吹熄阻燃环氧树脂机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国阻燃工业在过去30年中获得快速发展,研究人员对于阻燃剂、阻燃材料和阻燃机理等方向的研究越来越深入和全面,并在国际相关领域扮演着更加重要和关键的角色。目前,随着人类对于环境保护和自身健康问题的关注,关于高效、廉价、成熟的含卤阻燃剂的应用遇到了无法解决的问题。因此,无卤阻燃剂的开发和应用目前已经成为了世界阻燃领域关注的焦点。
     本论文的选题是将9,10-二氢-9-氧杂-10-膦菲-10-氧杂(DOPO)和笼型低聚硅倍半氧烷(POSS)结合用于阻燃环氧树脂,以发挥磷、硅两种阻燃元素的协同作用。研究焦点包括:首先合成了一种新型无卤阻燃剂DOPO-POSS,并从DOPO-POSS阻燃环氧树脂所表现出的吹熄阻燃效应开始,对吹熄阻燃环氧树脂机理进行了详细研究,吹熄阻燃环氧树脂效应是环氧树脂在燃烧过程中快速形成炭层,在很短的时间内,开始有热解气体从炭层内部高速喷出,并熄灭残留火焰的现象。本文的研究为无卤阻燃环氧树脂的研究开辟了一个崭新的方向。
     (一)本论文以9,10-二氢-9-氧杂-10-膦菲-10-氧杂(DOPO)和VTES(乙烯基三乙氧基硅烷)为原料,通过两步法成功合成了含有DOPO基团的笼型低聚硅倍半氧烷DOPO-POSS。该物质及其合成方法已经获得专利授权。将DOPO-POSS作为一种新型阻燃剂应用于阻燃环氧树脂时发现了吹熄阻燃效应,基于这种吹熄效应,硅、磷阻燃元素的阻燃效率可以显著提高。为了对吹熄阻燃环氧树脂机理进行详细研究,作者将所在实验室合成的八苯基笼型低聚硅倍半氧烷(OPS)、八氨苯基笼型低聚硅倍半氧烷(OAPS)、梯型聚苯基硅倍半氧烷(PPSQ)等硅倍半氧烷系列阻燃剂单独或与DOPO复配用于阻燃环氧树脂。
     研究发现,虽然OAPS可以与环氧树脂单体进行反应,但它与非反应型的OPS相比,并没有表现出特殊的阻燃性质,它们与DOPO复合使用都可以使该种环氧树脂出现吹熄阻燃效应,相比较而言,OPS具有更高的阻燃效率,更有益于吹熄阻燃效应的发生。笼型的OPS和OAPS都可以使环氧树脂出现吹熄阻燃效应,但是含有梯型PPSQ的环氧树脂中却没有吹熄现象发生。这是因为由PPSQ所引起的交联结构和成炭的过程不能与环氧树脂本身的炭层膨胀过程相匹配,所以导致其炭层多为破裂炭层。这样的炭层不能聚集热解气体,所以该体系中没有吹熄效应出现。而由OPS引起的交联结构和成炭的过程却与EP炭层的膨胀过程很好的匹配,该结果说明,只有当炭层强度与热分解气体释放速率相匹配时,才能发挥最好的吹熄阻燃效果。
     (二)本论文研究所涉及的环氧树脂单体包括双酚A二缩水甘油醚(DGEBA)和四缩水甘油基-4,4’-二氨基二苯甲烷(TGDDM),所涉及的固化剂包括芳香族固化剂4,4-二氨基二苯基砜(DDS)、间苯二胺(m-PDA)和脂肪族固化剂低分子量聚酰胺(PA650)。在DGEBA/m-PDA、DGEBA/DDS、TGDDM/DDS环氧树脂体系中发现了吹熄阻燃效应,而DGEBA/PA650体系中,吹熄效应却始终没有出现。这说明环氧树脂单体和固化剂的结构对吹熄阻燃效应有很大影响。通过对比DGEBA/DDS和DGEBA/PA650两种环氧树脂的交联网络结构与吹熄阻燃效应的关系,发现含有较多芳香链段的环氧树脂体系更有利于形成吹熄阻燃效应。因为在这样的环氧体系中,更容易快速形成高强度的交联炭层,这一炭层可以聚集热分解气体并最终形成吹熄效应。
     在TGDDM/DDS环氧树脂中,发现了最为典型的吹熄阻燃效应。DOPO-POSS和OPS/DOPO都可以使该环氧树脂表现出突出的吹熄阻燃效应,并使该环氧树脂体系获得优异的阻燃效果。UL-94垂直燃烧结果显示它们都可以使该环氧树脂达到UL-94V-0级。OPS/DOPO阻燃的TGDDM/DDS环氧树脂在凝聚相中出现了蜂窝状膨胀炭层,而且炭层中含有大尺寸空腔,这样的结构使OPS/DOPO阻燃的TGDDM/DDS环氧树脂表现出了更强的吹熄阻燃效应。
     (三)本论文采用热重分析-傅里叶红联用(TGA-FTIR)、热重分析-质谱联用(TGA-MS)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、扫描电镜(SEM)、热重分析仪(TGA)、示差扫描量热仪(DSC)、傅里叶红外光谱仪(FTIR)、应力流变仪等测试手段对阻燃材料及其燃烧产物(气相和凝聚相)进行定性或定量分析。采用锥型量热法(cone calorimeter)、极限氧指数法(LOI)和垂直燃烧法(UL-94)等方法对阻燃材料进行阻燃性能和燃烧过程进行分析研究。除了采用以上常规测试手段和实验方法外,为了研究吹熄阻燃效应的阻燃机理,作者在本文第5章中采用了自己设计的两种实验方法对吹熄阻燃环氧树脂效应进行了研究。第一种方法是对环氧树脂在锥形量热测试燃烧过程中不同时间和不同位置的炭层进行了取样和研究,通过分析这些炭层样品,我们基本掌握了纯环氧树脂及阻燃环氧树脂在燃烧过程中外部、内部和底部炭层的化学结构变化和阻燃元素含量变化情况。第二种方法是将热电偶固化在环氧树脂中,该方法使我们掌握了普通环氧树脂和吹熄阻燃环氧树脂在UL-94垂直燃烧过程中的凝聚相温度的变化情况。这两种实验方法为吹熄阻燃机理的研究提供了不可或缺的数据和材料,文中所采用的测试手段及实验方法详见各章实验部分。
     (四)本论文中所涉及的吹熄阻燃环氧树脂机理研究包括:
     (1)采用自己设计的实验方法对纯环氧树脂(EP)及阻燃环氧树脂在燃烧过程中外部、内部和底部炭层的化学结构变化进行分析,证明燃烧是由于样品表面链段断裂释放的可燃挥发物被点燃造成的。随后,EP内部的基质开始分解并不断向外表面补充可燃性挥发物来维持燃烧,同时,外部炭层中开始发生交联反应。此时,如果炭层能够聚集热解气体,则可促使吹熄阻燃效应的发生。而如果不能形成有效炭层,随着EP基材热降解反应的加速,更多的可燃性挥发物将会迁移到表面,在此时样品将达到轰燃状态。FTIR,XPS等分析结果显示,DOPO与POSS共同使用可以在凝聚相中生成-P(=O)-O-Si-结构,该结构可以作为连接桥将三维Si(-O)4网络与稠环芳烃相连接,促使燃烧区域快速形成有效炭层结构。在垂直燃烧过程中,此炭层在点燃过程中就可以快速形成,聚集内部的热分解气体,并最终促使吹熄阻燃效应形成。
     (2)通过SEM、应力流变仪、视频分析等手段以及对环氧树脂样品燃烧过程的凝聚相产物进行分析,发现具有吹熄阻燃效应的环氧样品燃烧时都可以快速形成有效炭层,并且炭层中存在大尺寸的空腔,这种空腔将有助于聚集热分解气体。当空腔中充满热分解气体时,整个空腔可以作为气体隔层来阻碍热量的传播。当气压达到一定程度并可以冲破炭层时的时候,吹熄阻燃效应将会发生。
     (3)采用将热电偶植入环氧树脂的实验方法对环氧树脂燃烧过程中的凝聚相温度进行研究,研究发现吹熄效应可以有效减缓热量向未分解聚合物基材的传播速度,同时还能通过喷射而出的气流将热源火焰带走,这种隔热作用延长了环氧树脂在较低温度下的分解时间,这是吹熄效应的形成的关键因素。
     (4)通过TGA-FTIR、TGA、XPS等手段对不同温度条件下环氧树脂的凝聚相及气相分解产物进行分析。研究发现环氧树脂在较低的温度下分解将会有更多的残炭生成,这将有助于气相产物的聚集。同时气相产物分析结果显示,环氧树脂在较低的温度下分解正好可以使气相分解产物具有较高的CO2浓度,这意味着吹熄效应发生时喷射而出的气体具有较低的可燃性,因而更易熄灭样品残余火焰。
     (5)通过综合考虑吹熄阻燃效应的影响因素和机理分析结果,作者在本论文中建立了吹熄阻燃效应的物理模型。该模型显示,吹熄阻燃机理明显区别于气相阻燃机理、凝聚相阻燃机理、膨胀阻燃机理等传统的阻燃机理。
     (五)本论文研究中,吹熄阻燃效应显著提高了硅、磷元素对环氧树脂的阻燃效率,使阻燃剂添加量大幅下降。其中硅、磷阻燃元素总添加量约为0.5wt%时获得UL-94V-0级(1.6mm和3.2mm)阻燃配方3个,获得UL-94V-1级(3.2mm)阻燃配方5个;硅、磷阻燃元素总添加量约为0.9wt%时获得UL-94V-0级(3.2mm)阻燃配方1个。较低的阻燃剂添加量意味着在同等阻燃条件下,环氧树脂的综合性能将会明显提高,吹熄阻燃环氧树脂体系具有巨大的潜在应用价值。
In China, the flame retardant industry experienced rapid development over thepast30years. Research about flame retardant, flame retardant materials and flameretardant mechanism is more and more in-depth and comprehensive, and plays a moreimportant role in the related fields of international. At present, as the human attentionon environmental protection and the human health problems, the research andapplication about mature halogen-contained flame retardant seems to have problemswhich are difficult to solve. Therefore, development and application of halogen freeflame retardant has became the focus of the flame retardant field.
