多功能传感器信号重构方法及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在科学试验工程应用中越来越多地采用多功能传感技术,这是因为和传统的传感器比较,它有很多优越性,如体积小、能耗低和功能灵活等,这些优点增加了测量系统判决和估计的精确性、稳健性以及在对抗环境下的生存能力。多功能传感器技术的迅猛发展,对信号处理理论和方法提出了新的要求。传统的信号重构技术已经不能满足多功能传感器发展的全部要求,诸如信号非线性、拟合精度和粗差处理等问题用经典的重构算法已经无法解决。为此,本文系统研究了非线性多功能传感器的信号重构问题,并提出了若干种解决上述问题的算法,旨在为多功能传感器的开发应用奠定理论和技术基础。
     在非线性多功能传感器的信号重构过程中,训练样本集不可避免地夹杂粗差数据。为了得到既有较强鲁棒性又有较高效率的估值,本文分别从抗差估计和粗差剔除两个层面给出了解决方案。其中抗差估计的研究又分为M估计法和抗差最小二乘法两部分。一方面,M估计法利用极大似然估计原理,对残差取1范数,抑制了离群数据对整体误差的影响,从而弥补了在实验数据存有奇异值情况下,最小二乘法重构误差较大的缺点。另一方面,抗差最小二乘估计通过等价权原理,把抗差估计与加权最小二乘结合在一起,因此在抵御粗差影响的同时保持了最小二乘法的优点。非线性信号重构的粗差抑制结果表明,无论是M估计法,还是抗差最小二乘法,都具有良好的抗差能力和收敛性。
     在粗差剔除研究中,分别将交叉验证法和F-S检验法用于粗差数据的定位、剔除和修复。其中,交叉验证法利用交叉验证原理和径向基神经网络对实验训练数据进行多次随机取样和重构检验,通过对重构结果的寻优处理,确定不含粗差数据的最优样本和系统模型。而F-S检验法考虑到传统粗差检验方法容易对高杠杆点和粗差点产生误判,因此在结合学生氏和外学生氏残差检验的基础上有效地区分了两者。定位粗差后,利用径向基神经网络拟合法重建粗差点,从而完成训练样本集的修复。仿真结果证实了交叉验证法和F-S检验法在粗差数据定位和修复中的有效性。
     针对传统最小二乘法全局拟合的局限性,本文将一种新型的数值算法,移动最小二乘法应用于非线性多功能传感器的信号重构。通过详细研究插值函数的构造方法及性质,合理地选取基函数和权函数,移动最小二乘法能够得到精确的信号重构值。另外,由于移动最小二乘法在对固定点的重构中将退化为传统最小二乘法,为了避免求解奇异方程,本文给出了改进算法。通过选取等价正交基函数,改进移动最小二乘法在避免奇异情况产生的同时,简化了信号重构的进程。
     为了检验非线性信号重构算法在实际应用中的效果,本文进行了盐油水溶液的浓度测量实验。实验选用四电极超声波多功能传感器,对不同含油率、含盐率和温度值的混合溶液进行了测量,并得到了电导率和超声波渡越时间的实测数据。最后,利用改进移动最小二乘法拟合实验数据,构造出了传感器的逆模型,实现了输入信号的重构。实验结果令人满意,证明了非线性传感器的信号重构算法在实际应用中的可行性。
In recent years, multifunctional sensing techniques have become pervasive and essential in particular engineering and science fields, which draw much more attention than traditional sensor. Since multifunctional sensors ensure the merits of small package, low consumption and smart function, they coherently improve the precision and stability of estimation and judgment for measurement system, moreover increase the exist probability in antagonistic environment. Consequently, the rapid development of multifunctional sensing technique brings many new requests to signal processing theories and methods. Since traditional signal reconstruction technologies can not solve the existing problem such as nonlinearity, regressing precision and gross error detection, this thesis systemically studies nonlinear signal reconstruction of multifunctional sensor and presents several practical strategies according to these problems inorder to prompt the further development and application of multifunctional sensors.
