铸造铝基复合材料热挤压行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质、高强、高模量原位自生铝基复合材料管材在航空航天、国防工业等领域具有广泛的应用前景。本文研究课题的主要目的是通过反挤压工艺制造出高强度,高模量的铝基复合材料管材。为了得到高模量,选用高体积分数的TiB_2增强颗粒,由于高体积分数的增强颗粒在基体材料中存在流动性差,界面结合不好等问题,所以选取流动性好的铸造共晶铝合金作为基体材料。但铸造铝基复合材料的塑形较差,因此采用反挤压的方法来改善其塑形,并得到复合材料管材。
     本文采用热模拟与实际试验相结合的方法,对复合材料的高温热加工行为进行研究。内容包括:探讨材料的高温流变行为,确定温度和应变速率等对于材料热变形的影响,建立了材料的热变形本构方程。应用动态材料模型建立材料的热加工图,确定热加工合适的加工工艺。最后对材料进行反挤压试验来验证热加工图的分析结果,并对不同处理状态下的材料进行性能比较及相关分析。
     本文首先通过Gleeble3500热模拟机研究TiB_2/Al-Si-Mg-Cu铝基复合材料的高温流变行为,实验结果表明TiB_2/Al-Si-Mg-Cu铝基复合材料在高温热变形时存在稳态流变特征,随着流变应力应变速率的增大而增大,随着温度的升高而降低,同时根据热模拟得到的真应力—真应变曲线计算得出了复合材料的热变形本构方程。
     根据热模拟实验得到的数据,绘制了TiB_2/Al-Si-Mg-Cu铝基复合材料的功率耗散图和热加工图。功率耗散图结果表明:随着温度的升高和应变速率的降低,功率耗散率增大,有利于材料的动态再结晶;从材料的热加工图上可以看出,该复合材料在实验范围内有两个失稳区域,一个是低温高应变速率区域,该区域的失稳主要由于基体裂纹的产生和颗粒的脱粘断裂引起的,另一个区域是高温中等应变速率区域,造成材料的失稳的主要原因可能是楔形开裂和颗粒的脱粘断裂,在加工时应当尽量避免这两个区域。在高温低应变速率区域,如500℃,10-3 s~(-1)的实验条件下,功率耗散率最高且与稳定区相对应,是TiB_2/Al-Si-Mg-Cu铝基复合材料的最佳加工区域。
     根据热加工图上得到的加工工艺,对TiB_2/Al-Si-Mg-Cu复合材料实体材料进行反挤压实验后,发现在温度为500℃,应变速率为10-3 s~(-1)的实验条件下,材料表面光滑,没有微裂纹,的确为材料的最佳加工区域。而在300℃,1 s~(-1)的实验条件下,材料表面发生宏观开裂。
     最后对不同处理条件下的TiB_2/Al-Si-Mg-Cu复合材料进行力学性能测试。显微硬度的测试结果为:未经过处理的原始复合材料<反挤压后的复合材料<反挤压后经过T6热处理的复合材料。又对TiB_2/Al-Si-Mg-Cu复合材料进行反挤压变形,测试其拉伸性能。可以发现经过反挤压后,复合材料的抗拉强度,弹性模量和延伸率均有大幅度提高,分别提高了53.8%,16.9%和191.4%。对经过反挤压和未经过反挤压的材料均进行T6热处理,可以发现对于无论是否经过反挤压的复合材料,热处理过后抗拉强度有很大提高,弹性模量变化不大,而延伸率有所降低。其中力学性能最好的为反挤压后经过热处理的TiB_2/Al-Si-Mg-Cu复合材料。
Light weight, high strength and high modulus in situ aluminum composite pipe have a broad prospect of application in aerospace, national defense industry fields. The main purpose of the paper is to produce high strength and high modulus of aluminum composite pipes through backward extrusion. In order to get high modulus, we choose large volume fraction TiB_2 particle reinforcement. Large volume fraction particle reinforcement have bad flow ability and interfacial bonding, so we choose casting eutectic aluminum composite as matrix material which have good flow ability. However, casting aluminum composites have bad plasticity. We choose the method of backward extrusion to improve plasticity and gain the composite pipes.