     The topic of my paper is using9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and polyhedraloligomeric silsesquioxanes (POSS) to flame retard epoxy resins (EP), the phosphorusand silicon are expected to play a synergy effect. Polyhedral oligomericsilsesquioxanes of the caged structures with the DOPO groups (DOPO-POSS) weresynthesized. The blowing-out effect was detected in epoxy resins flame retarded byDOPO-POSS, and the flame retardant mechanism of blowing-out of epoxy resin havebeen studied in detail. The “blowing-out effect” is that:“after the sample was ignited,it showed an unstable flame for several seconds; with the pyrolytic gaseous productsjetting outward from the condensed-phase surface, the flame was extinguished, itlooks like that the gas blew out the flame”. This study has opened up a new directionfor the research of halogen-free flame retardant epoxy resin.
     1. The DOPO-POSS were synthesized by two-step method using DOPO andvinyl triethoxy silane (VTES). The DOPO-POSS and its synthesis method hasobtained patent license. The DOPO-POSS was used as novel flame retardant to flameretard epoxy resins and the blowing-out effect was detected in this system. Based onthe blowing-out, the flame retardant efficiency of phosphorus and silicon wasimproved obviously. In order to understand the flame retardant mechanism ofblowing-out effect, octaphenyl POSS (OPS), octaaminophenyl POSS (OAPS) andpolyphenylsilsesquioxane (PPSQ), which are synthesized in our lab, are used alone orcompanied with DOPO to flame retard EPs.
     The studies show that although OAPS can react with epoxy monomer, it hassimilar flame retardant action compared with unreactive OPS. The OPS and OAPScompanied with DOPO could make epoxy resins shows remarkable blowing-outeffect. Comparing OPS and OAPS, the OPS is more effective and helpful to theformation of blowing-out effect. However, the epoxy resins with ladder-type PPSQcannot occur the blowing-out effect. This result is caused by that the cross-linking andcharring in the condensed phase caused by PPSQ cannot match the intumescent andcharring process of the EPs during combustion. Therefore, such a solid char may bevery brittle, and may crack very easily. This char layer cannot accumulate thepyrolytic gases to form the blowing-out effect. On the contrary, cross-linking in thecondensed phase caused by OPS seems to have the desired retarding effect. Theseresults indicate that only when the release speed of pyrolytic gases and the condensedphase structures match each other, the blowing-out out effect can show the bestperformance.
     2. The epoxy monomers in this paper are diglycidyl ether of bisphenol A(DGEBA) and tetraglycidyl-4,4'-methylene dianiline (TGDDM), the curing agents arethe aromatic4,4'-diaminodiphenylsulfone (DDS), m-phenylenediamine (m-PDA) andthe aliphatic oligomeric polyamide650(PA650). In this research, the blowing-outeffect can be detected in the DGEBA/m-PDA resins, DGEBA/DDS resins andTGDDM/DDS resins, however, the blowing-out effect did not show up in theDGEBA/PA650resins. This result indicates that the structures of epoxy resinsmonomer and curing agents are very important for the blowing-out effect. Throughanalysis the relationship between curing structures and blowing-out effect in theDGEBA/DDS resins and DGEBA/PA650resins, we find that the more aromaticstructures in the curing net is helpful to the blowing-out effect. This is because themore aromatic structures are easy to form crosslinked char layer, which couldaccumulate the pyrolytic gases easily and enable the formation of blowing-out effect.
     In the TGDDM/DDS resins, the typical blowing-out effect can be detected. TheDOPO-POSS and OPS/DOPO are used to flame retard the TGDDM/DDS resins. Theblowing-out effect can be detected during the UL-94tests of them. The UL-94resultsindicate that DOPO-POSS or OPS/DOPO could make the UL-94test of TGDDM/DDS resins reach V-0rating. The morphology of the char layer ofTGDDM/DDS flame retarded by OPS/DOPO is like a honeycomb, and severalindividual cavities can be detected under this char layer. This kind of char layer makesthe OPS/DOPO system showed more intensive blowing-out effect than theDOPO-POSS system.