     In terms of actual situation that the training sample set of multifunctional sensor inevitably comprises gross error, our research presents robust estimation and gross error rejection strategies separately, which aim at achieving better robustness and higher efficiency in signal reconstruction. As one of robust estimation studies, M-estimator bases on maximum likelihood estimation theory. By calculating 1-morm of residual, this method can efficiently restrain the effect to whole errors caused by outliers, furthermore make up for the deficiency of Least Squares in case of experimental data comprising gross error. On the other hand, based on equivalent weight thought, Robust Least Squares algorithm combines Weighted Least Squares method and robust estimation to resist the effect of gross error and maintain the merits of traditional Least Squares. Emulation results show that both M-estimator and Robust Least Squares are provided with excellent robustness and convergency.
     In gross error detection and rejection study, Cross Validation and F-S test are brought forward. Therein, Cross Validation algorithm proceeds repeated random sampling and regresses the experimental data with Radial Basis Function neural network. Then optimal training data and systemic model are finally determined through optimizing above calculations. Additionally, for considering that traditional methods of gross error detection are easy to misjudge potential case and gross error, F-S test is founded upon the studentized residual and externally studentized to be capable of distinguishing these two cases efficiently. Thereafter, gross errors will be located and replaced with the estimations. Simulation results verify the wonderful validities of Cross Validation and F-S test algorithm in gross error detection and recovery aspect.
     A novel numerical solution method, Moving Least Squares is employed to solve nonlinear reconstruction of multi-functional sensor with a view that Least Squares is restricted in global regression. On the basis of construction method and characters of interpolated function, Moving Least Squares reasonably chooses basis and weight function, and then acquires the reconstructed value of input signals precisely. However, according to each single point, Moving Least Squares will degenerate to Least Squares method. In order to avoid the singular solution, this thesis proposes a modified algorithm, namely Improved Moving Least Squares. In terms of calculating the equivalent orthogonal basis function, this improved method prevents solving the singular functions and simplifies the reconstruction procedure simultaneously.
     For the purpose of verifying effectiveness of nonlinear signal reconstruction methods in practical model, the research proceeds a concentration measurement experiment of ternary solution. The multifunctional sensor integrated with four-electrode and ultrasonic sensitive material can obtain the information of mixed solution like oil content, salt content and temperature in different cases, and output corresponding signal as conductivity and transit time. Finally, Improved Moving Least Squares method is applied to regress the obtained data, and accomplishes the input signal reconstruction through establishing the inverse model of sensor. Experimental results are satisfying and definitely prove the feasibility of the proposed signal reconstruction method in practical application.
引文
1刘亮等.先进传感器及其应用.化学工业出版社,北京,2005:6~9
    2李德胜,王东红,孙金玮,金鹏.微机械电子(MEMS)系统技术.哈尔滨:哈工大出版社.2002.