     This paper combines the thermal simulation and actual experiments to research flow stress behaviors of composite materials at high temperature. The contents include: discussing flow stress behaviors of composites at high temperature and how temperature and strain rate influence flow stress behaviors; establishing the thermal deformation constitutive equation of composites; drawing power dissipation maps and processing maps according to dynamic material model; doing backward extrusion experiments to prove results of processing maps and making performance comparisons of composites under different conditions and related analysis.
     Firstly, the paper studied flow stress behaviors of TiB_2/Al-Si-Mg-Cu composite at high temperature using Gleeble3500. The results showed that TiB_2/Al-Si-Mg-Cu composite has steady-state flow characteristics during hot deformation. The flow stress increased with the strain rate and decreased with the temperature. Meanwhile, the paper figured out the constitutive equation according to the true stress—true strain curves of composites.
     According to the data of hot simulation, the paper draws the power dissipation maps and processing maps. The power dissipation maps showed that power dissipation efficiencies of TiB_2/Al-Si-Mg-Cu composite increased with temperature and decreased with strain rate. That was helpful to dynamic recrystallization. From the processing maps, it would be found there were two instable regions. One was the region with high strain rate and low temperature which was mainly due to matrix crack and particle debonding and crack. The other was the region with high temperature and middle strain rate which could be due to wedge crack and particle debonding and crack. The two regions should be avoided in the hot deformation. The optimum working region was the region with high temperature and low strain rate, for example, 500℃,10-3 s~(-1). The region was stable and the power dissipation efficiency was highest. According to the processing map, it was found that 500℃,10-3 s~(-1) was the optimum working region after backward extrusion. The composite had smooth surface and no cracks. But under the condition of 300℃,1 s~(-1), there were macro cracks in the surface.
     At last, the paper tested the performances of composites under different conditions. The result of microstructure hardness showed: original composite < composite after backward extrusion < composite after backward extrusion and T6 heat treatment. The results of tensile tests showed that after extrusion, the tensile strength, modulus and elongation increased very much, by 53.8%, 16.9% and 191.4% separately. Whether the composite was heat treated, it could be found that the tensile strength increased, the modulus had no change and the elongation decreased. The best composite was the one after backward extrusion and heat treatment.
引文
[1] Hunt Jr., W.H., Herling, D.R. Aluminum metal matrix composites [J], Advanced Materials and Processes, 2004,162 (2):39-44
    [2]吴人洁.金属基复合材料的现状与展望[J],金属学报,1997, 33: 78-84
    [3] T.W.克莱因, P.J.威瑟斯.金属基复合材料导论[M],冶金工业出版社,北京1996,1-6