     3. Thermal gravimetric analyzer was coupled with Fourier transform infraredspectrometry (TGA-FTIR), thermal gravimetric analyzer was coupled with massspectrometry (TGA-MS), x-ray photoelectron spectroscopy (XPS), x-raydiffractometer (XRD), scanning electron microscopy (SEM), thermal gravimetricanalyzer (TGA), differential scanning calorimetry (DSC), fourier transform infraredspectrometry (FTIR), and stress rheometer are used to qualitative or quantitativeanalysis of the flame retardant materials and its combustion products (gas phase andthe condensed phase). The cone calorimeter analysis, limited oxygen index andUL-94vertical burning test are used to investigate the flame retardant property andcombustion process of epoxy resin materials. In addition to the above routineexperimental method, in order to study the flame retardant mechanism of blowing-out,two kinds of effective experimental methods were built by myself to study theblowing-out effect in epoxy resin. The first method is that during the combustionprocess of cone calorimeter test of epoxy resins, the condensed phase samples ofdifferent time and the condensed phase samples of different position are investigated.Based on this method, we find the changes of chemical structures and element contentin the external, internal and bottom residues. The second method is that athermocouple which was used to identify the temperature of condensed phase wasembedded in the EPs. This method enabled us to grasp the temperature data in thecondensed phase during the UL-94vertical burning test of pure epoxy resin and theepoxy resin with blowing-out effect. These two kinds of experimental methodsprovide essential data and materials for the research of flame retardant mechanism ofblowing-out effect. The detail of all experimental methods can be found in everychapter.
     4. In this paper, the research about flame retardant mechanism of blowing-outeffect includes that:
     (1) An experimental method was set up to investigate the condensed phasesamples of different time and the condensed phase samples of different positionduring the combustion process of cone calorimeter test of epoxy resins. These resultsindicate that the ignition of EP is caused by flammable volatile fragments due to thescission of the EP chain in surface. Then, the internal degradation and combustiblegas release would outward supply the fuel to support the flame, and the C elementbegins to increase due to fast crosslinking reaction. At this point, if the char layer cangather pyrolysis gas, blowing-out effect can happen. And if sample can't formeffective char layer, with the acceleration of thermal degradation reaction of EPmatrix, more combustible volatiles will migrate to the surface, the samples will reachflashover state. The char residues were investigated in detail by FTIR and XPS. Theinteractions between DOPO and silsesquioxane in the condensed phase are caused bythe formation of the-P(=O)-O-Si-structure. The-P(=O)-O-Si-structure is helpful toaccelerate the formation of effective char layer. During the vertical burning tests, thiskind of char layer could accumulate the pyrolytic gases easily and enable theformation of blowing-out effect.
     (2) The SEM, stress rheometer, video analysis were used to investigate thecondensed phase product created during the combustion process, we found that thequick formation of effective char layer can be observed in every blowing-out flameretardant system. Furthermore, the big cavities can be detected under this char layer,which is helpful to accumulate the pyrolytic gases. This kind of cavities with pyrolyticgases (gasbags) will become a thermal insulation layer, which is effective to inhibitthe heat transfer from the fire to the unburned polymer matrix. With the increase ofgas pressure in the cavities, the char layer would be broken, then, the blowing-outeffect would present.
     (3) In addition, to measure the internal temperature profiles in the ignited end ofsamples in UL-94tests, a thermocouple was embedded in the epoxy resins. Thisexperiment indicates that the blowing-out effect can slow the heat transfer from thefire to the unburned matrix, and also take away part of the heat in the surface zone bythe spurting gases. This heat insulation effect prolongs the decomposition of theunburned EP matrix at low temperature. This is the key factor for the formation of blowing-out effect.
     (4) The TGA-FTIR, TGA, XPS were used to analyse the condensed phaseproducts and gas phase products of different temperature. These results indicate thatthe low temperature decomposition results in more char formation during combustionwhich is helpful to the accumulation of pyrolytic gases. The gas phase analysisindicates that the low temperature decomposition results in a high proportion of CO2in the pyrolytic gases, which means the jetting gas are lower flammable gaseousproducts. This kind of jetting gases can extinguish the remnant fire easily.
     (5) Depending on the summarization of the impact factors and experimentalanalysis of blowing-out effect, a physical model of blowing-out effect was establishedin this paper. According to this physical model, the flame retardant mechanism ofblowing-out effect is quite different with the traditional mechanism that gas phaseflame retardant mechanism, condensed phase flame retardant mechanism, andintumescent flame retardant mechanism et al.
     5. This paper, the blowing-out effect improve the flame retardant efficiency ofsilicon and phosphorus elements for epoxy resins, and reduce the content of flameretardants obviously. When content of silicon and phosphorus element is about0.5wt%, four EP materials with UL-94V-0rate (1.6mm and3.2mm) and four EPmaterials with UL-94V-1rate (3.2mm) were obtained. When content of silicon andphosphorus element is about0.9wt%, one EP material with UL-94V-0rate (3.2mm)was obtained. The lower content of flame retardants means lower damage of theoriginal properties of epoxy resin materials. So epoxy resin materials flame retardedby blowing-out effect possesses huge potential application value.
引文
[1]杨荣杰,李向梅编.中国阻燃工业概况[M].科学出版社,2013年1月第一版.
    [2]仲含芳.含量聚硅氧烷的合成及其在PC/ABS中的应用[D].上海交通大学博士学位论文,2008.
    [3]柳学义,刘亚青,卫芝贤.超细氢氧化铝粉末的制备及其阻燃性能[J].化工进展.2006;25:218-222.
    [4]常春,孙世明,王延芳.阻燃性填充剂—氢氧化镁[J].塑料助剂.1998;6:40-43.
    [5]欧育湘,李建军编.阻燃剂—性能、制造及应用[M].化学工业出版社.2006.
    [6] Levchik SV, Weil ED. Thermal decomposition, combustion and flame-retardancyof epoxy resins-a review of the recent literature [J]. Polym Int,2004;53:1901-1929.
    [7].Horacek H, Pieh S. The importance of intumescent systems for fire protection ofplastic materials [J]. Polym Int,2000;49:1106-1114.
    [8]张小燕,卢其勇.阻燃剂的生产状态及发展前景.塑料工业.2011;39:1-5.
    [9].Davis J. The technology of halogen-free flame retardant additives for polymericsystems [J]. Engng Plast,1996;9:403-419.
    [10]陆云.卤系阻燃剂在防火材料中的应用及前景.消防技术与产品信息.2009;10:41-43.
    [11] Jaina P, Choudharya V, Varmaa IK. Flame retarding epoxies with phosphorus [J].Polym Rev,2002;42:139-183.
    [12] Lin HT, Lin CH, Hu YM, Su WC. An approach to develop high-Tg epoxy resinsfor halogen-free copper clad laminates [J]. Polymer,2009;50:5685-5692.