    3 K. D. Schierbaum, U. Weimer, W. Gopel. Multicomponent gas analysis: An analytical chemistry approach applied to modified SnO2 sensors. Sensors and Actuators B: Chemical. 1990, 2(4): 71-78
    4 J. Sun, K. Shida. Multilayer sensing and aggregation approach to environmental perception with one multifunctional sensor. IEEE Sensors Journal. 2002, 2(2): 62-72
    5 J. J. Yu, K. Shida. New multifunctional tactile sensing technique by selective data processing. IEEE Transactions on Instrumentation and Measurement. 2000, 49(5): 1091-1094
    6孙金玮.多功能传感器信号重构及数据融合方法的研究.哈尔滨工业大学博士后研究工作报告.2002:1-7
    7 I. L. Syllaios, P. T. Balsara, O. E. Eliezer. A generalized signal reconstruction method for designing interpolation filters. ISCAS 2006: 21-24
    8 J. Kammerl, P. Hinterseer, E. Steinbach. A novel Ssgnal reconstruction algorithm for perception based data reduction in haptic signal communication. ICCCN 2007. (13-16): 1309-1314
    9周良臣,杨建宇,唐斌.基于信号重构和最小二乘的线性调频信号估计.电波科学学报.2007,22(2):261-265
    10 Y. Poberezhskiy, G. Poberezhskiy. Digital radios based on novel sampling and signal reconstruction techniques. MILCOM 2002. 2: 1012-1017
    11高峰,董海鹰,胡彦奎.基于BP神经网络的传感器交叉敏感性抑制.传感器技术.2005,24(2):22-23
    12 D. Misra, B. D. Wang. Elimination of cross sensitivity in a three-dimensional magnetic sensor. IEEE TRANSACTIONS ON ELECTRON DEVICES. 1994, 41(4):622-624
    13 T. Galonska, C. Senft, W. Widanarto, O. Senftleben,I. Eisele. Cross sensitivity and stability of FET-based hydrogen sensors. IEEE SENSORS2007 Conference. 2007: 1036-1039
    14张博,严高师,邓义君.光纤光栅传感器交叉敏感问题研究.应用光学.2007,28(5):614-618
    15 A. V. Legin, Y. G. Vlasov, A. M. Rudniskaya. Cross-sensitivity of chalcogenide glass sensors in solutions of heavy metal ions. Sensor and Actuators B. 1996, 334: 456-461
    16 T. T. Tsung, H. Chang, L. C. Chen, et al. Analysis of dynamic characteristics of pressure sensors using square pressure wave theory and system identification. Measurement Science and Technology. 2003, 14: 1927-1937
    17汤晓君,刘君华.交叉敏感情况下多传感器系统的动态特性研究.中国科学E辑.2005,35(1):85-105
    18魏广芬,唐祯安,陈正豪.气体传感器阵列信号的盲分离研究.高等学校化学学报.2006,27(1):55-57
    19 J. V. Stone. Blind Source Separation using temporal predictability. Neural Computation. 2001, 13(7): 1559-1574
    20 L. Zhang, S. Amari, A. Cichocki. Semiparametric model and super efficiency in blind deconvolution. Signal Processing. 2001, 81: 2535-2553
    21 A. Cobayashi. Measurement equations. J. of SICE. 27(8), 1988: 383-388
    22 F. lessandra, M. Daniele, T. Andrea. Application of an optimal Look–up Table to sensor data processing. IEEE Transactions on Instrumentation and Measurement. 1999, 48(4): 813-816
    23刘君华.智能传感器系统.西安电子科技大学出版社.1999,第1版.197-201
    24孙金玮,曾繁华.基于BSLA最小二乘法的多功能传感器信号重构传感技术学报.2003,15(3):267-271
    25孙金玮,王庆龙,周庆东.基于遗传算法的多功能传感器模型参数估计.哈尔滨工业大学学报.2004,36(3):286-289
    26孙金玮,刘昕,孙圣和.基于总体最小二乘的多功能传感器信号重构方法研究.电子学报.2004,32(3):391-394
    27何晓群等.应用回归分析.中国人民大学出版社.2001,第1版.208-209
    28 N. V. Kirianaki, S. Y. Yurish, N. O. Shpak, V. P. Deynega. Data acquisition and signal processing for smart sensors. 2006: 1-9