    [4]王丽雪,铝基复合材料研究的进展,轻合金加工技术,2005,33(8),10-12
    [5]师昌绪,李恒德,周廉,材料科学与工程手册(下卷),北京,化学工业出版社-材料科学与工程出版中心,2004,9-46
    [6] Milton E.Toaz,Matrtion D.Smalc,Cast Metal Composite Article,U.S.A Patent,Chemical,No.4587177,Filed Apr.4,1985,Issued May 6,1986
    [7]张国定,赵昌正,金属基复合材料,上海,上海大学出版社,1996,11-175
    [8] Milton E.Toaz,Matrtion D.Smalc, Cast Metal Composite Article,USA,Chemical, 4587177,1986
    [9]乐永康,张迎元,颗粒增强铝基复合材料的研究现状.材料开发与应用,1997,5(12),33~39
    [10]朵军,颗粒增强铝基复合材料的研究现状,研究与开发,2006,4,58-59
    [11] Dubey S.,Srviatsan T.S.,Soboyejo W.O.,Fatigue crack propagation and fracture characteristics of in-situ titanium-matrix composites, International Journal of Fatigue, 2000,22,161-174
    [12] Benjamin J.S.,In situ preparation of Titanium base composites using a powder metallurgy technique,Metall Trans,1970,1,2943-2951
    [13] Iizumi K.,Iizami H.,Sasaki T.,etc,Rertive sintering of TiC-TiB_2 composite prepared with mechanochemically-processed precursor,粉体および粉末冶金,2000,47(12),247-1252
    [14] Lu L.,Lai M.O.,Wang H.Y.,Synthesis of titanium diboride TiB_2 and Ti-Al-b metal matrix composites, Journal of Materials Science,2000,35,241-248
    [15]肖伯律,毕敬,赵明久,马宗义.SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响.金属学报,2002,38(9):1006-1008
    [16]才庆魁,贺春林,赵明久,毕敬,刘常升.亚微米级SiC颗粒增强铝基复合材料的拉伸性能与强化机制.金属学报,2003,39(8):865-869
    [17] J.Boselli1,P.J.Gregson,I.Sinclair.Quantification of particle distribution effects on fatigue in an Al–SiCp composite.Materials Science and Engineering,2004,(379):72–82
    [18]曲寿江,耿林,曹国剑,雷廷权.挤压铸造法制备可变形SiCPAl复合材料的组织与性能.复合材料学报,2003,20(3):69-73
    [19] N.E.Bekheet,R.M.Gadelrab,M.F.Salah,A.N.Abd El-Azimc.The effects of aging on the hardness and fatigue behavior of 2024 Al alloy_SiC composites.Materials andDesign,2002,(23):153-159
    [20] Ferhat Gul,Mehmet Acilar. Effect of the reinforcement volume fraction on the dry sliding wear behavior of Al–10Si/SiCp composites produced by vacuum infiltration technique. Composites Science and Technology,2004,(64):1959–1970
    [21]张全萍,许伯藩,吴新杰,王蕾.Mg对无压自浸渗制备SiCp/Al复合材料组织与性能的影响.中国有色金属学报,2002,12(1):147-150
    [22]齐海波,丁占来,樊云昌,姜稚清.SiC颗粒增强铝基复合材料制动盘的研究.复合材料学报,2001,18(1):62-66
    [23] M.Ko¨k.Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites,2006,(37):457-464
    [24] B.Yang,F.Wang,J.S.Zhang.Microstructural characterization of in situ TiC/Al and TiC/Al–20Si–5Fe–3Cu–1Mg composites prepared by spray deposition.Acta Materialia,2003,51(17):4977-4989
    [25] Shuying Zhang,Yuyong Chen and Qingchun Li.Research on microstructure and properties of aluminum-matrix composite fabricated by spray deposition.Journal of Materials Processing Technology,2003,137(1-3):168-172
    [26] S.C.Tjong, Z.Y.Ma. Microstructure and mechanical characteristics of in situ metal matrix composites [J], Materials Science and Engineering, 2000, 29:49-113
    [27] S.C.Tjong, Z.Y.Ma. Microstructure and mechanical characteristics of in situ metal matrix composites [J], Materials Science and Engineering, 2000, 29:49-113
    [28]刘江,彭晓东,刘相果,权燕燕.原位合成铝基复合材料的研究现状[J],重庆大学学报(自然科学版) , 2003,(10):1-5
    [29] J.V.Wood, P.Davies,J.L.F.Kellie. Properties of reactively cast aluminum-TiB_2 alloys [J]. Materials Science & Technology, 1993, 9: 833-839