    [13] Wang X, Hu Y, Song L, Xing WY, Lu HD. Thermal Degradation Behaviors ofEpoxy Resin/POSS Hybrids and Phosphorus-Silicon Synergism of Flame Retardancy[J]. J Polym Sci Pol Phys,2010;48:693-705.
    [14] Stockland RA, Taylor RI, Thompson LE, Patel PB. Microwave-assistedregioselective addition of P(O)-H bonds to alkenes without added solvent or catalyst[J]. Org Lett,2005;7:851-853.
    [15] Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P. Flame retardancy and thermaldegradation mechanism of epoxy resin composites based on a DOPO substitutedorganophosphorus oligomer [J]. Polymer,2010;51:2435-2445.
    [16] Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, D ring M, PerezRM, Sandler JKW, Altst dt V. Pyrolysis and fire behavior of epoxy systemscontaining a novel9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener [J]. Eur Polym J,2008;44:704-715.
    [17] Artner J, Ciesielski M, Walter O, D ring M, Perez RM, Sandler JKW, Altst dt V,Schartel BA. Novel DOPO-Based Diamine as Hardener and Flame Retardant forEpoxy Resin Systems [J]. Macromol Mater Eng,2008;293:503-514.
    [18]Seidel A, Eckel T, Wittmann D, Kurzidim D. Flame-resistant polycarbonatemoulding compounds [P]. WO2004013229,2004-12-2.
    [19]Matsumoto K, Koyama T, Ono Y, Fujita K, Ohara Y, Hirobe K. Flame retardantplastic resin composition [P]. US6329451,2001-12-11.
    [20]Sergei V Levchik, Edward D Weil. Overview of recent developments in the flameretardancy of polycarbonates [J]. Polymer International,2005;54:981-998.
    [21] Mercado LA, Galià IM, Reina JA. Silicon-containing flame retardant epoxyresins: Synthesis, characterization and properties [J]. Polym Degrad Stab,2006;91:2588-2594.
    [22] Hsiue GH, Wei HF, Shiao SJ, Kuo WJ, Sha YA. Chemical modification ofdicyclopentadiene-based epoxy resins to improve compatibility and thermal properties[J]. Polym Degrad Stab,2001;73:309-318.
    [23] Lin CH, Feng CC, Hwang TY. Preparation, thermal properties, morphology, andmicrostructure of phosphorus-containing epoxy/SiO2and polyimide/SiO2nanocomposites [J]. Eur Polym J,2007;43:725-742.
    [24]欧育湘,李昕.本质阻燃高聚物[J].高分子材料科学与工程,2000;16:1-4.
    [25]王永强.高聚物成炭的阻燃作用[J].塑料助剂,2002;32:11-18.
    [26] Jonathan D, Silicone-polycarbonate block copolymers [P]. US4945148,1990-07-13.
    [27] Liu R, Wang XD. Synthesis, characterization, thermal properties and flameretardancy of a novel nonflammable phosphazene-based epoxy resin [J]. PolymDegrad Stab,2009;94:617-624.
    [28] Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, D ringM, Perez R, Sandler JKW, Altst dt V, Hoffmann T, Pospiech D. Pyrolysis of EpoxyResins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives [J]. J Appl PolymSci,2007;104:2260-2269.
    [29] Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ. Metalcompounds-enhanced flame retardancy of intumescent epoxy resins containingammonium polyphosphate [J]. Polym Degrad Stab,2009;94:625-631.
    [30] Caroline G, Ga lle F, Serge B. Synergistic and antagonistic effects in flameretardancy of an intumescent epoxy resin [J]. Polym Advan Technol,2010;22:1085-1090.
    [31] Wu K, Song L, Hu Y, Lu HD, Kandola BK, Kandare E. Synthesis andcharacterization of a functional polyhedral oligomeric silsesquioxane and its flameretardancy in epoxy resin [J]. Prog Org Coat,2009;65:490-497.
    [32] Wu CS, Ling YL, Chiu YS. Epoxy Resins Possessing Flame Retardant Elementsfrom Silicon Incorporated Epoxies Cured with Phosphorus or Nitrogen ContainingCuring Agents [J]. Polymer,2002;43:4277-4284.
    [33] Scott DW. Thermal rearrangement of branched-chain methylpolysiloxanes [J].Journal of the American Chemical Society,1946;68:356-358.
    [34]Mantz PA, Jones PF, Chaffee KP. Thermolysis of Polyhedral OligomericSilsesquioxane(POSS) macromers and Poss-siloxane copolymers [J]. Chem Mater,1996;8:1250-1259.
    [35]Kim M, CHUJO Y. Liquid-crystalline organic-inorganie hybrid polymers withfunctionalized silsesquioxanes [J]. Journal of Polymer Science, Part A,2001;39:4035-4043.
    [36]Amaki R, Choi J. Richard ML. A polyimide nanocomposite fromocta(aminophenyl) silsesquioxane [J]. Chem Mater,2003;15:793-797.
    [37]Phillips SH, Blanski RL, Avejda SA. New insight into the structure-propertyrelationships of hybrid(inorganic/organic) Poss thermoplastics [J]. Mat Res Soc SympProc,2000;628:461-470.
    [38] Sharp KG. Star alkoxy silane molecules, gels and appreciably tough glasses [J]. JMater Chem,2005;15:3812-3820.
    [39] Kawakami Y. structural control and functionalization of oligomericsilsesquioxanes [J]. Reactive and Functional Polymers,2007;67:1137-1147.
    [40] Kessler D, Roth PJ, Theato P. Reactive Surface coatings based onpolysilsesquioxanes: controlled functionalization for specific protein immobilization[J]. Langmuir,2009;25:10068-10076.
    [41] Yang C, Ma CM, Gu WT, et al. Manufacturing method of ladder-likephosphorous-containing polysilsesquioxanes nanocomposite material [P]. US7700711,2010-04-20.
    [42] Fina A, Tabuani D, Camino G. Polypropylene–polysilsesquioxane blends [J].European Polymer Journal,2010;46:14-23.
    [43]邱军,黄裕杰,胡友慧.耐高温梯形聚甲基倍半硅氧烷的合成研究[J].功能高分子学报,1999;12:173-176.
    [44] Handke M, Handke B, Kowalewska A, et al. New polysilsesquioxane materialsof ladder-like structure [J]. Journal of Molecular Structure,2009;92:254-263.
    [45] Chang S, Matsumoto T, Matsumoto H, et al. Synthesis and characterization ofheptacyclic laddersiloxanes and ladder polysilsesquioxane [J]. AppliedOrganometallic Chemistry,2010;24:241-246.
    [46] Wallace WE, Guttman CM, Antonucci JM. Polymeric Silsesquioxanes: Degree ofIntramolecular Condensation Measured by Mass Spectrometry [J]. Polymer,2000;41:2219-2226.
    [47] Frye CL, Collins WT. The oligomeric silsesquioxanes,(HSiO3/2)n [J]. Journal ofthe American Chemical Society.1970;92:5586-5588.
    [48] Vogt LH, Brown JF. Crystalline methylsilsesquioxanes [J]. Inorganci Chemistry.1963;2:189-192.
    [49] Sprung MM, Guenther FO. The partial hydrolysis of ethyl triethoxysilane [J].Journal of the American Chemical Society.1955;77:3996-3999.