    29刘亮.先进传感器及其应用.化学工业出版社,2005:5-8
    30徐家强,张全法,范福玲.传感器技术.哈尔滨工业大学出版社,2004:160-162
    31王磊,马常霞,周庆.多传感器技术及其应用.国防工业出版社,2001:34-36
    32 J. Schmalzel, F. Figueroa, J. Morris. An architecture for intelligent systems based on smart sensors. Instrumentation and Measurement. 2005, 54(4): 1612-1616
    33 T. K. Hamrita, N. P. Kaluskar, K. L. Wolfe. Advances in smart sensor technology. Fourtieth IAS Annual Meeting. 2005, 3(2): 2059-2062
    34 Z. Chi, K. Shida. A single sensor for force vector measuring based on multi-functional sensing technique. Multisensor Fusion and Integration for Intelligent Systems. MFI2003. 2003: 197-202
    35 C. T. Wang, K. Shida. A Novel Multifunctional distributed optical fiber sensor based on attenuation. Instrumentation and Measurement Technology Conference. 2006: 2018-2023
    36 M. Woilitzer, J. Buchler, J. F. Luy, U. Start, J. Detlefsen. Multifunctional millimeter wave radar sensor for vehicle applications. Physics and Engineering of Millimeter and Submillimeter Waves. 1998, 1(15): 124-129
    37 D. M. Preethichandra, K. Shida. Actual condition monitoring of engine oil through an intelligent multi-functional sensing approach. Industrial Electronics Society. 2000, 4(22): 2383-2387
    38 T. Eftimov, W. J. Bock. An All-Fibre Optic Multifunctional sensor based on large-core quartz-polymer microlens-ended fiber pairs. Instrumentation and Measurement Technology Conference. 2005, 2(16):1182-1184
    39 H. P. Groll, J. Detlefsen, U. Siart. Multi-sensor-systems at mm-wave range for automotive applications. Radar, 2001 CIE International Conference. 2001, 21:150-153
    40 J. Sun, K. Shida. Multi-layered sensing approach for environment perception with one multifunctional sensor. Trans. IEE of Japan. 2000, 120-E(4): 162-168
    41李衍达,常炯.信号重构理论及其应用.清华大学出版社,1991:29-38
    42闫大桂,严尚安.工科研究生应用数据基础.高等教育出版社,2001:358-362
    43刑书珍.工程技术应用数学.中国铁道出版社,1996
    44靳奉祥.抗差估计理论与方法研究.山东科技大学学报(自然科学版).2003,22(4):1-6
    45谢开贵.最小一乘线性回归模型研究.系统仿真学报.2002,14:189-192
    46余学祥,徐绍铨,吕伟才.GPS监测网基准点位移及观测粗差的抗差估计方法.测绘通报.2002,(8):28-31
    47 Gang Zheng, Reza Modarres. A robust estimate of the correlation coefficient for bivariate normal distribution using ranked set sampling. Journal of Statistical Planning and Inference. 2006, 136(1): 298-309
    48杨世清,余学祥,吕伟才.粗差估值型抗差估计.武汉测绘科技大学学报.1998,23(1):10-13
    49龚庆武,钱峰,陈玉林,陈允平.基于抗差估计理论的输电线路故障定位新型算法.继电器.2004,32(20):13-16
    50 Sonia Hernández, Víctor J. Yohai. Combining locally and globally robust estimates for regression. Journal of Statistical Planning and Inference. 2003, 113(2): 33-661
    51 Bradley J. Bowland, John C. Beghin. Robust estimates of value of a statistical life for developing economies. Journal of Policy Modeling. 2001,23(4): 385-396
    52刘兰,黄彦全,李云飞,绍明.抗差估计法应用于状态估计中不良数据的检测和辨识.浙江电力.2006,(5):6-8
    53 Vladimir Katkovnik. Robust M-estimates of the frequency and amplitude of complex-valued harmonic. Signal Processing. 1999, 77(1): 71-84
    54宁永香,郝延锦.误差理论与抗差估计.煤炭技术.2001,20(1):52-54
    55 I. John, Marden. Some robust estimates of principal components. Statistics & Probability Letters. 1999, 43(4): 349-359