    [30] L. Lu,M.O. Lai, F.L. Chen.Al-4 wt% Cu composite reinforced with in-situ TiB_2 particles [J],. Acta Materialia, 1997, 45 (10): 4297-4309
    [31] S.lakshmi, L.Lu, M.Gupta. In situ preparation of TiB_2 reinforced Al based composite [J]. Journal of Materials Processing Technology, 1998, 73:160-166
    [32] N.L.Yue, L. Lu,M.O. Lai. Application of thermodynamic calculation in the in-situ process of Al/TiB_2 [J], Composite Structures.1999, 47(1): 691-694
    [33] C.Bartels, D.Raabe, G.Gottstein,et al.Investigation of the precipitation kinetics in an Al606/TiB_2 metal matrix composite[J]. Materials Science and Engineering: A 1997, 237:12-23
    [34] Daniel B. Miracle. Aeronautical Applications of Metal-Matrix Composites [M], ASM. Handbook, Volume 21, Composites, 2001:1043-1049
    [35] Chen, Y., Chung, D.D.L. Ductile and strong aluminum-matrix titanium aluminide composite formedin situ from aluminum, titanium dioxide and sodium hexafluoroaluminate [J], Journal of materials science ,1995,30(18): 4609-4616
    [36] Maity, P.C., Panigrahi, S.C., Chakraborty, P.N. Preparation of aluminium-alumina in-situ particle composite by addition of titania to aluminium melt, Scripta Metall. Mater., 1993,28:549-552
    [37] Nukami, Tetsuya, Flemings, Merton C. In situ synthesis of TiC particulate reinforced aluminum matrix composites [J], Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science, 1995, 26(7):1877-1884
    [38] Nakata, H., Choh, T., Kanetake, N. Fabrication and mechanical properties of in situ formed carbide particulate reinforced aluminium composite[J],Journal of Materials Science 1995,30 (7):1719-1727
    [39] Arik, H., Ozcatalbas, Y., Turker, M. Dry sliding wear behavior of in situ Al-Al4C3 metal matrix composite produced by mechanical alloying technique [J],Materials & Design, 2006,27 (9): 799-804
    [40] M.Besterci,M.slesar,L.Kovac. Influence of strain rate on fracture of dispersion strengthened Al- Al4C3 systems [J], Scripta Materialia, 1997,37(7):1077-1080
    [41] Yusuf Ozcatalbas.Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique [J], Composites Science and Technology,2003,63(1):53–61
    [42] Q.C. Jiang, B.X. Ma, H.Y. Wang, et al. Fabrication of steel matrix composites locally reinforced with in situ TiB_2-TiC particulates using self-propagating high-temperature synthesis reaction of Al-Ti-B4C system during casting [J], Composites Part A: Applied Science and Manufacturing, 2006,37(1): 133-138
    [43] T.G. Durai, Karabi Das, Siddhartha Das. Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates [J], Materials Science and Engineering: A, 2007, 445-446: 100-105
    [44]张淑英,陈玉勇,李庆春.反应喷射沉积金属基复合材料的研究现状[J],兵器材料科学与工程1998,21(5):52-57
    [45]彭哓东,钱翰城,肖肖等.喷射氧化法制备Al增强Al2O3复合材料[J],宇航材料工艺,1994,2:14-17
    [46] Murali Hanabe, Vikram Jayaram , T. A. Bhaskaran, Growth of Al2O3/Al composites from Al-Zn alloys [J],Acta Materialia,1996,44(2): 819-829
    [47] H. Venugopalan, T. DebRoy. Growth stage kinetics in the synthesis of Al2O3/Al composites by directed oxidation of Al-Mg and Al-Mg-Si alloys [J], Journal of the European Ceramic Society, 1996, 16(12): 1351-1363