    [50] Brown JF, Vogt LH. The polycondensation of cyclohexylsilanetriol [J]. Journal ofthe American Chemical Society.1965;87:4313-4317.
    [51] Feher FJ, Terroba R, Ziller JW. A new route to incompletely-condensedsilsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes [J].Chemical Communications.1999;22:2309-2310.
    [52] Abbenhuis HCL. Advances in Homogeneous and Heterogeneous Catalysis withMetal-Containing Silsesquioxanes [J]. Chemistry-A European Journal.2000;1:25-32.
    [53] Zhang C, Laine RM. Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8:Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its OctamethacrylateDerivative as Potential Precursors to Hybrid Nanocomposites [J]. Journal of theAmerican Chemical Society.2000;122:6979-6988.
    [56] Warrick EL. Forty years of firsts: the recollections of a Dow Corning pioneer [M].New York: McGrawHill,1990.
    [57] Dong H, Brennan JD. Controlling the morphology of methylsilsesquioxanemonoliths using a two-step processing method [J]. Chem Mater,2006;18:541-546.
    [58] Lappert MF, Smith JK. Reactions of Sulphoxideswith Some Group Ⅲ and ⅣHalides [J]. J Chem Soc,1961;3224-3230.
    [59] Bassindale AR, Gentle TE. Siloxane and Hydrocarbon Octopus Molecules withSilsesquioxane Cores [J]. J Mater Chem,1993;3:1319-1325.
    [60] Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flameretardant polymers [J]. Progress in Polymer Science.2002;27:1661-1712.
    [61] Lichtenhan JD, Gilman JW. Preceramic additives as fire retardants for plastics
    [P]. US63622792002-7-9.
    [62] Ikeda M. Utilization of POSS in industrial applications [C]. Proceedings of POSSNanotechnology Conference. Huntington Beach, CA (2002)278.
    [63] Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSSnanocomposites as flame retarded coating for polyester and cotton fabrics [J]. Firematerials.2002;26:149-154.
    [64] Jash P, Wilkie CA. Effects of surfactants on the thermal and fire properties ofpoly(methyl methacrylate)/clay nanocomposites [J]. Polymer degradation and stability.2005;88:401-406.
    [65] Lu TL, Chen T, Liang GZ. Synthesis, thermal properties, and flame retardance ofthe epoxy-silsesquioxane hybrid resins [J]. Polymer engineering and science2007;225-234.
    [66] Lu TL, Liang GZ, Peng YL, Chen T. Blended hybrids based onsilsesquioxane–OH and epoxy resins [J]. Journal of applied polymer science2007;105:4117-4123.
    [67] Wu K, Kandola BK, Kandare E, Hu Y. Flame retardant effect of polyhedraloligomeric silsesquioxane and triglycidyl isocyanurate on glass fibre-reinforced epoxycomposites [J]. Polymer composites2011;378-389.
    [68] Franchini E, Galy J, Gérard JF, Tabuani D Medici A. Influence of POSS structureon the fire retardant properties of epoxy hybrid networks [J]. Polym Degrad Stab,2009;94:1728-1736.
    [69] Nagendiran S, Alagar M, Hamerton I. Octasilsesquioxane-reinforced DGEBAand TGDDM epoxy nanocomposites: Characterization of thermal, dielectric andmorphological properties [J]. Acta Mater,2010;58:3345-3356.
    [70] Zhang WA, Fang B, Walther A, Müller AHE. Synthesis via RAFTPolymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid)Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly inWater [J]. Macromolecules,2009;42:2563-2569.
    [71] Wang CS, Lin CH. Synthesis and properties of phosphorus containing advancedepoxy resins [J]. Journal of Applied polymer science,2000;75:429-436.
    [72] Wang CS, Shieh JY. Synthesis and flame retardancy of phosphorus containingpolycarbonate [J]. Journal of Polymer Research,1999;6:149-154.
    [73] Wang CS, Lin CH. Synthesis and properties of phosphorus containing epoxyresins by novel method [J]. Journal of Polymer Science Part A: Polymer Chemistry,1999;37:3903-3909.
    [74] Liu YL. Flame retardant epoxy resins from novel phosphorus containing novolac[J]. Polymer,2001;42:3445-3454.
    [75] Liu YL, Wu CS, Hsu KY. Flame retardant epoxy resins from oocresol novolacepoxy cured with a phosphorus-containing aralkyl novolac [J]. Journal of PolymerScience Part A: Polymer Chemistry,2002;40:2329-2339.
    [76] Wang X, Hu Y, Song L, Xing W Y, Lu H D. Thermal Degradation Behaviors ofEpoxy Resin/POSS hybrids and Phosphorus-Silicon Synergism of Flame Retardancy[J]. Journal of Polymer Science Part B: Polymer Physics,2010;48:693-705.
    [77] Lin H T, Lin C H, Hu Y M, Su W C. An approach to develop high-Tg epoxyresins for halogen-free copper clad laminates [J]. Polymer,2009;50:5685-5692.
    [78] Liu W S, Wang Z G, Xiong L, Zhao L N. Phosphorus-containing liquidcycloaliphatic epoxy resins for reworkable environment-friendly electronic packagingmaterials [J]. Polymer,2010;51:4776-4783.
    [79] Lin CH, Feng CC, Hwang TY. Preparation, thermal properties, morphology, andmicrostructure of phosphorus-containing epoxy/SiO2and polyimide/SiO2nanocomposites [J]. European Polymer Journal,2007;43:725-742.
    [80] Zhong HF, Wei P, Jiang PK, Wang GL. Thermal degradation behaviors and flameretardancy of PC/ABS with novel silicon-containing flame retardant [J]. Fire Mater,2007;31:411-423.
    [81] Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flameretardant polymers [J]. Progress in Polymer Science,2002;27:1661-1712.
    [82] Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, D ring M, PerezRM, Sandler JKW, Altst dt V. Pyrolysis and fire behavior of epoxy systemscontaining a novel9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diaminohardener [J]. European Polymer Journal,2008;44:704-715.
    [83] Artner J, Ciesielski M, Walter O, D ring M, Perez R M, Sandler JKW, Altst dt V,Schartel B. A Novel DOPO-Based Diamine as Hardener and Flame Retardant forEpoxy Resin Systems [J]. Macromolecular Materials and Engineering,2008;293:503-514.
    [84]钱立军.当前磷系阻燃剂的研究与发展现状[J].中国阻燃学术年会,2011,广东.
    [85]韦可军,胡方瑞.江苏汇鸿金普DOPO生产技术研究[J].中国阻燃学术年会,2011,广东.
    [86] Ho TH, Hwang HJ, Chung MC. Thermal and physical properties offlame-retardant epoxy resins containing2-(6-oxido-6H-dibenz(c,e)(1,2)oxaphosphorin-6-yl)-1,4-naphthalenediol and curedwith dicyanate ester [J]. Polymer Degradation and Stability,2008;93:2077-2083.
    [87] Lin CH, Wang CS. Novel phosphorus-containing epoxy resins part Ⅰ. Synthesisand properties [J]. Polymer,2001;42:1869-1878.