    56 Jiun-Hung Chen, Chu-Song Chen, Yong-Sheng Chen. Fast algorithm for robust template matching with M-estimators. IEEE Tran. On Instrumentation and Measurement.vo9.51.no.5.1994:492-496
    57 J. M. Muhammad, L. Kim, Boyer. Performance evaluation of a class of M-estimators for surface parameter estimation in noisy range data. IEEE Tran.On Instrumentation and Measurement. 1995, 6(13): 1937-1942
    58 Anjan Basu, K. K. Paliwal. Robust M-estimates and generalized M-estimates for autoregressive parameter estimation. IEEE Tran. On Instrumentation and Measurement. 1996, 2(23): 896-900
    59陈希孺.最小一乘线性回归(上).数理统计与管理.1989,(5):48-55
    60 Yuexian Zou, Shing-Chow Chan, Tung-Sang Ng. Least mean M-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Tran. On Instrumentation and Measurement. 1998, 3(4): 1406-1411
    61董建,谢开贵.基于最小一乘准则的非线性回归模型研究.重庆师范学院学报(自然科学版).2001,18(4):71-74
    62 S. C. A. Thomopoulos. Optimal decision fusion in multi-sensor systems. IEEE Trans.on AES, 1987, 22(9): 644-653
    63常兆光,王清河,宋岱才.随机数据处理方法.第2版.石油大学出版社,1997:162-185
    64 Paolo Pennacchi. Robust estimate of excitations in mechanical systems using M-estimators—Theoretical background and numerical applications. Journal of Sound and Vibration. 2008, 310(4): 923-946
    65王仁宏.数值逼近.高等教育出版社,2000:220-253
    66周江文.抗差最小二乘法.华中理工大学出版社,1997:104-106
    67李平,许厚泽.地球物理抗差估计和广义逆方法.地球物理学报.2000,43(2):232-239
    68 W. S. Ra, I. H. Whang, J. Y. Ahn, J. B. Park. Recursive robust least squares estimator for time-varying linear systems with a noise corrupted measurement matrix. IET Control Theory Appl. 2007, 1(1): 104-112
    69李浩军,唐诗华,黄杰.经典选权迭代法研究与两步抗差估计的提出.海洋测绘.2007,27(1):17-20
    70牛国军,陈芳.抗差估计(IGGI方案)在粗差探测中的应用.西部探矿工程.2005,8:64-66
    71 L. Lei, R. Q., Xu, G. P. Li. Robust Least Squares Method for sporadic eionospheric clutter mitigation in high frequency surface wave radar. Radar CIE '06. 2006: 1-4
    72 W. S. Ra, I. H. Whang. Recursive Weighted Robust Least Squares filter for frequency estimation. 2006: 774-778
    73 Long Zhao, Zhe Chen. Study on a Robust Least Squares, scene matching algorithm. Intelligent Control and Automation. 2006, 2(21): 9699-9702
    74汪杨凯,周良松,李艳.基于Fair函数的电力系统抗差估计.电力系统及其自动化学报.2006,18(3):86-88
    75 M. Zhang, C. H. Zhang, H. S. Zhang, P. Cui, Y. C. Du. Robust Least Square method and its application to parameter estimation. Automation and Logistics. 2007: 1483-1486
    76 W. S. Ra, I. H. Whang, J. Y. Ahn, J. B. Park. Recursive robust least squares estimator for time-varying linear systems with a noise corrupted measurement matrix. Control Theory & Applications. 2007, 1(1): 104-112
    77 G. L. El, H. Lebret. Robust least squares and applications. Decision and Control. 1996, 1(11): 249-254
    78陈再辉,路晓峰.基于自适应抗差最小二乘的DEM数据粗差剔除.海洋测绘.2006,26(6):15-17
    79王海颖,张毅,涂碧海等.基于抗差估计的激光测高数据处理.大气与环境光学学报,2007,2(3):227-230
    80 X. S. Gan, H. C. Zhang, Y. M. Cheng, C. Shi. Aerodynamic parameter fitting based on robust Least Squares Support Vector Machines. Software Engineering, Artificial Intelligence, Networking, and Parallel/ Distributed Computing. 2007, 2: 707-711
