活性剂对无压自浸渗法制备SiCp/Al复合材料的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无压自浸渗法是指在不借助任何外力作用下,把熔炼好的铝液,经精炼,调温后,浇入经过预热,含有增强体颗粒与助渗剂的混合体粉末中。在助渗剂的参与下,液态铝或其合金借助自身重力的作用,自动浸渗入粉末中制备颗粒增强铝基复合材料。其工艺设备简单,成本低,制备的颗粒增强铝基复合材料具有高强度和弹性模量及好的高温新能,与单一的铝合金相比,是一种在航天工业和汽车工业中有应用前途的材料。但采用无压自浸渗法制备SiCp颗粒增强铝基复合材料仍存在以下两个突出的问题:1.在1000℃以下,SiC颗粒与铝或铝合金之间浸润性差。2.SiC颗粒增强复合材料中界面反应生成的有害杂质相较多,对复合材料的性能的影响较大。可以通过添加Mg、Li等活泼的合金元素,对增强体颗粒进行表面预处理来改善润湿性。
     本文通过研究制备SiCp/Al复合材料、SiCp/Al-Si复合材料的过程中,熔融铝液或铝硅合金液的浸渗行为、SiC-Al、SiC-Al-Si之间的界面反应、复合材料的机械性能、微观结构等,探讨了不同量的活性元素Mg、Si、Ce对SiC颗粒与熔融基体之间的润湿性及复合材料性能的影响。,结果表明:Mg可降低熔融Al液和Al-Si液的表面张力,改善了SiC-Al、SiC-Al-Si间的浸润性。Mg在SiCp/Al复合材料界面与SiC颗粒表面的氧化膜SiO_2及Al反应,在SiC颗粒与基体Al之间界面处生成MgAl_2O_4;Mg在SiCp/Al-Si复合材料中与SiC颗粒表面SiO_2氧化膜反应,在SiC颗粒与基体Al-Si之间的界面处生成MgO,因此Mg有效地抑制了脆性相Al_4C_3的生成。当Mg含量为1.0%时,对复合材料的力学性能和微观组织结构改善程度最大。另外发现Mg与空气中的氮气反应生成的MgN_2对SiC颗粒增强复合材料的浸润性也有改善作用。添加同等量的稀土Ce元素时,对SiCp/Al-Si复合材料浸润性的改善程度没有对SiCp/Al复合材料浸润性改善程度明显,因为Ce与Al-Si合金中的Si反应生成稳定的Ce_5Si_3类化合物,损失了一部分的稀土Ce。所以稀土Ce的添加量分别为0.3%和0.9%时,对SiCp/Al复合材料、SiCp/Al-Si复合
    
     武汉科技大学硕士论文 摘 要
     材料的力学性能和润湿性改善程度最大。St元素也可有效地降低AI.C。脆性
     相的量,增加铝液的流动性,提高h 颗粒与基体之间的浸润性,对SICP八
     复合材料的性能有明显的改善作用。
The Pressureless Infiltration Technique means that the spontaneous infiltration of the refined molten Al or Al-Si alloy into the power bed , contains the filler reinforcement particle and K2TiP4, occurred at 900 to fabricate SiCp/Al or SiCp/Al-Si composites, without the aid of any externally applied pressure or vacuum, only by its gravity. The technique require simple process and equipment, so the cost is low, It's a promising method for fabricating MMCs. The MMCs made by the method offer high strength and modulus as well as good high-temperature properties, when compared to corresponding monolithic alloys and they are promising materials for automotive and aerospace industry applications.
    However, the following two difficulties still exist: 1. Wetting between reinforcement SiCp and the molten metal is often poor when it is blow 1000'C; 2.During the processing, many phases of the interfacial reaction products have negative influence on the properties of the produced composites. The problems can be addressed, in part, through a strongly reactive alloying addition ,such as Mg, Li and so on, and through reinforcement coating .
