新型Al-Si复合材料制备与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用压力熔渗和热挤压工艺制备了低膨胀、低密度Al-Si复合材料。确定了Al-Si复合材料压力熔渗和热挤压工艺参数;分析了压力熔渗和热挤压工艺对Al-Si复合材料成形性、组织和性能的影响;结合理论计算探索了Al-Si复合材料熔渗机理。本文的主要结论如下:
     1.采用压力熔渗工艺可制备出综合性能优良的高硅含量的Al-Si复合材料。制备出的Al-Si复合材料热膨胀系数为8~10×10~(-6)/℃,密度为2.48g/cm~3,抗压强度为217.5 MPa,延伸率为1.45%。
     2.适当的提高熔渗温度和延长熔渗时间可改善Al-Si体系的润湿性能,有利于Al基体网络结构的形成。
     3.压力熔渗工艺制备Al-Si复合材料中存在的大量共晶相和粗大条状Si颗粒严重影响材料力学性能。热挤压工艺可消除Al-Si复合材料中这些缺陷,改善材料的性能。
     4.XRD分析结果中无氧化物相形成,这表明Al-Si复合材料的制备可无需气氛保护。
     5.由于预制体中各成分的百分含量具有可调节性,因此采用压力熔渗法在预制体不会压缩变形的基础上可以自由的调节复合材料中硅增强相与铝基体之间的比例。
     6.理论分析计算和实验研究结果表明,实际压渗压力大于理论压渗压力计算值,产生偏差的主要原因是计算模型理想化,且忽略了压力熔渗过程中预体制内气体阻力的作用。
In the present paper, a new-style Al-Si composite, which possesses less density and lower expansion coefficient, was fabricated by the method of pressure infiltration combined with hot extrusion. The processing parameters of pressure infiltration and hot extrusion were confirmed. The influences of the processing parameters on the formability, the microstructure and the properties of Al-Si composites were discussed. The pressure infiltration mechanism was studied systematically by combining with the theoretic calculation. The main conclusions are presented as follows.
    1. High-performance Al-Si composite can be fabricated successfully by the method of pressure infiltration combined with hot extrusion. Its thermal expansion coefficient is 8~10×l0~6/℃, the density 2.48g/cm~3, the compresive strength 217.5 MPa, and the extensibility 1.45%.
    2. The wettability in the Al-Si system can be improved by elevating the infiltration temperature and elongating the infiltration time properly, which are helpful to form the network structure in the aluminum matrix.
    3. There are a large numbers of eutectic phases and some coarse, strip Si particles, which lead the mechnical property to worsen seriously, in Al-Si composite fabricated by single pressure infiltration. The eutectic phases and coarse, strip Si particles can be decreased by sequential hot extrusion, and the mechnical property of Al-Si composites can be improved remarkably.
    4. The XRD results show there is no metal oxides formed in Al-Si composites, and indicate that Al-Si composites can be prepared in no protective atmosphere.
    5. If the precast body is undeformed, the ratio between the Si reinforced particles and the aluminum matrix can be adjusted freely to obtain the high-performance Al-Si composite during the course of pressure infiltration
    6. The results of theoretical calculation and the experiments show that the actual infiltration pressure is larger than that of the theoretical calculation, which can be attributed to the simplification of the calculating model and the neglect of the air pressure in precast body in the course of pressure infiltration.
引文
[1] 李国庆,陈建华,杨国英,魏从仁.颗粒增强铸造铝基复合材料的研究状况[J].轻金属,1997(6):60-62.
    [2] D. Ducret, R. El Guerjouma, P. Guy, M. R'Mili, J.C. Baboux, P. Merle, Characterisation of anisotropic elastic constants of continuous alumina fibre reinforced aluminium matrix composite processed by medium pressure infiltration.Composites[J]. Composites, 2000 (Part A 31 ): 45-55.
    [3] 蒲泽林,褚景春,毛雪平.颗粒增强金属基复合材料的制备方法综述[J].现代电力,2002.19(6):31-37.
    [4] 王基才,尤显卿,郑玉春,程娟文.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金,2003.20(1):51-55.
