNA is the auxiliary protein of DNA polymerase S[J]. Nature, 1987,326:515-20.
    [21] Atkin SL. Green VL. Hipkin LJ et al. A comparison of proleferation indices in human anterior pituitary adenomas using formalin-fixed tissue and in vitro cell culture[J]. J Neurosurg. 1997,87(1):85.
    [22] 沈哓黎,舒凯,万锋等. PCNA、CD34 与 bcl-2 在垂体腺瘤中的表达与生物学行为相关性研究[J].中华神经外科疾病研究杂志.2004, 3(6):485-8.
    [23] Hanahan D, Weinberg RA. The hallmarkers of cancer. Cell, 2000, 100:57-70.
    [24] Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Can, 2001,1:222-31.
    [25] Murray AW. Recycling the cell cycle: cyclins revisited. Cell, 2004,116:221-34.
    [26] Jung YJ, Lee KH, Choi DW et al. Reciprocal expressions of cyclinE and cyclin D1 in hepatocellular carcinoma. Cancer Lett, 2001,10:57-63.
    [27] 李锋, 陈临溪. 细胞周期蛋白 D 与细胞周期调控研究进展[J]. 国际病理科学与临床杂志,2005;25(3):270-3.
    [28] 张伟. 杜成友. 徐尔侃. 肝癌临床发展与 cyclin D1 表达 DNA 含量及细胞凋亡发生的关系[J]. 第三军医大学学报, 2005;27(5):467-8.
    [29] 孙宝华, 武忠弼, 阮幼冰等. 肝细胞癌 mdm2基因表达及其与 p53 基因突变的关系[J]. 世界华人消化杂志.1999;7:291-4.
    [30] Iolascon A, Giordani L, Moretti A et al. Analysis of CDKN2A, CDKN2B, CDKN2C, and cyclin Ds gene status in hepatoblastoma[J]. Hepatology, 1998;27: 989-95.
    [31] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001,411:1017-21.
    [32] Kao GD. Mckenna WG. Maity A et al. Cyclin availability is a rate-limiting component of the radiation-induced G2 delay in Hela cells[J]. Cancer Res. 1997; 57:753-8.
    [33] Musat M, Vax VV, Borboli N, et al. Cell cycle dysregulation in pituitary oncogenesis [J]. Front Horm Res. 2004;32:34-62.
    [34] Weinberg RA. How cancer arises[J]. Sci am. 1996,9:32.
    [35] Garcia TI. Kicote M. Ruiz A et al. Cell Cycle Control Related Proteins (p53, p21, and Rb) and Transforming Growth Factor beta (TGFbeta) in Benign and Carcinomatous (In Situ and Infiltrating) Human Breast: Implications in Malignant Transformations [J]. Cancer Invest. 2006;24(2):119-25.
    [36] Marx J. How cell cycle towards cancer[J]. Science, 1994; 263:319.
    [37] Zhang X, Gregory A, Horwitz et al. Structure, expression, and function of human pituitary tumor transforming gene[J]. Mol Endocrinol, 1999,13:156-166.
    [38] Yoshino A, Katayama Y, Fukushima T et al. Telomerase activity in pituitary adenomas: significance of telomerase expression in predicting pituitary adenoma recurrence. [J]. J Neurooncol. 2003;63(2):155-62.
    [39] Henschel SJ. Mccutcheon E. Moore W, et al. P53 and MIB-1 immunohistochemistry as predictors of the clinical behavior of nonfunctioning pituitary adenomas [J]. Can J Neurol Sci. 2003;30(3):215-9.
    [40] Ozer E. Canda MS. Ulukus C, et al. Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. [J]. Tumori. 2003 ;89(1):54-9.
    [41] Oliveira MC, Marroni CP, Pizarro CB, et al. Expression of p53 protein in pituitary adenomas [J]. Braz J Med Biol Res. 2002 ;35(5):561-5.
    [42] Altiok S. Xu M. Spiegelman BM. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via downregulation of PP2A[J]. Genes Dev,1997,11:1987-88.
    [43] Sato H. Ishihara S. Kawashima K et al. Expression of peroxisome proliferator activating receptor(PPAR) gamma in gastric cancer and inhibitory effects of PPAR gamma agonists[J]. Br J Cancer,2000,83(10):1394-400.
    [44] Wang C. Fu MD. Amico M et al. Inhibition of cellular proliferation through kappa-B kinase-independent and pesoxisome proliferators-activated receptor gamma-dependent repression of cyclinD1[J]. Mol Cell Biol,2001,21(9):3057-70.
    [45] Sawai H. Liu J. Reber HA et al. Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. [J]. Mol Cancer Res. 2006;4(3):159-67.