    [88] Ho TH, Hwang HJ, Shieh JY. Thermal, physical and flame-retardant properties ofphosphorus-containing epoxy cured with cyanate ester [J]. Reactive&FunctionalPolymers,2009;69:176-182.
    [89] Wang CS, Lin CH, Wu CY. Synthesis and properties of phosphorus-containingadvanced epoxy resins Ⅱ[J]. Journal of Applied Polymer Science,2000;78:228-235.
    [90] Wang CS, Shieh JY. Synthesis of novel flame retardant epoxy hardeners andproperties of cured products [J]. Polymer,2001;42:7617-7625.
    [91] Liu YL. Epoxy resins from novel monomers withbis-(9,10-dihydro-9-oxa-10-ox-ide-10-phosphaphenanthrene-10-yl) substituent [J].Journal of Polymer Science Part A: Polymer Chemistry,2002;40:359-368.
    [92] Hsiue GH, Liu YL, Liao HH. Flame-retardant epoxy resins: An approach fromorganic-inorganic hybrid nanocomposites [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001;39:986-996.
    [93] Liu YL, Wu CS, Chiu YS. Preparation, thermal properties, and flame retardanceof epoxy-silica hybrid resins [J]. Journal of Polymer Science Part A: PolymerChemistry,2003;41:2354-2367.
    [94] Kannan P, Kishore K. Novel flame retardant polyphosphor-amide esters [J].Polymer,1992;33:418-422.
    [95] Sponton M, Ronda JC, Galià M. Flame retardant epoxy resins based ondiglycidyl ether of (2,5-dihydroxy-pheny) diphenyl phosphine oxide [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2007;45:2142-2151.
    [96] Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing2-(6-oxid-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)1,4-benzenediol [J]. Polymer,1998,39:5819-5826.
    [97] Wang CS, Lin CH. Synthesis and properties of phosphorus containingpolyarylates derived from2-(6-oxido-6H-dibenz [c,e][1,2]oxaphosphorin-6-yl)-1,4-dihydroxy phenylene [J]. Polymer,1999;40:4387-4398.
    [98]陈力,黄恒圳,王玉忠.固态后缩聚方法合成高分子量的含磷热致性液晶共聚酯[J].高分子学报,2009;493-497.
    [99] Du XH, Wang YZ, Chen XT. Properties of phosphorus-containing thermotropicliquid crystal copolyester/poly(ethylene terephthalate) blends [J]. PolymerDegradation and Stability,2005;88:52-56.
    [100] Balabanovich AI, Pospiech D, Harnisch C. Pyrolysis behavior of phosphoruspolyesters [J]. Journal Analytical Applied Pyrolysis,2009;86:99-107.
    [101] Balabanovich AI, Pospiech D, Korwitz A. Pyrolysis study of aphosphorus-containing aliphatic-aromatic polyester and its nanocomposites withlayered silicates [J]. Polymer Degradation and Stability,2009;94:355-364.
    [102] Wei P. Synthes, characteristic, and application of new flame retardantcontaining phosphorus, ntrogen, and silicon [J]. Polymer Engineering and Science2006;46:344-350.
    [103] Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P. Flame retardancy and thermaldegradation mechanism of epoxy resin composites based on a DOPO substitutedorganophosphorus oligomer [J]. Polymer,2010;51:2435-2445.
    [104] Foix D, Ramis X, Serra A, Sangermano M. UV generation of a multifunctionalhyperbranched thermal crosslinker to cure epoxy resins [J]. Polymer,2011;52:3269-3276.
    [105] Qian LJ, Ye LJ, Han XL, Xu GZ, Meng Y. Construction and Properties ofCompounds Based on Phosphaphenanthrene Group [J]. Prog Chem,2010;22:1776-1783.
    [106] Liu WS, Wang ZG, Xiong L, Zhao LN. Phosphorus-containing liquidcycloaliphatic epoxy resins for reworkable environment-friendly electronic packagingmaterials [J]. Polymer,2010;51:4776-4783.
    [107] Li Q. Synergistic effect ofphosphorus, nitrogen, and silicon on flame-retardantproperties and char yield in polypropylene [J]. Journal of Applied Polymer Science,2005;96:854-860.
    [108] Hussain M. Effect of organo-phosphorus and nano.-clay materials on thethermal and fire performance of epoxy resins [J]. Journal of Applied Polymer Science,2004;9l:1233-1253.
    [109] Liu YL. Phosphorus-containing polyaryloxydiphenylsilanes with high flameretardance arising from a phosphorus-silicon synergistic effect [J]. PolymerInternational,2003;52:1256-1261.
    [110] Liu YL, Wu CS. Preparation of silicon-/phosphorous-containing epoxy resinsfrom the fusion process to bring a synergistic effect on improving the resins’ thermalstability and flame retardancy [J]. Journal ofApplied Polymer Science,2003;87:404-411.
    [111] Liu YL. Preparation, thermal properties, and flame retardance of epoxy-silicahybrid resins [J]. Journal ofPolymer Science Part a-Polymer Chemistry,2003;41:2354-2367.
    [112] Li Q. Thermal degradation behaviors of polypropylene with novelsilicon-containing intumescent flame retardant [J]. Journal ofAppliext PolymerScience,2005;98:2487-2492.
    [113] Li Q, Jiang PK, Wei P. Thermal degradation behavior of poly(propylene) with anovel silicon on-containing intumescent flame retardant [J]. MacromolccularMaterials and Engineering,2005;290:912-919.
    [114] Li Q, Jiang PK, Wei P. Studies on the properties of polypropylene with a newsilicon-containing intumescent flame retardant [J]. Journal of Polymer Science PartB-Polymer Physics,2005;43:2548-2556.
    [1] Fei ZF, Schmutzler R, Edelmann FT. Preparation and Complexation of a NovelSilsesquioxanyl Phosphine Ligand [J]. Z Anorg Allg Chem2003;629:353-356.
    [2] Lee A, Xiao J, Feher FJ. New Approach in the Synthesis of Hybrid PolymersGrafted with Polyhedral Oligomeric Silsesquioxane and Their Physical andViscoelastic Properties [J]. Macromolecules2005;38:438-444.
    [3] Hong B, Thoms TPS, Murfee HJ, Lebrum MJ. Highly Branched DendriticMacromolecules with Core Polyhedral Silsesquioxane Functionalities [J]. Inorg Chem1997;36:6146-6147.
    [4] Feher FJ, Schwab JJ, Phillips SH, Eklund A, Martinez E. Phosphine-SubstitutedSilsesquioxanes as Building Blocks for Organometallic Gels [J]. Organometallics1995;14:4452-4453.
    [5] Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ. Increased selectivity inhydroformylation reactions using dendrimer based catalysts; a positive dendrimereffevt [J]. Chem Commun2001;361-362.
    [6] Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ, Phosphine-containingcarbosilane dendrimers based on polyhedral silsesquioxane cores as ligands forhydroformylation reaction of oct-1-ene [J]. J Mol Catal A-Chem2002;182:99-105.
    [7] Ropartz L, Morris RE, Schwarz GP, Foster DF, Cole-Hamilton DJ.Dendrimer-bound tertiary phosphines for alkene hydroformylation [J]. Inorg ChemCommun2000;3:714-717.
