TiB_2+SiC颗粒混杂增强ZL109复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇航、航空、尖端武器和集成电路等高科技的飞速发展,对材料提出了更高的要求,传统的单相材料越来越难以满足尖端科技高速发展的需求,颗粒增强铝基复合材料以其轻质、高比强度、高比模量及良好的可设计性等优点,为制备在多方面都具有优良性能的材料提供了可能。
     颗粒增强铝基复合材料虽然具有上述优异性能,但是成型和机加工困难等问题,一直是阻碍其实际应用的难题。首先,在颗粒增强铝基复合材料制备和成形过程中,因为大颗粒的沉降和小颗粒的团聚等问题,难以得到组织和性能稳定的复合材料;其次,由于颗粒对切削刀具的剧烈磨损,使得复合材料的机加工异常困难,即使制备出性能优异的复合材料也会因为无法机加工而难以应用,因此复合材料的机加工问题已经成为阻碍其推广应用的瓶颈问题。
     论文在研究增强体颗粒在复合材料熔体中沉降规律的基础上,以搅拌铸造法制备外加颗粒增强铝基复合材料及混合盐法制备原位颗粒增强铝基复合材料为基础,结合两种制备方法和两种材料各自的优点,尝试开发出一种既具有良好机械性能,又具有良好成型性能和机加工性能的颗粒增强铝基复合材料,同时也为改善其它复合材料的成型性能和机加
The quickly development of space navigation, aviation, advanced weapons and integrate circuit has greatly raised the requirements to the materials. Traditional single-phase materials can’t meet those requirements. However, particle reinforced aluminum matrix composites have the possibility to meet those requirements because of their low density, high specific strength, high specific modulus, good property design ability and so on.
     Although particle reinforced aluminum matrix composites have those excellent properties, they also have some problems, such as bad molding ability and bad machining ability, which have blocked them badly in the real application. First, during their fabrication and molding, the big particles are prone to deposit and the fine particles are prone to reunite, which makes it difficult to get homogeneous composites. Secondly, because the particles’serious wear to the cutter, the composites are mostly difficult to be machined, which makes it impossible to be applied although we may fabricate good property composites.
     The purpose of this project is to develop a new particle reinforced metal
引文
[1] J.M.Papazian, P.N.Adler. Tensile properties of short fiber-reinforced SiC/Al composites: Part 1, Effects of Matrix precipitates. Metallurgical Transactions A, 1990, 21A: 401-409
    [2] A.G.Evans, J.W.Hutchinson, R.N.Ncneejubg. Stress-strain behavior of matrix composites with discontinuous reinforcements. Scripta Metallurgical, 1991, (25): 3-10
    [3] Latanish RM. Corrosion science corrion engineering and advanced technologies. Corrosion science, 1995, 51(4): 270-283
    [4] R J Perez, J Zhang, E J Lavernia. Strain amplitude dependence of 6061 Al/graphite MMC damping. Scripta Metall. Mater., 1992, 27(9): 1111-1114
    [5] J U Ejiofor, R G Reddy. Developments in the processing and properties of particulate Al-Si composites. JOM, 1997, 49(11): 31-37
    [6] I Gotman, M J Koczak, E Shtessel. Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater. Sci. Eng. A, 1994, 187(2): 189-199
    [7] H J Brinkman, J Duszczyk, L Katgerman. In-situ formation of TiB2 in a P/M aluminum matrix. Scripta Mater., 1997, 37(3): 293-297
    [8] D J Lloyd. Particle reinforced aluminum and magnesium matrix composites. Int. Mater. Rev., 1994, 39(1): 1-23
    [9] M Taya. Strengthening Mechanism of Metal Matrix Composites. Mater. Trans, 1991, 43(8): 1-9
    [10] D J Lloyd. Particle reinforced Aluminum and Magnesium Matrix Composites, Intl Mates Rev., 1994, 39(1): 1-22
    [11] 陈剑锋,于志强,武高辉,姜龙涛,孙东立. 金属基复合材料强度的影响因素. 金属热处理,2003,28(2):1-9
    [12] 肖伯律,毕敬,赵明久,马宗义. SiCp 尺寸对铝基复合材料拉伸性能和断裂机制的影响. 金属学报,2002,38(9):1006-1008
    [13] 才庆魁,贺春林,赵明久,毕敬,刘常升. 亚微米级 SiC 颗粒增强铝基复合材料的拉伸性能与强化机制. 金属学报,2003,39(8):865-869
    [14] J. Boselli1,P.J. Gregson,I. Sinclair. Quantification of particle distribution effects on fatigue in an Al–SiCp composite. Materials Science and Engineering,2004,(379):72–82
    [15] 许晓静,陈康敏,戴峰泽,蔡兰. SiCp 增强 2024 铝基复合材料超塑性的研究. 金属学报,2002,38(5):544-548
    [16] G. Ganesan,K. Raghukandan,R. Karthikeyan,B.C. Pai. Development of processing maps for 6061 Al/15% SiCp composite material. Materials Science and Engineering,2004,(369):230-235