    In this paper SiCp/Al composites and SiCp/Al-Si composites fabricated by the pressureless infiltration method . In order to found out the influence the different quantity of the reactive alloying addition Mg Si Ce on the wetting between SiCp and molten metal as well as the properties of MMCs , the behaviors of molten metal ,the mechanical properties, micro-structure and the interfacial reactions was investigated respectively .
    The results indicate that: the addition of Mg decreases the surface tension of molten Al and Al-Si alloy, reduce the solid/liquid interfacial energy and induce chemical reaction at the interface .so it improves wetting of Al and Al-Si metal and SiCp ceramic system .The most significant influence occurred at 1.0% Mg on both SiCp/Al composites and SiCp/Al-Si composites. The addition of Mg reacts
    
    
    with Al and SiO2 then form MgAl2O4 at the interface in the SiCp/Al composites; It reacts with SiO2 and produce MgO at the interface in SiCp/Al-Si composites, the good metal-ceramic bond is achieved. Mg can prevent the fragile AUC3 phase from producing, then the properties of the MMCs are improved. The addition of Ce can also improve the wetting between Al-Si-SiCp ceramic system. While it influent on the Al-SiCp ceramic system more effectively. Because the reactive alloying addition Ce react with Si in molten Al-Si and form stable compound CesSis .Therefore , when Ce is 0.3% and 0.9% can improve the wetting most significantly of Al-SiCp system and Al-Si-SiCp system respectively. Comparing the micro-structure and properties of SiCp/Al composites and SiCp/Al-Si composites ,we know that the addition of 11-13% Si can counteract the fragile Al4Cs phase obviously. At the same time Si causes significant changes to the viscosity of molten Al and Al-Si alloy and enhances wetting between SiCp ceramic and molten metal.
引文
1 王荣国,武卫莉,谷万里主编 复合材料概论 哈尔滨工业大学出版社 1983,p1
    2 Jacitz, A. E. (1965). Design. January 18, 64
    3 李见主编 新型材料导论 冶金工业出版社 1987,p188
    4 吴人洁 金属基复合材料的现状与发展 金属学报 1997.1.33 (1)
    5 1997,36 (9):892-895
    6 David M Schuster, etc, Jom, 1993, May:26
    7 SaSaki Keita, Tomita Takashi, Japanese Journel of Polymer Science and Technology 1993, 50(11): 855
    8 赵兵元等 材料导报 1997.Vol.11,No.5
    9 胡海萍 机械工程材料 1999,Vol.123,No.6
    10 马晓春 材料科学与工程 1994,Vol.12,No.1
    11 廖恒成 吴申庆 碳化硅颗粒增强铝基复合材料的制备与界面行为 材料科学与工程1991.9 (2)
    12 李树尘编 材料工艺学化学工业出版社 2000.9,p216
    13 李义春 颗粒增强铝基复合材料的研究进展 材料导报 1997,6.Vol.11,No.3
    14 C. M. AdamS and R. E. Lewis: in "Rapidlysolidifiedcrystallinealloys", 157-183, 1985, warrendale, PA, the Matallurgical society of AIME
    15 Rohatgi PK, Asthan R and Dasr, solidification, stucture and properties of cast metal-ceramic particle composites [J] Inter. Metals Rev. 1986, 31 (3): 115-139
    16 沈其文编 材料成型工艺基础 化学工业出版社 1999,p312
    17 吴进明 材料导报 1999,10,Vol.13,No.5