    [8] Lücke S, Stoppek-Langner K, Kuchinke J, Krebs B,Octakis-(dimethylphosphanoethyl)-octasilsesquioxane-synthesis, characterization andreactivity [J]. J Organomet Chem1999;584:11-15.
    [9] Ge ZS, Wang D, Zhou YM, Liu HW, Liu SY. Synthesis of Organic/InorganicHybrid Quatrefoil-Shaped Star-Cyclic Polymer Containing a Polyhedral OligomericSilsesquioxane Core [J]. Macromolecules2009;42:2903-2901.
    [10] Yang BH, Li JR, Wang JF, Xu HY, Guang SY, Li C. Poly(vinylpyrrolidone-co-octavinyl polyhedral oligomeric silsesquioxane) HybridNanocomposites: Preparation, Thermal Properties, and TgImprovement Mechanism[J]. J Appl Polym Sci2009;111:2963-2969.
    [11] Fasce DP, Williams RJJ, Erra-Balsells R, Ishikawa Y, Nonami H. One-stepSynthesis of Polyhedral Silsesquioxanes Bearing Bulky Substituents:UV-MALDI-TOF and ESI-TOF Mass Spectrometry Characterization of ReactionProducts [J]. Macromolecules2001;34:3534-3539.
    [12] Unno M, Alias SB, Saito H, Matsumoto H. Synthesis of HexasilsesquioxanesBearing Bulky Substituents: Hexakis ((1,1,2-trimethylpropyl)silsesquioxane) andHexakis (tert-butylsilsesquioxane)[J]. Organometallics1996;15:2413-2414.
    [13] Fasce DP, Williams RJJ, Méchin F, Pascault JP, Llauro MF, Pétiaud R. Synthesisand Characterization of Polyhedral Silsesquioxanes Bearing Bulky FunctionalizedSubstituents [J]. Macromolecules1999;32:4757-4763.
    [14] Tanabe M, Mutou K, Mintcheva N, Osakada K. Preparation and NMR Studies ofPalladium Complexes with a Silsesquioxanate Ligand [J]. Organometallics2008;27:519-523.
    [15] Kim SG, Choi J, Tamaki R, Laine RM. Synthesis of amino-containingoligophenysilsesquioxanes [J]. Polymer2005;46:4514-4524.
    [1] Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P. Flame retardancy and thermaldegradation mechanism of epoxy resin composites based on a DOPO substitutedorganophosphorus oligomer [J]. Polymer,2010;51:2435-2445.
    [2] Foix D, Ramis X, Serra A, Sangermano M. UV generation of a multifunctionalhyperbranched thermal crosslinker to cure epoxy resins [J]. Polymer,2011;52:3269-3276.
    [3] Qian LJ, Ye LJ, Han XL, Xu GZ, Meng Y. Construction and Properties ofCompounds Based on Phosphaphenanthrene Group [J]. Prog. Chem.,2010;22:1776-1783.
    [4] Liu WS, Wang ZG, Xiong L, Zhao LN. Phosphorus-containing liquidcycloaliphatic epoxy resins for reworkable environment-friendly electronic packagingmaterials [J]. Polymer,2010;51:4776-4783.
    [5] Wu K, Song L, Hu Y, Lu HD, Kandola BK, Kandare E. Synthesis andcharacterization of a functional polyhedral oligomeric silsesquioxane and its flameretardancy in epoxy resin [J]. Prog Org Coat2009;65:490-497.
    [6] Pawlowski KH, Schartel B. Flame retardancy mechanisms of triphenyl phosphate,resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) inpolycarbonate/acrylonitrile-butadiene-styrene blends [J]. Polym Int2007;56:1404-1414.
    [7] Zhang WA, Fang B, Walther A, Müller AHE. Synthesis via RAFT Polymerizationof Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) ContainingPolyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water [J].Macromolecules2009;42:2563-2569.
    [8] Zhang WC, Li XM, Guo XY, Yang RJ. Mechanical and thermal properties andflame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane(DOPO-POSS)/polycarbonate composites [J]. Polym Degrad Stab2010;95:2541-2546.
    [9] Zhang WC, Yang RJ. Synthesis of phosphorus-containing polyhedral oligomericsilsesquioxanes via hydrolytic condensation of a modified silane [J]. J Appl Polym Sci2011;122:3383-3389.
    [10] Perret B, Schartel B. The effect of different impact modifiers in halogen-freeflame retarded polycarbonate blends–Ⅰ [J]. Pyrolysis. Polym Degrad Stab2009;94:2194-2203.
    [11] Song L, He QL, Hu Y, Chen H, Liu L. Study on thermal degradation andcombustion behaviors of PC/POSS hybrids [J]. Polym Degrad Stab2008;93:627-639.
    [12] Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS onepoxy resins [J]. Polym Degrad Stab2011;96:2167-2173.
    [13] Spontón M, Ronda JC, Galià M, Cádiz V. Cone calorimetry studies ofbenzoxazine–epoxy systems flame retarded by chemically bonded phosphorus orsilicon [J]. Polym Degrad Stab2009;94:102-106.
    [14] Gilman JW, Kashiwagi T. Nanocomposites: A Revolutionary New FlameRetardant Approach [J]. SAMPE J1997;33:40-46.
    [1] Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS onepoxy resins [J]. Polym Degrad Stab2011;96:2167-2173.
    [2] Su C-H, Chiu Y-P, Teng C-C, Chiang C-L. Preparation, characterization andthermal properties of organic-inorganic composites involving epoxy and polyhedraloligomeric silsesquioxane (POSS)[J]. J Polym Res2010;17:673-681.
    [3] Wang X, Hu Y, Song L, Xing WY, Lu HD. Thermal Degradation Behaviors ofEpoxy Resin/POSS hybrids and Phosphorus-Silicon Synergism of Flame Retardancy[J]. J Polym Sci Pol Phys2010;48:693-705.
    [4] Zhang WC, Yang RJ. Synthesis of phosphorus-containing polyhedral oligomericsilsesquioxanes via hydrolytic condensation of a modified silane [J]. J Appl Polym Sci2011;122:3383-3389.
    [5] Wang ZF, Liu WQ, Hu CH, Ma SQ. Study on the Modification of Epoxy Resin bya Phosphorus-and Silica-Containing Hybrid [J]. J Appl Polym Sci2011;121:2213-2219.
    [6] Jiang YY, Li XM, Yang RJ. Polycarbonate Composites Flame-Retarded byPolyphenylsilsesquioxane of Ladder Structure [J]. J Appl Polym Sci DOI10.1002/app.35428.
    [7] Spontón M, Ronda JC, Galià M, Cádiz V. Cone calorimetry studies ofbenzoxazine-epoxy systems flame retarded by chemically bonded phosphorus orsilicon [J]. Polym Degrad Stab2009;94:102-106.
    [8] Gilman JW, Kashiwagi T. Nanocomposites: A Revolutionary New FlameRetardant Approach [J]. SAMPE J1997;33:40-46.