    [46] Lodillisky C. Umerez MS. Jsanis MA et al. Bacillus Calmette-Guerin induces the expression of peroxisome proliferator-activated receptor gamma in bladder cancer cells [J]. Int J Mol Med. 2006;17(2):269-73.
    [47] Wang T. Xu J. Yu X et al. Peroxisome proliferator-activated receptor gamma in malignant diseases [J]. Crit Rev Oncol Hematol. 2006;58(1):1-14.
    [48] Kitamera S. Miyazaki Y. Schinomura Y et al. Pesoxisome proliferators-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells[J]. Jpan J Cancer Res,1999,90(1):75-80.
    [49] Zhu L. Gong B. Bisgaier CL et al. Induction of PPAR gamma expression in human THP-1 monocytic leukemia cells by 9-cis retinoic acid is associated with celluar growth suppression[J]. Biochem Biophys Res Commun, 1998, 251 (3): 842-8.
    [50] Chang TH. Szabo E. Induction of differentiation and apoptosis by ligands of pesoxisome proliferators-activated receptor gamma in non-small cell lung cancer[J]. Cancer Res,2000,60(4):1129-38.
    [51] Takahashi N. Okumura T. Motomura W et al. Activation of PPAR gamma inhibits cell growth and induces apoptosis in human gastric cancer cells[J]. FEBS Lett,1999,455(1-2):135-9.
    [52] Shao D. Lazar MA. Pesoxisome proliferators-activated receptor-gamma, CCAAT/enhancer-binding protein alpha and cell cycle status regulate the commitment to adipocyte differentiation[J]. J Biol Chem. 1997;272 (34): 21473-78.
    [53] Tontonoz P. Hu E. Graves RA et al. PPAR-gamma2: tissue-specific regulator of an adipocyte enhancer[J]. Genes Dev,1994,8:1224-34.
    [54] Aubert J. Champigny O. Saint-Marc GM et al. Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells[J]. Biochem Biophys Res Commun. 1997; 238(2):606-11.
    [55] Motomura W. Okumura T. Takahashi N et al. Activatian of pesoxisome proliferators-activated receptor gamma by troglitazone inhibits cell growth through the increase of P27kpil in human pancreatic carcinoma cells[J]. Cancer Res.2000,60:5558-64.
    [56] Jiang C. Ting AT. Seed B. PPAR gamma agonists inhibit production of monocyte inflammator cytokines[J]. Nature. 1998;391(6662):82-6.
    [57] Jeffrey A. Brockman. Rajnish A. Activation of PPAR gamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells[J]. Gastroenrology. 1998;115:1049-55.
    [58] Elstner E. Muller C. Koshizuka K et al. Ligands for pesoxisome proliferators-activated receptor gamma and retinoid acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice[J]. Proc Nati Acad Sci USA,1998,95(15):8806-11.
    [59] Chang TH. Szabo E. Induction of differentiation and apoptosis by ligands of pesoxisome proliferators-activated receptor gamma in non-small cell lung cancer[J]. Cancer Res,2000,60(4):1129-38.
    [60] Xin X. Yang S. Kowalski J et al. Pesoxisome proliferators-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo[J]. J Biol Chem. 1999; 274(13):9116-21.
    [61] Muzio M, Chinnaiyan AM, Kischkel FC et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95(Fas/APO-1) death signaling complex. Cell, 1996,85:817-27.
    [62] Adida C, Crotty PL, Mograth J,et al. Developmentally regulated expression of the novel cancer antiapoptosis gene suevivin in human and mouse differentiation[J]. Am J Pathol,1998,152(1):43 49.
    [63] Suzuki A,Ito T, Kawano H, et al. Survivin initiates ptrocapase3/P21 complex formation as a result of interaction with CDK4 to resist Fas-mediated cell death.[J]. Oncogene, 2000, 19(10): 1346-1353.
    [64] Chang TH. Szabo E. Induction of differentiation and apoptosis by ligands of pesoxisome proliferators-activated receptor gamma in non-small cell lung cancer[J]. Cancer Res,2000,60(4):1129-38.
    [65] Asou H. Verbeek W. Williamson E et al. Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activating receptor-gamma, and retinoids[J]. Int J Oncol,1999,15(5):1027-31.
    [66] Sato H. Ishihara S. Kawashima K et al. Expression of peroxisome proliferator activating receptor(PPAR) gamma in gastric cancer and inhibitoryeffects of PPAR gamma agonists[J]. Br J Cancer,2000,83(10):1394-400.
    [1] Schmidt A. Endo N. Rutledge SJ. et al. Identification of a new member of the steroid receptor superfamily that is activated by a peroxisome proliferators and fatty acid[J]. Mol Endocrinol.1992,6:1634-41.