    [48] Jian Zhang, Degui Zhu, Liu Yang, et al. Wear behavior of Lanxide Al2O3/Alcomposite [J],Wear, March 1998, 215(1-2): 34-39
    [49] Srinivasa Rao Boddapati, Jürgen R?del, Vikram Jayaram. Crack growth resistance (R-curve) behaviour and thermo-physical properties of Al2O3 particle-reinforced AlN/Al matrix composites [J], Composites Part A: Applied Science and Manufacturing, 2007, 38(3):1038-1050
    [50] L. Ceschini, C. Bosi, A. Casagrande, et al.Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg–SiCp composite [J], Wear, 2001,251(1-12):1377-1385
    [51] Kon Bae Lee, Hoon Kwon. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles [J], Matallurgical and Materials Transactions 2002, 33A:455-465
    [52] Sahoo, P., Koczak, M.J. Microstructure-property relationships of in situ reacted TiC/A1-Cu metal matrix composites[J], Materials Science and Engineering :A ,1991, 131(1):69-76
    [53] Haibo, K. Chen, Z. Heping, et al. Direct nitridation of molten Al(Mg,Si) alloy to AlN [J], Journal of Crystal Growth 2005,281(2-4): 639-645
    [54] Chunxiang Cui, Renjie Wu, Yanchun Li, et al. Fracture toughness of in situ TiCp+AlNp/Al composite[J], Journal of Materials Processing Technology 2000,100:36-41
    [55]王双喜,刘雪敬,孙家森.铝基复合材料的制备工艺.热加工工艺,2006,35(1):65-69
    [56] Taha, M.A. Industrialization of cast aluminum matrix composites (AMCs) [J], Materials and Manufacturing Processes 2001,16 (5):619-641
    [57] o i, J., Mitxelena, I., Coleto, J. Development of low cost metal matrix composites for commercial applications [J],Materials Science and Technology, 2000,16 (7-8):743-746
    [58] Ramanathan S.,Karthikeyan R.,Hot Deformation Behavior of 2124 Al Alloy,J.mater.sci.technol.,2006,22(5),611-615
    [59]曾卫东,周义刚,加工图理论研究进展,稀有金属材料与工程,2006,35(5),673-677
    [60] Zhang B.,Baker T.N., Effect of the heat treatment on the hot deformation behavior of AA6082 alloy, Journal of Materials Processing Technology,2004,153–154,881–885
    [61]杨立斌,张辉,彭大暑,等,7075铝合金高温流变行为的研究,热加工工艺,2002,1,1-3
    [62]甘卫平,王义仁,陈铁平等,等,6013铝合金热变形行为研究,材料导报,2006,20(5),111-113
    [63]张鹏,李付国,李惠曲,SiC颗粒增强铝基复合材料的热变形本构方程及其优化,航空材料学报,2009,20(1),51-56
    [64]赵明久,刘越,毕敬,碳化硅颗粒增强铝基复合材料(SiCp/2024A1)的热变形行为,金属学报,2003,39(2),221-224
    [65] Ramanathan S.,Karthikeyan R.,Ganasen G.,Development of processing maps for 2124Al/SiCp composites,Materials Science and Engineering A,2006,441,321–32
    [66] Cavaliere P.,Cerri E.,Leo P.,Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite,Composites Science and Technology, 2004,64,1287–1291
    [67]谢建新,刘静安,金属挤压理论与技术,北京:冶金工业出版社,2001:1-80
    [68]横林宽昉,反挤压的特性及其应用,轻金属,1981,31(5),30-35(高士乙译)
    [69] VEDANI M, ERRICO F D, GARIBOLDI E. Mechanical and fracture behavior of aluminum-based discontinuously reinforced composites at hot working temperatures [J]. Composites Science and Technology, 2006, 66: 343?349.
    [70] Ramanathan S.,Karthikeyan R.,Gupta Manoj,Development of processing maps for Al/SiCp composite using fuzzy logic,Journal of Materials Processing Technology,2007,183,104–110
    [71]苏雅璇,马乃恒,易宏展,王浩伟.原位合成TiB_2/ZL109复合材料的力学性能(J).热加工工艺,2006,35(18):11-16.