    81 L. W. Wei, Z. Y. Chen, J. P. Li. W. X. Xu. Sparse and robust least squares support vector machine: A linear programming formulation. Grey Systems and Intelligent Services. 2007:1134-1138
    82李响,刘玲群,郭志忠.抗差最小二乘法状态估计.继电器,2003,31(7):51-53
    83 L. K. Zhou, H. Y. Su, J. Chu. A modified outlier detection method in dynamic data reconciliation. Chinese J.Ch.E. 2005, 13(4): 542-547
    84 Y. F. Shi, F. X. Jin. An outlier recognition approach in surveying data based on information entropy. Journal of Coal Science & Engineering. 2003, 9(1): 100-103
    85 J. Zhang, Z. H. Sun. Constructing three-dimension space graph for outlier detection algorithms in data mining. Wuhan University Journal of Natural Sciences. 2004, 9(5): 585-589
    86黄幼才.数据探测与抗差估计.北京:测绘出版社,1988
    87李德仁.误差处理和可靠性理论.北京:测绘出版社,1988
    88 W. D. Sehuh. Transforming the ll_norm adjustmen to fA leveling network into a flow problem.1985: 32-35
    89陶本藻.自由网平差与变形分析.北京:测绘出版社,1984
    90陶本藻.稳健估计的应用问题.地矿测绘.2000,3
    91黄维彬.近代平差理论及其应用.北京:解放军出版社,1992
    92於宗俦,李明峰.多维粗差的同时定位与定值.武汉测绘科技大学学报.1996,21(4):323-329
    93宋力杰,杨元喜.论粗差修正与粗差剔除.测绘通报.1999,6
    94 K. Baumann. Cross-validation as the objective function for variable-selection techniques. Trends in Analytical Chemistry, 2003, 22: 395-406
    95 W. Wu, D. L. Massart, S. D. Jong. Kernel-PCA algorithms for wide data Part II: Fast cross-validation and application in classification of NIR data. Chemometrics and Intelligent Laboratory Systems, 1997, 37: 271-280
    96 Jeff Racine. Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. Journal of Econometrics. 2000, 99:39-61
    97 F. Yuan, Y. Zhao, X. Zhou. A deep web query interfaces classification method based on RBF neural network. Wuhan University Journal of National Sciences, 2007, 12: 825-829
    98 Z. T. Liu, S. M. Fei. Study of CNG/diesel dual fuel engine’s emissions by means of RBF neural network. Journal of Zhejiang University SCIENCE. 2004, 5(8): 960-965
    99 Z. H. Peng, J. Chen, L. J. Gao, T. T. Gao. Identification of TSS in the human genome based on a RBF Neural Network. International journal of Automation and Computing. 2006,1: 35-40
    100 X. C. Shi, C. L. Xie, Y. H. Wang. Nuclear power plant fault diagnosis based on genetic-RBF neural network. Journal of Marine Science and Application. 2006, 5: 57-62
    101韦博成等.统计诊断引论..南京:东南大学出版社,1991
    102王彤,何大卫.线性回归中多个异常点的诊断.中国卫生统计.1997,14:7-10
    103 S. R. Paul, K. Y. Fung. A generalized extreme studentized residual multiple-outlier-detection procedure in linear regression. Technometrics. 1991, 33: 339-348
    104 B. Derya, W. ?zyurt, Ralph. Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes. Computers & Chemical Engineering. 2004, 28(3): 381-402
    105 G. Rong, Y. P. Feng, X. R. Wang. An approach to gross error detection based on the residual of single node. Intelligen Sensors, Sensor Networks and Information Processing Conference. 2004: 217-222
    106魏凤荣.回归分析中离群点的作用与搜寻.中央民族大学学报(自然科学版).2000,9(2):108-114