    [5] A.S. Chen, R. S. Bushby, V. D. Scott, Deformation and damage mechanisms in fibre-reinforced aluminium alloy composites under tension [J]. Composites, 1997(Part A 28A): 289-297.
    [6] 杨国英,陈建华,任智森.颗粒增强铸造铝基复合材料的研究[J].轻合金加工技术.1998.26(5):39-42.
    [7] 王俊,孙宝德,周尧和,陈锋,舒光冀.颗粒增强金属基复合材料的发展概况[J].铸造技术.1998(3):37-41.
    [8] Sang-Kwan Lee, Joon-Hyung Byun, Soon Hyung Hong, Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science and Engineering, 2003 (A347):346-358.
    [9] 李俊,钱翰城等.铸造金属基颗粒复合材料[J].机械,23(1),1996:44-46.
    [10] 李成功.金属基复合材料的研究与发展[J].宇航材料工艺,No.4,1995:1-5.
    [11] 吴人洁.复合材料[M].天津:天津大学出版社,2000:12-50.
    [12] 熊惟皓,胡镇华等.金属陶瓷相界面的研究[J].材料导报,11(1),1997:5-8.
    [13] S.Ray. Review Synthesis of cast metal matrix Particulate Composites [J]. J.Mater.Sci., No.28,1993:5397-5413.
    [14] 曾汉民.当前高技术和新材料的发展趋势[J].材料科学与工程,No.2,1991:1-5.
    [15] 丁毅,朱平等.用纯金属粉料制备高性能SiC_p/Al复合材料[J].材料工程,No.4,1994:1-4.
    [16] 颜悦,彭应国等.氧化铝颗粒增强铝基复合材料无压浸渗过程的探索研究[J].航空材料学报,17(3),1997:22-26.
    [17] 于春田.金属基复合材料[M].北京:冶金工业出版社,1995:1-127.
    [18] T.W.Clyne,P.J.Withers著,余永宁,房志刚译.金属基复合材料导论[M].北京:冶金工业出版社,1996:1-5.
    [19] 王俊英,杨启志,等.金属基复合材料的进展、问题与前景展望[J].青岛建筑工程学院学报,20(4),1999:90-95.
    [20] 吴人洁.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报,17(1),2000:1-4.
    [21] 黄强,顾明元等.电子封装材料的研究现状[J].材料导报,14(9),2000:28-32.
    [22] 乐永康,张迎元.颗粒增强铝基复合材料的研究现状[J].材料开发与应用,12(5),1997:33-39.
    [23] 樊建中,姚忠凯.颗粒增强铝基复合材料研究进展[J].材料导报,11(3),1997:48-51.
    [24] Scala E P. A brief history of Composites in the U.S. the dream and the success [J]. JOM, 48(2),1996,45.
    [25] Mortensen A.A review of the fracture toughness of particle reinforced aluminum alloys.Fabrication of Particulate Reinforced Metal Composites [J]. ASM, 1990.217.
    [26] Ibrahim I A, Mohamed F A and Lavernia E J.Particulate reinforced metal matrix composites -a review[J].Mater Sci, 1991, 26:1137.
    [27] Z. Shil, J.-M. Yang, T. Fan, D. Zhang, R.Wu, The melt structural characteristics concerning the interfacial reaction in SiC(p)/Al composites[J].Applied Physics A Materials Science & Processing,2000(A 71):203-209.
    [28] 刘荣佩,田鹏,吴新光,李红卫,左孝青.SiC_P增强泡沫铝基复合材料制备工艺及润湿性研究[J].稀有金属,2004.28(1):21-24.
    [29] 黄永攀,李道火,王锐,黄伟.改善铸造法制造MMC_P中铝基体与增强颗粒间润湿性的方法[J].铸造技术,2004.25(1):17-18.
    [30] Sanjay Kumar Thakur, Brij Kumar Dhindaw, The influence of interfacial characteristics between SiC_p and Mg/Al metal matrix on wear, coefficient of friction and microhardness[J]. Wear, 2001(247):191-201.