    [72] GAN Wei-ping, WANG Yi-ren, CHEN Tie-ping, YANG Fu-liang, LIU Hong.Research of hot deformation behavior of 6013 aluminum alloy[J]. Materials Review, 2006, 20(5): 111?113.
    [73]郭胜利,李德富,陈东,王浩伟.原位合成TiB_2/6351复合材料的高温压缩流变行为.中国有色金属学报,2009,19(1):8-14.
    [74] Tassa O, Testani C, Ricci Bitti R. Plastic flow at high temperature and strain rate of hot deformed Fe-Al alloy. Scripta Metallurgicaet Materialia, 1992, 26:1813-1816.
    [75] SELLARS C M, TEGART W J M. On the mechanism of hot deformation[J]. Acta Metallurgica, 1996, 14(9): 1136?1138.
    [76]杨立斌,张辉,彭大暑,等,7075铝合金高温流变行为的研究,热加工工艺,2002,1:1-3
    [77]王孟君,杨立斌,甘春雷,彭大暑,6063铝合金高温流变本构方程,华中科技大学学报,2003,31(6):20-22
    [78] Prasad Y.V.R.K.,Gegel H.L., Doraivelu S.M.,etc,Lark and D.R.Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242,Metallurgical Transactions A,1984,15,1883-1894
    [79] G.Ganesan, K.Raghukandan, R.Karthikeyan, B.C.Pai, Development of processing map for Al/15%SiCp through neural networks, Journal of Material Processing Technology, 166(2005) 423-429
    [80] Cavaliere p.,Evangelista E.,Isothermal forging of metal matrix composites:Recrystallization behaviour by means of deformation efficiency,Composites Science and Technology,2006,66,357-362
    [81]金方杰,铝基复合材料的高温流变行为及加工图研究[学位论文],上海,上海交通大学,2008
    [82]王迎新,Mg-Al合金晶粒细化、热变形行为及加工工艺的研究[学位论文],上海,上海交通大学,2006
    [83] S.ramanathan, R.Karthikeyan, G.ganasen, Development of processing maps for 2124Al/SiCp composites, Materials Science and Engineering A 441(2006) 321-325
    [84] Y.V.R.K.Prasad, D.H.Sastry, S.C.Deevi, Processing maps for hot working of a P/M iron aluminide alloy, Intermetallics 8 (2000) 1067-1074
    [85] H.Ziegler,Progress in solid mechanics,ed.I.N.Sneddon and R.Hill,New York, Wiley,965,4,91-193
    [86] Raj R.,Development of a processing Map for Use in Warm-forming and Hot-forming processing, Metall Trans,1981,12A,1089
    [87] Radhakrishna B.V.,Mahajan Y.R.,Roshan H.Md.,etc,Processing Map for Hot Working of Powder Metallurgy 2124 AI-20 Vol Pct SiCp Metal Matrix Composite,Metallurgical Transactions A,1992,23A
    [88] Qi guohong, Fang Canfeng, Bai Yun, etc. Effect of hot extrusion on microstructures and properties of TiB_2/AZ31 Magnesium Based Composites, Rare Metal Materials and Engineering, 2011, 40(8): 1339-1343
    [89]肖伯津,樊建中,左涛,等,塑性变形对15 % SiCp/ 2009 Al复合材料的性能改善,稀有金属,2004,28(1),13-15
    [90] Hong S H, Chung K H, Lee C H. Effect s of Hot Extrusion Parameters on the Tensile Properties and Microstructures of SiCw-2124Al Composites [ J ] .Mater. Sci. Eng., 1996, 206A: 225~232.
    [91] Lieblich M, Gonzalez Doncel G, Adeva P. Extrudabilit y of PM 2124/SiCp Aluminium Matrix Composite [ J ] . J. Mater. Lett. ,1997, 16: 726~728.
    [92]张文龙,王红,王德尊,等,热挤压和时效处理对SiCw/ LD2复合材料拉伸性能的影响,金属热处理,2000年第10期,5~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700