    [2] Wahli W. Braissant O. Desvergne B. Peroxisome proliferators activatedreceptors: transcriptional regulators of adipogenesis, lipid metabolism and more…[J].Chem Biol,1995,2(5):261-6.
    [3] Kliewer SA. Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoid acid and peroxisome proliferators signaling pathway through heterodimer formation of their receptors[J]. Nature(Lond),1992,358:771-4.
    [4] Leblanc BP. Stunnenberg HG.. 9-cis retinoic acid signaling: changing partners causes some excitement[J]. Gene Dev,1995,9(15):1811-6.
    [5] Mukherjee R. Jow L. Croston GE et al. Identification, characterization and tissue distribution of human pesoxisome proliferator activated receptor (PPAR) isoforms PPAR gamma2 versus PPAR gamma1 and activation with retinoid X receptor agonists and antagonists[J]. J Biol Chem,1997,272(12):8071-6.
    [6] Tontonoz P. Hu E. Graves RA et al. PPAR-gamma2: tissue-specific regulator of an adipocyte enhancer[J]. Genes Dev,1994,8:1224-34.
    [7] Shao D. Lazar MA. Pesoxisome proliferators-activated receptor-gamma, CCAAT/enhancer-binding protein alpha and cell cycle status regulate the commitment to adipocyte differentiation[J]. J Biol Chem. 1997;272(34):21473-78.
    [8] Sears I. Macginnitie MA. Kovacs LG et al. Differentiation dependent expression of the brown adipocyte uncoupling protein gene:regulation by pesoxisome proliferators-activated receptor-gamma[J]. Mol Cell Biol,1996,16(7):3410-19.
    [9] Chinetti G. Griglio S. Antonucci M et al. Activation of pesoxisome proliferators-activated receptor alpha and gamma induces apoptosis of human monocyte-derived macrophages[J]. J Biol Chem.1998,273(40):25573-80.
    [10] Altiok S. Xu M. Spiegelman BM. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via downregulation of PP2A[J]. Genes Dev,1997,11:1987-88.
    [11] Brockman TA. Gupta RA. Dubois RN. Activation of PPAR gamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells[J]. Gastroenterology,1998,115:1049-55.
    [12] Tontonoz P. Singer S. Forman BM et al. Terminal differentiation of human liposarcoma cells induced by ligands for pesoxisome proliferators-activated receptorγ and the retinoid X receptor[J]. Proc Natl Acad Sci USA, 1997,94:237-41.
    [13] Wang C. Fu MD. Amico M et al. Inhibition of cellular proliferation through kappa-B kinase-independent and pesoxisome proliferators-activated receptor gamma-dependent repression of cyclinD1[J]. Mol Cell Biol,2001,21(9):3057-70.
    [14] Xu HE. Lambert MH. Montana VG et al. Molecular recognition of fatty acids by pesoxisome proliferators-activated receptors[J]. Mol Cell,1999,3:397-403.
    [15] Lehmann JM. Moore LB. Smith-Oliver TA et al. An antidiabetic thiazolidinedione is a high affinity ligand for pesoxisome proliferators-activated receptor gamma(PPAR gamma) [J]. J Bio Chem,1995,270(22):12953-6.
    [16] Berger J. Leibowita MD. Doebber TW et al. Novel pesoxisome proliferators-activated receptor gamma and PPAR delta ligands produce distinct biological effects[J]. J Biol Chem,1999,274(10):6718-25.
    [17] Heaney AP. Novel Pituitary Ligands: Peroxisome Proliferator Activating Receptor-gamma[J]. Pituitary; 2003; 6,(3):153-159.
    [18] Bogazzi F, Ultimieri F, Raggi F et al. PPAR gamma inhibits GH synthesis and secretion and increase apoptosis pituitary GH-secreting adnomas[J]. Eur J Endocrinol, 2004;150(6):863-75.
    [19] Gruszka A, Kunert-Radek J, Pawlikowski M et al. Rosiglitazone, PPAR gamma receptor ligand, decreases the viability of rat prolactin-secreting pituitary tumor cells in vitro[J]. Neuro Endocrinol Lett. 2005;26(1):51-4.
    [20] Hull SS, Sheridan B, Atkinson AB. Pre-operative medical therapy with rosiglitazone in two patients with newly diagnosed pituitary-dependant Cushing’s syndrome[J]. Clin Endocrinol.2005;62(2):259-61.
    [21] Ambrosi BM, Dall A, Asta C et al. Effects of chronic administration of PPAR gamma ligand rosiglitazone in Cushing’s disease[J]. Eur J Endocrinol, 2004;151(2):173-8.
    [22] Cannavo S, Arosio M, Almoto B et al. Effectiveness of long-term rosiglitazone administration in patients with Cushing’s disease[J]. Clin Endocrinol. 2005;63(1):116-20.