    [31] 《轻金属材料加工手册》编写组.轻金属材料加工手册(上)[S].北京:冶金工业出版社,1979.38-49.
    [32] 郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004:88-89.
    [33] 曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993:21-56.
    [34] 桂满昌.颗粒增强铝基复合材料的制备和应用[J].材料导报,No.3,1996:65-69.
    [35] 王军,严彪,等.金属基复合材料的发展和未来[J].上海有色金属,20(4),1999:188-192.
    [36] 喻学斌,吴人洁,等.金属基电子封装复合材料的研究现状及发展[J].材料导报,No.3,1994:64-66.
    [37] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,20(6),1997:35—39.
    [38] Carl Zweben, et al. Advances in Composite Materials for Thermal Management in Electronic Packaging[J].JOM, 1998, 50(6), 47.
    [39] L.A.Ibrahim, F.A.Monhamed, et at. Particulate reinforce metal matrix composites a review [J].J.Mater.Sci, No. 26, 1991:1137-1156.
    [40] 黄亲国,周贤良,张建云.无压渗透法制备颗粒增强铝基复合材料的研究[J].材料科学与工艺, 1996.4(3):116-119.
    [41] 王济国.SiC_p/Al复合材料的自浸渗工艺[J].福州大学学报(自然科学版),1998.26(2):71-75.
    [42] M.I. Pech-Canul, R.N. Katz, M.M. Makhlouf. Optimum conditions for pressureless infiltration of SiCp performs by aluminum alloys [J]. Journal of Materials Processing Technology, 108(2000): 68-77.
    [43] N. Nagendra, B.S. Rao, V. Jayaram. Microstructures and properties of Al_2O_3:Al-AIN composites by pressureless infiltration of Al-alloys[J]. Materials Science and Engineering, A269 (1999): 26-37.
    [44] 俞剑,喻学斌,张国定.真空压力浸渗法制备SiC_P/Al的研究[J].材料科学与工艺,1995.3(4):6-10.
    [45] Ali Miserez, Andreas Mortensen, Fracture of aluminium reinforced with densely packed ceramic particles: influence of matrix hardening [J]. Acta Materialia, 2004(52): 5331-5345.
    [46] 刘小梅,刘政.低浸渗压力制备短纤维增强铝硅合金复合材料[J].宇航材料工艺,2003(3):29-32.
    [47] 谢盛辉,陈康华,汤皎宁,曾燮榕,刘红卫.用反应压力熔渗法制备高含量SiC_P/6013Al复合材料及其力学性能[J].湖南有色金属,2003.19(2):30-34.
    [48] Ljoyd D.J. International Material Reviews [J]. Journal of Materials Processing Technology, 1994.39(1):1-2.
    [49] 崔春翔,吴人洁,王浩伟.原位金属基复合材料的制备原理及工艺[J].材料开发与应用,1995.10(5):35—39.
    [50] M.YILMAZ, S.ALTINTAS. Fabrication of Al matrix composites reinforced with high contents of Si particles [J]. JOURNAL OF MATERIALS SCIENCE LETTER, No.15, 1996:2093-2095.
    [51] 马鸣图,沙维编,材料科学和工程研究进展[M],北京:机械工业出版社,2000:192.
    [52] Low thermal expansion PM aluminum alloy for electronic application[R]. Metal Powder Report, 45(9), 1990:589-598.
    [53] Jacobson D M. Lightweight electronic packaging technology based on spray formed Si-Al [J]. Powder Metallurgy, 43(3), 2000:200-209.
    [54] Sangha S P S, Jacobson D M, et al. Novel aluminum-silicon alloys for electronic packaging [J]. Engineering Science and Education Journal, 6(5), 1997:195-206.
    [55] Chien C W, Lee S L, et al. Effects of sip size and volume fraction on properties of Al/Sip composite [J]. Materials Letters, 52(4-5), 2002:334-341.
    [56] Kevin A. Moores. High Performance Packaging Materials and Architectures for Improved Thermal Management of Power Electronics [J], Future Circuits International, 2001, Issue 7, 45.