    [17] Hayrettin Ahlatci,Ercan Candan,Hüseyin ?˙?menoˇglu. Abrasive wear behavior and mechanical properties of Al–Si/SiC composites. Wear,2004,(257):625-632
    [18] Ferhat Gul,Mehmet Acilar. Effect of the reinforcement volume fraction on the dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum infiltration technique. Composites Science and Technology,2004,(64):1959–1970
    [19] 张全萍,许伯藩,吴新杰,王蕾. Mg对无压自浸渗制备SiCp/Al复合材料组织与性能的影响. 中国有色金属学报,2002,12(1):147-150
    [20] 齐海波,丁占来,樊云昌,姜稚清. SiC颗粒增强铝基复合材料制动盘的研究. 复合材料学报,2001,18(1):62-66
    [21] M. Ko¨k. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites,2006,(37): 457-464
    [22] 曲寿江,耿林,曹国剑,雷廷权. 挤压铸造法制备可变形 SiCPAl 复合材料的组织与性能. 复合材料学报,2003,20(3):69-73
    [23] N.E. Bekheet,R.M. Gadelrab,M.F. Salah,A.N. Abd El-Azimc. The effects of aging on the hardness and fatigue behavior of 2024 Al alloy_SiC composites. Materials andDesign,2002,(23):153-159
    [24] B. Yang, F. Wang, J. S. Zhang. Microstructural characterization of in situ TiC/Al and TiC/Al–20Si–5Fe–3Cu–1Mg composites prepared by spray deposition. Acta Materialia, 2003, 51(17): 4977-4989
    [25] Shuying Zhang, Yuyong Chen and Qingchun Li. Research on microstructure and properties of aluminum-matrix composite fabricated by spray deposition. Journal of Materials Processing Technology, 2003, 137(1-3): 168-172
    [26] 易宏展. 原位自生TiB2/Al复合材料及其反重力成型研究. 上海交通大学博士学位论文,2005
    [27] 研红革,陈振华,黄培云. 反应合成原位(in-situ)复合材料制备技术进展. 材料科学与工程,1997,15(1):6-10
    [28] Y Choi, M E Mullins, K Wijayatilleke, et al.. Fabrication of Metal Matrix Composites of TiC-Al through Self-Propagating Synthesis Reaction. Metall. Trans. A, 1992, 23A, 2387-2392
    [29] I Gotman, M J Koczak, E Shtessel. Fabrication of Al Matrix In situ Composites via Self-propagating Synthesis. Mater. Sci. Eng., 1994, A187(2), 189-199
    [30] 惠希东, 王执福, 杨院生等. 液态反应法制备TiCp增强铸造Fe-Cr-Ni基复合材料. 金属学报, 1998, 34, 1115-1120
    [31] 李春玉, 王自东等. 原位反应复合法制备金属基复合材料的进展. 材料工程, 1995,11(3): 8-10
    [32] L Christodoulou, D C Nagle, J M Brupbacher, Process for Forming etal-Second Phase Composites and Product Thereof, U.S. Patent, 1988, US4751048
    [33] J M Brupbacher, L Christodoulou, D C Nagle, Rapid Solidification of Metal-Second Phase Composites, U.S. Patent, 1989, US4836982
    [34] Z Y Ma, J H Li, M Luo, et al., In-situ Formed Al2O3 and TiB2 Particulates Mixture-Reinforced Aluminum Composite, Scripta Metall. Mater., 1994, 31(5), 635-639
    [35] 孟繁琴,程晓民,胡斌,陈宏涛. 原位反应法制备Al2O3/Al基复合材料的研究. 特种铸造及有色合金,2004,(4):63-64
    [36] Rajnesh Tyagi. Synthesis and tribological characterization of in situ cast Al–TiC composites. Wear,2005,(259):569-576
    [37] Tongxiang Fan,Di Zhang,Guang Yang,Toshiya Shibayanagi,Massaki Naka. Fabrication of in situ Al2O3/Al composite via remelting. Journal of Materials Processing Technology,2003,(142):556-561
    [38] P Sahoo, M J Koczak. Microstructure-Property Relationships of in situ Reacted TiC/Al-Cu Metal Matrix Composites. Mater. Sci. Eng., 1991, A131(1), 69-76
    [39] M K Premkumar, M G Chu. Al-TiC Particulate Composite Produced by a Liquid State in situ Process. Mater. Sci. Eng., 1995, A202(1-2), 172-178
    [40] M K Aghajanian, N H Macmillan, C R Kennedy, et al.. Properties and Micro Structures of Lanxide Al2O3-Al Ceramic Composite Materials. J. Mater. Sci., 1989, 24(2), 658-670
    [41] O Salas, H Ni, V Jayaram, et al.. Nucleation and Growth of Al2O3/metal Composites by Oxidation of Aluminum Alloys. J. Mater. Res., 1991, 6(9), 1964-1981
    [42] G Jangg, F Kutner, G Korb. Dispersion Hardening of Aluminum with Al4C3. Powder Merall Int., 1977, 9(1): 24-26
    [43] 赵德刚,刘相法,边秀房,张永昌. TiB2/Al-Cu复合材料微观组织和力学性能研究. 铸造,2005,54(1):32-35
    [44] 吴树森. 材料加工冶金传输原理. 机械工业出版社,北京,2001: 74-78