    18 Martin Marietta Corp US Pat. 4 915 908, 1990
    19 Denillmnscat T, Robin A L Metal Trans 1994, 25A:2357
    20 Mitra R Chiou WA al. Scrip Metal Mater 1991 25:2689
    21 R. M. Aikin Contract report 4276, National Aeronautics and Space ministration, Feb. 1990
    
    
    22 US Pat, 4 808 372
    23 吴人洁 金属基复合材料的现状与展望 金属学报 1997,1.Vol.33,No.1
    24 J. A. Cornie, H. K. Moon Materials Park OH, SAM International 1990, 63-67
    25 E. M. Klier:SM thesis, Massachusetts Institute of Technology, 1998
    26 S. Caron and J. Masounave: Materials Park OH, SAM International 1990, 107-113
    27 J. A. Cornie Personal communication, kongston ON, 1990
    28 S. V. Nair, J. K. Tien and R. C. Bates International metals reviews 1985 Vol. 30, No. 6
    29 Kon Bae Lee, Youn Su Kim and Hoon kwon Metallurgical and Mater. Trans. A Vol. 29A 12 1998-3087
    30 S. Schamm, R. Fedou, J. P. Rocher. etc the K2ZrF6 wetting process:Effect of Surface chemistry on the Ability of a SiC-Fiber perform to be Impregnated by Aluminium, J. Mater. Sci. 1989, 24: 2697-2703
    31 A. W. URQUHART: Mater., Sci. Eng. 1991, A144, 75
    32 M. K. Aghajanian, M. A. Rocazella, J. T. Burke, etc, The fabrication of metal matrix composites by a pressureless infiltration technique J. Mater. Sci. 1991, 26:447
    33 许圣麟 刘世永 史雅琴 自浸渗制备SiCp/Al复合材料基其耐磨性 材料科学与工程 1999 VOL.7,No.3
    34 王震明 杜善义等编 复合材料及其结构的力学设计、应用和评价(第一册) 北京大学出版社 1995
    35 袁广江 章文峰 王殿斌等SiC颗粒增强铝基复合材料制备及机加工性能的研究复合材料学报 2000.5,17 (2)
    36 J. P. Rocher, F. Girot, J. M. Quenisset, etc, Mem. Sci. Rev. Metall bruary(1986)69
    37 J. P. Rocher, J. M. Quenisset and R. Naslain J. Mater. Sci. Lett. 4(1985) 1527
    38 N. Eustathopoulos, J. C. Joud, P. Desre etc, J. Mater. Sci. 9(1974) 1233
    39 L. Coudurier, J. Adorian, D. Pique, etc, Rev. Int. Hautes. p. refract. 21(1984)81
    40 S. Kaye, J. Vac. Sci. Technol, 11
    41 朱炳琨 无压自浸渗法制备SiCp/Al复合材料机械工程材料,1999,23 (2):30-33
    
    
    42 王济国 碳化硅颗粒增强铝基复合材料 新技术新工艺 1998,No.5
    43 金属机械性能编写主编 金属机械性能 机械工业出版社 1978
    44 M. K. Aghajanian, A. S. Nagelberg and C. R. Kennedy U. S. Patent 5020584
    45 B. C. Pai, S. Ray, K. V. Prabhakar, P. K. Rohatgi. Mater. Sci. Eng. 1976, Vol. 24: 31-34
    46 Rohatgi P. K, Asthan. R and Das. R [J] Inter. Metals Rev. 1986, 31(3):115-139
    47 马晓春 材料科学与工程 1994,Vol.12,No.1
    48 Umit cocen, gazim Onel and Osmail Ozdemir Composited Sci. and Tech. 57 (1997): 801-808
    49 M. K. Aghafaniam, M. A. Rocazella. J. R. Burke. etc. Journal OF Materials Science 26(1991): 447-454
    50 S. Y. oh, J. A. Cornie and K. C. Russell Ceram. Eng. Sci. 1987, Vol. 8: 912-36
    51 T. R. Jonas, J. A. Corie snd K. C. Russell Metal. Mater. Trans. A 1995, Vol.26A:1491-97
    52 张永俐 罗素华SiC-Al界面Al4C3的生成与控制 材料科学与工程 1998 No.61
    53 上海交大金相分析组编 金相分析 国防工业出版社出版 1982
    54 董雁瑾 洪友士 SiCp增强铝基复合材料力学行为的研究进展 材料设计与加工
    55 徐光宪主编 稀土 冶金工业出版社 1995 p470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700