    [57] Jin-Chun Kim, Sing-Soo Ryu, et al. Metal Injection Moldling of Nanostructured W-Cu Composite Powder [J].The International Journal of Powder Metallurgy, 1999, 35 (4), 47-55.
    [58] 熊德赣,赵询,等.等高体积分数颗粒预制件及其复合材料的制备[J].宇航材料工艺,No.4,2004:30-33.
    [59] 李传斌.造型材料新论[M].北京:机械工业出版社,1993:23-41.
    [60] 马红萍,袁森.预制体气孔率测试及其影响因素的研究[J].热加工工艺,No.3,2002:38-40.
    [61] 吴成义,张丽英.粉末成形力学原理[M].北京:冶金工业出版社,2003:4-11.
    [62] 于思荣,何镇明.挤压浸渗金属基短纤维复合材料浸渗压的理论分析及应用[J].复合材料学报,1995.12(2):15-20.
    [63] 王玉庆,郑久红.挤压铸造CF/Al复合材料的工艺研究[J].宇宙材料工艺,No.1,1995:35-40.
    [64] H. Akbulut, M. Durman, Temperature dependent strength analysis of short fiber reinforced Al-Si metal matrix composites[J], Materials Science and Engineering, A262 1999: 214-226.
    [65] 马晓春.挤压铸造法制备SiC颗粒增强铝基复合材料[J].热加工工艺,No.4,1996:25-28.
    [66] 中国机械工业学会铸造专业学会.铸造手册[S].北京:机械工业出版社,1993:2-165.
    [67] 马泗春,张强.挤压铸造对Al_2O_3/Al-Si合金复合材料组织与性能的影响[J].西安理工大学学报,No.11,1995:106-110.
    [68] 王俊,孙宝德,周尧和,陈锋,舒光冀.颗粒增强金属基复合材料的发展概况[J].铸造技术,1998.3:37-41
    [69] Turner PS. Thermal expansion stresses in reinforced plastics. Res Natl Bureau standard [J], No.37, 1989:239-245.
    [70] 蔡杨,郑子樵,等.轻质Si-Al电子封装材料制备工艺的研究[J].粉末冶金技术,22(3),2004:168-172.
    [71] 马伯信.新型铝基复合材料的研究与应用展望.固体火箭技术[J],18(3),1995:54-61.
    [72] 李魁盛.铸造工艺及原理[M].北京:机械工业出版社,1987:247-264.
    [73] 邹家生,许如强,赵其章.铝基钎料在碳化硅颗粒增强铝基复合材料上的润湿性研究[J].兵器材料科学与工程,2004.27(2):15-18.
    [74] L.A.Ibrahim, F.A.Monhamed, et al. Particulate reinforce metal matrix composites a review [J].J.Mater.Sci., No. 26, 1991:1137-1156.
    [75] R.E.科林斯(著),陈钟详等(译).流体通过多孔材料的流动[M].北京:石油工业出版社,1984:15-20.
    [76] BearJacob(著),李竞生、陈崇希(译).多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.90-130.
    [77] 胡锐,李金山等.石墨/铜基复合材料真空液相浸渗过程动力学研究[J].固体火箭技术.20(3),2004:297-300.
    [78] 田春霞.电子封装用导电丝材料的发展[J].稀有金属,27(6),2003:782-787.
    [79] 翟启杰,关绍康,商全义编著.合金热力学理论及其应用[M].北京:冶金工业出版社,1999.8-33.
    [80] 薛定谔A.E.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:45-155.
    [81] 盛敬超.工程流体力学[M].北京:机械工业出版社,1987:273-275.
    [82] 瞿启杰,关绍康.合金热力学理论及其应用[M].北京:冶金工业出版社,1999:122-128.
    [83] Vafai K, Tien C L. Modeling of hydrodynamic and the rmal behavior by the fluid [J]. Int J Heat Mass Transfer, No.24,1981:195.
    [84] 储双杰,吴人洁.挤压铸造颗粒增强金属基复合材料过程中液态金属浸渗和传热行为的分析[J].上海交通大学学报,33(2),1999:139-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700