    107 Gregory E. Fasshauer. Toward approximate moving least squares approximation with irregularly spaced centers. Comput Methods Appl Mech Engrg. 2004, 193: 1231-1243
    108 B. Nayroles, G.. Touzot, P. Villon. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics. 1992, 10: 307-319
    109 T. Belytschko, L. Gu, Y. Y. Liu. Fracture and crack growth by element-free Galerkin methods. Model Simul Master Sci Engrg. 1994, 2: 519-534
    110 P. Breitkopf, H. Naceur, A. Rassineux, P. Villon. Moving least squares response surface approximation: Formulation and metal forming applications. Computers and Structures. 2005, 83(17~18): 1411-1428
    111邵卫云,张雄.水泵水轮机全特性曲线的拟合—移动最小二乘近似.水力发电学报.2004,23(5):102-106
    112 R. Scitovski, S. Ungar, D. Jukic. Approximating surfaces by moving total least squares method. Applied Mathematics and Computation. 1998, 93: 219-732
    113 G. María Armentano, G. D. Ricardo. Error estimates for moving least square approximations. Applied Numerical Mathematics. 2001, 37: 397-416
    114 Carlos Zuppa. Good quality point sets and error estimates for moving least square approximations. Applied Numerical Mathematics. 2003, 47:575-585
    115嵇醒,臧跃龙,程玉民.边界元进展及通用程序.上海:同济大学出版社,1997
    116王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,1999
    117程玉民,陈美娟.弹性力学的边界无单元法.力学学报.2003.35(2):181-186
    118 Hiroshi Noguchi, Gerhard Gompper. Meshless membrane model based on the moving least-squares method. Physical Review. 2006, 73: 1-12
    119陈美娟,程玉民.改进的移动最小二乘法.力学季刊.2003,24(2):266-272
    120 G. M. Zhao, S. C. Song. Advances in implementation of essential boundary conditions for meshless methods. Bulletin of Science and Technology. 2005, 21(6): 645-650
    121 L. F. Wu, Y. S. Han, P. F. Guo. Moving Least Square meshless method. Journal of Liaoning Institute of Technology. 2005, 25(5): 321-323
    122 Y. M. Cheng, M. J. Peng, J. H. Li. The complex variable moving Least-Square approximation and its application. Chinese Journal of Theoretical and Applied Mechanics. 2005, 37(6): 719-723
    123朱秀琴.原油及其产品中盐含量的测定(等效采用IP77/72标准方法).石油化工腐蚀与防护.1985,2:70-73
    124张其耀.原油脱盐与蒸馏防腐.北京:中国石化出版社.1992:15-18
    125娄世松,周伟.胜利原油脱水技术研究.石油化工腐蚀与防护.2006,23(1):8-12
    126胡同亮,杨柯,马良军等.原油脱盐脱水研究进展.抚顺石油学院学报.2003,23(3):14
    127张乃禄,薛朝妹,徐竟天等.原油测量技术及其进展.石油工业技术监督.2005,11:25-28
    128寇拴虎,田金光,狄延琴.微库仑法测定原油盐含量影响因素的研究.延安大学学报(自然科学版).2005,24(2):61-63
    129中华人民共和国国家标准.原油氯盐含量测定法(电导法).Q/SYLS0132.2002
    130谢怀彪,吾买尔江,羊芳.高钙稠油脱钙污水中的钙含量电位测定法.新疆化工.2006,3:22-24
    131中华人民共和国国家标准.原油中水和沉淀物测定法(离心)UDC.GB6533-86.665.51:543
    132中华人民共和国国家标准.原油水含量测定法(蒸馏法)UDC.GB8929-88,665.51:543.96
    133赵雪英,李鹏,金喜平.原油含水率的测试方法.辽宁大学学报.2003,30(2):145-146
    134王国庆,张健.原油含水分析仪技术发展现状.油气田地面工程.2004,23(5):33-34
    135 X. J. Li, C. M. M. Gerard. A low-cost and accurate interface for four-electrode conductivity sensors. Instrumentation and Measurement. 2005, 54(6): 2433-3437
    136 H. Tian, Z. Y. Shang. Consistence and temperature dependence of Ultrasonic velocity in acetic acid-water mixtures. Journal of Shanxi Normal University (Natural Science Edition). 2003, 31(2): 40-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700