    [23] Suri D, Weiss RE. Effect of pioglitazone on ACTH and cortisol secretion in Cushing’s disease[J]. J Clin Endocrinol Metab;2005,90:1340-6.
    1. Scheithauer BW, Kovacs KT, Laws ER, et al. Pathology of invasive pituitary tumors with reference to functional classification[J]. J Neurosurg, 1986,65:733-738.
    2. Thapar K, kovacs KT, Scheithauer BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas, an analysis of using the MIB-I antibody[J]. Neurosurgery, 1996,38(1):99-107.
    3. Luo CB, Teng MM, Chen SS, et al. Imaging of invasiveness of pituitaryadenomas [J]. Kao Hsiung I Hsueh Tsa Chih, 2000,16(1):26-32.
    4. Saeki N, Iuchi T, Isonos S, et.al. MRI of growth hormone-secreting pituitary adenomas: factors determining pretreatment hormone levels[J]. Neuroradiology, 1999.41(10):765-771.
    5. Scotti G, Yu CY, Dillon WP et al. MR Imaging of cavernous sinus involvement by pituitary adenomas[J]. AJR, 1988,151(4):799-806.
    6. Metzger AK,Mohapatra G,Minn YA,et al. Multiple genetic aberrations: including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization[J]. J Neurosurg, 1999, 90(2):306-314.
    7. Pei L, Melmed S. Isolation and characterization of a PTTG[J]. Mol Endocrinol, 1997,11:433-441.
    8. Zhang X, Gregory A, Horwitz et al. Structure, expression, and function of human pituitary tumor transforming gene[J]. Mol Endocrinol, 1999,13:156-166.
    9. Cai WY, Joseph M, Alexander et al. Ras mutations in human prolactinomas and pituitary carcinomas[J]. J Clin Endocrinol Metab, 1994,78:89-93.
    10. Lioyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues[J]. Microsc Res Tech. 1997,39(2):168-175.
    11. Hamilton HB, David R, Ronald E et al. Inhibition of cellular growth and induction of apoptosis in pituitary adenoma cell lines by the protein kinase C inhibitor hypericin: potential therapeutic application[J]. J Neurosuerg, 1996, 85:329-334.
    12. Takino H, Herman V, Weiss M et al. Purine-binding factor(nm23) gene expression in pituitary tumors: Marker of adenoma invasiveness[J]. J Clin Endocrinol Metab 1995,80:1733-1738.
    13. Thapar K. Scherithauer BW. Kovacs K, et al. P53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions[J]. Neurosurgery, 1996,38(4):765-772.
    14. Nishi T. Coto T. Takeshima H, et al. Tissue factor expressed in pituitary adenoma cells contributes to the development of vascular events in pituitaryadenomas[J]. Cancer,1999,86(7):1354-1361.
    15. Liu WP, KUNISHIO Katsuzo, MATSUMOTO Yoshihito et al. Matrix metalloproteinase-2 expression in invasive pituitary adenomas [J]. Chin J Neurosurg Dis Res, 2003, 2(1):7-11.
    16. Koike K, Sakamoto Y, Sawada T et al. The production of CINC/gro, a member of the interleukin-8 family, in rat anterior pituitary gland[J]. Biochem Biophys Res Commun, 1994;202(1):161-167.
    17. Mastronardi L, Guiducci A, Spera C, et al. Ki-67 labeling index and invasiveness among anterior pituitary adenomas: analysis of 103 cases using the MIB-1 monoclonal antibody [J]. J Clin Pathol, 1999, 52: 107-111.
    18. Knosp E, Steiner E, Kitz K et al. Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings[J]. Neurosurgery, 1993, 33:610-618.
    19. Cottier JP, Destrieux C, Brunereau L, et al. Cavernous sinus invasion by pituitary adenomas, MR Imaging[J]. Radiology, 2000,215(2):463-469.
    20. Nakano T, Asano K, Tanaka M, et al. Use of 201TI SPECT for evaluation of biologic behavior in pituitary adenomas[J]. J Nucl Med 2001.42(4):575-578.
    21. Mohr G, Hardy J, Comtois R, et al. Surgical management of giant pituitary adenomas[J]. Can J Neurol Sci, 1990,17(1):62-66.
    22. Okudera H, Takemae T, Kobayashi S. Intraoperative computed tomographic scanning during transsphenoidal surgery: technical note[J]. Neurosurgery, 1993, 32(6):1041-1043.
    23. Kemink SAG, Gntenhurs JA, Vries JD, et, al. Management of Nelson’ syndrome: observation in fifteen patients[J]. Clin Endocrinol, 2001, 54(1):45-53.
    24、张纪、魏少波、许百男等.714 例垂体腺瘤的显微外科治疗及长期随访.中华神经外科杂志,1995,11(5):251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700