    [9] Wang JS, Wang DY, Liu Y, Ge XG, Wang YZ. Polyamide-enhanced flameretardancy of ammonium polyphosphate on epoxy resin [J]. J Appl Polym Sci2008;108:2644-2653.
    [10] Bourbigot S, Bras ML, Delobel R, Gengembre L. XPS study of an intumescentcoating Ⅱ. Application to the ammonium polyphosphate/pentaerythritol/ethylenicterpolymer fire retardant system with and without synergistic agent [J]. Appl surf sci1997;120:15-29.
    [11] Yu D, Kleemeier M, Wu GM, Schartel B, Liu WQ, Hartwig A. Phosphorus andSilicon Containing Low-Melting Organic-Inorganic Glasses Improve FlameRetardancy of Epoxy/Clay Composites [J]. Macromol Mater Engin2011;296:952-964.
    [12] Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, J ger C. What Reacts with Whatin Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A Bis(diphenyl phosphate)during Pyrolysis and Fire Behavior?[J]. Indus Engin Chem Res2012;51:1244-1255.
    [13] Zhu BZ. Phosphosiloxane resins, and curable silicone compositions,free-standing films, and laminates comprising the phosphosiloxane resins [P]. Patent.WO2012027337A1.
    [14] Huang YW, Ma JJ, Cao K, Yang JX. Silicon-containing bis-spirocyclicpentaerythritol diphosphonate for flame retardant and its preparation method [P].Patent. CN102344583A.
    [15] Song L, He QL, Hu Y, Chen H, Liu L. Study on thermal degradation andcombustion behaviors of PC/POSS hybrids [J]. Polym Degrad Stab2008;93:627-639.
    [16] Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ. A study ofHMDSO/O2plasma deposits using a high-sensitivity and-energy resolution XPSinstrument: curve fitting of the Si2p core level [J]. Appl surf sci1999;137:179-183.
    [17] Zhang WC, Li XM, Fan HB, Yang RJ. Study on mechanism ofphosphorus–silicon synergistic flame retardancy on epoxy resins [J]. PolymerDegradation and Stability.2012;97:2241-2248.
    [18] Zhang WC, Li XM, Li LM, Yang RJ. Study of the synergistic effect of siliconand phosphorus on the blowing-out effect of epoxy resin composites [J]. PolymDegrad Stab2012;97:1041-1048.
    [19] Zhang WC, Li XM, Yang RJ. Blowing-out effect of epoxy compositesflame-retarded by DOPO-POSS and its correlation with amide curing agents [J].Polym Degrad Stab2012;97:1314-1324.
    [20] Zhang WC, Li XM, Jiang YY, Yang RJ. Investigations of epoxy resinsflame-retarded by phenyl silsesquioxanes of cage and ladder structures. PolymerDegradation and Stability [J].2013;98:246-254.
    [21] Li LM, Li XM, Yang RJ. Mechanical, thermal properties, and flame retardancyof PC/ultrafine octaphenyl-POSS composites [J]. J Appl Polym Sci2012;124:3807-3814.
    [1] Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, D ring M,Perez R, Sandler JKW, Altst dt V, Hoffmann T, Pospiech D. Pyrolysis of EpoxyResins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives [J]. J Appl PolymSci2007;104:2260-2269.
    [2] Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX. Flame retardancy andthermal degradation mechanism of epoxy reisn composites based on a DOPOsubstituted organophosphorus oligomer [J]. Polymer2010;51:2435-2445.
    [3] Zhang WC, Li XM, Yang RJ. Pyrolysis and fire behaviour of epoxy resincomposites based on a phosphorus-containing polyhedral oligomeric silsesquioxane(DOPO-POSS)[J]. Polymer Degradation and Stability.2011;96:1821-1832.
    [4] Zhang WC, Li XM, Guo XY, Yang RJ. Mechanical and thermal properties andflame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane(DOPO-POSS)/polycarbonate composites [J]. Polym Degrad Stab2010;95:2541-2546.
    [5] Zhang WC, Li XM, Li LM, Yang RJ. Study of the synergistic effect of silicon andphosphorus on the blowing-out effect of epoxy resin composites [J]. Polym DegradStab2012;97:1041-1048.
    [6] Lin HT, Lin CH, Hu YM, Su WC. An approach to develop high-Tg epoxy resinsfor halogen-free copper clad laminates [J]. Polymer2009;50:5685-5692.
    [7] Du JX, Zhu L, Wilkie CA, Wang JQ. An XPS investigation of thermal degradationand charring on PMMA clay nanocomposites [J]. Polym Degrad Stab2002;77:377-381.
    [8] Hao JW, Wilkie CA, Wang JQ. An XPS investigation of thermal degradation andcharring of cross-linked polyisoprene and polychloroprene [J]. Polym Degrad Stab2001;71:305-315.
    [9] Du JX, Wang DY, Wilkie CA, Wang JQ. An XPS investigation of thermaldegradation and charring on poly(vinyl chloride)-clay nanocomposites [J]. PolymDegrad Stab2003;79:319-324.
    [10] Wang JQ, Li B. An XPS investigation of thermal degradation and charring incombustion of PVC and PVC/Cu2O/MoO3-the synergy between MoO3and Cu2O inPVC [J]. Polym Degrad Stab1999;63:279-285.
    [11] Karrasch A, Wawrzyn E, Schartel B, J ger C. Solid-state NMR on Thermal andFire Residues of Bisphenol A Polycarbonate/Silicone Acrylate Rubber/Bisphenol ABis(diphenyl-phosphate)(PC/SiR/BDP) and PC/SiR/BDP/Zinc Borate(PC/SiR/BDP/ZnB)—Part II: The Influence of SiR [J]. Polym Degrad Stab2010;95:2534-2540.
    [12] Zhang WC, Li XM, Fan HB, Yang RJ. Study on mechanism ofphosphorus–silicon synergistic flame retardancy on epoxy resins [J]. Polym DegradStab2012;97:2241-2248.
    [13] Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, J ger C. What Reacts withWhat in Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A Bis(diphenylphosphate) during Pyrolysis and Fire Behaviour?[J]. Indust Engin Chem Res2012;51:1244-1255.
    [14] Lewin M. Some comments on the modes of action of nanocomposites in theflame retardancy of polymers [J]. Fire and Mater2003;27:1-7.
    [15] Lewin M, Mey-Marom A, Frank R. Surface free energies of polymeric materials,additives, and minerals [J]. Polym Adv Technol2005;16:429-441.
    [16] Zhang WC, Li XM, Yang RJ. The degradation and charring of flame retardedEpoxy resin (EP) during the combustion [J]. J Appl Polym Sci2013. DOI:10.1002/app.39689.
    [17] Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS onepoxy resins [J]. Polym Degrad Stab2011;96:2167-2173.
    [18] Toldy A, Anna P, Csontos I, Szabó A, Marosi Gy. Intrinsically flame retardantepoxy resin–Fire performance and background–Part Ι [J]. Polym Degrad Stab2007;92:2223-2230.
    [19] Jimenez M, Duquesne S, Bourbigot S. Multiscale Experimental Approach forDeveloping High-Performance Intumescent Coatings [J]. Ind Eng Chem Res2006;45:4500-4508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700