    [45] Ludmil Drenchev, Jerzy Sobczak, Natalie Sobczak. Sedimentation phenomenon and viscosity of water–SiC suspension under gravity conditions—a water model study for composites synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197: 203-211
    [46] A.Ourdjini, K.C.Chew, B.T.Khoo. Settling of silicon carbide particles in cast metal matrix composites. Journal of materials processing technology, 2001, 116: 72-76
    [47] 王鹏,马乃恒,李险峰,等. 原位合成铝基复合材料中颗粒沉降的研究.特种铸造及有色合金,2004, 2: 30-33
    [48] 全燕鸣,叶邦彦. 复合材料的切削加工表面结构与表面粗糙度. 复合材料学报,2001,18(4):128-132
    [49] Ibrahim Ciftci,Mehmet Turker,Ulvi Seker. Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Materials and Design,2004,(25):251-255
    [50] Y. Kevin Chou, Jie Liu. CVD diamond tool performance in metal matrix composite machining. Surface & Coatings Technology, 2005, 200: 1872-1878
    [51] E. K?l?c?kap, O. C? ak?r, M. Aksoy, A. Inan. Study of tool wear and surface roughness in machining of homogenized SiC-p reinforced aluminium metal matrix composite. Journal of Materials Processing Technology, 2005, 164-165: 862-867
    [52] C.A.Conceicao Antonio, J.Paulo Davim. Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model. Composites: Part A, 2002, 33: 213-219
    [53] 吴震宇, 王学根, 孙方宏, 陈明. SiC颗粒增强铝基复合材料高速铣削工艺研究. 工具技术,2004,38(3): 15-18
    [54] QUAN Y M, ZHOU Z H, YE B Y1. Tool Wear and its Mechanism for Cutting SiC Particle Reinforced Aluminum Matrix Composites. Journal of Materials Processing Technology, 2000, 100: 194-199
    [55] L. Iuliano, L. Settineri, A. Gatto. High-speed turning experiments on metal matrix composites. Composites Part A, 1998, 29: 1501-1509
    [56] 王大镇. 颗粒增强铝基复合材料切削力特性研究. 切削技术,2005,3:17-19
    [57] Chan K C, Cheung C F, Ramesh M V, et al. A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite [J]. International Journal of Mechanical Sciences, 2001, 43: 2047-2068
    [58] Antonio C C, Davim J P. Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model [J]. Composites Part A, 2002, 33: 213-219
    [59] K?l?ckap E, Cak?r O, Aksoy M, et al. Study of tool wear and surface roughness in machining of homogenized SiC-p reinforced aluminium metal matrix composite [J]. Journal of Materials Processing Technology, 2005, 164-165: 862-867
    [60] Lucchini E, Casto S L, Sbaizero O. The performance of molybdenum toughened alumina cutting tools in turning a particulate metal matrix composite [J]. Materials Science and Engineering A, 2003, 357: 369-375
    [61] 王双喜,刘雪敬,孙家森. 铝基复合材料的制备工艺. 热加工工艺,2006,35(1):65-69
    [62] 张雪囡,耿林. 混杂增强铝基复合材料的研究进展. 宇航材料工艺,2004,(4):1-6
    [63] S C Tjong, S Q Wu, H G Zhu. Wear behavior of in situ TiB2·Al2O3/Al and TiB2·Al2O3/Al-Cu composites. Compos. Sci. Technol. 1999, 59: 1341-1347
    [64] L Lv, M o Lai, Y Su et al. In situ TiB2 reinforced Al alloy composites. Scripta Mater., 2001, 45:1017-1023
    [65] C F Feng, L Froyen. Microstructures of in situ Al/TiB2 MMCs prepared by a casting route. J.Mater. Sci., 2000, 35: 837-850
    [76] 王自东,曾松岩,李庆春等. 原位接触反应法制取 TiC 颗粒增强 Al 复合材料的研究. 金属学报,1994,30(7): B314-B317
    [67] A R Kennedy, D P Weston, M I Jones et al. Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures. Scripta Mater., 2000, 42: 1187-1192
    [68] W H Jiang, G H Song, X L Han et al. Synthesis of TiC/Al composites in liquid aluminum. Mater. Lett., 1997, 32:63-65
    [69] A Albotera, A Contrerasa, E Bedollab, R. Perez. Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos. Part A, 2003,34:17-24
    [70] C Troadec, P Goeuriot, P Veridier et al. AlN dispersed reinforced aluminum composite. J Eur. Ceram. Soc., 1997, 17: 1867-1875
    [71] Tsunemichi Imai, Sumito Kojima, Gilles L’Esperance et al. Effect of volume fraction of AlN particle on super-plasticity of AlN/6061 aluminum alloy composite. Scripta Mater., 1996, 35(10): 1199-1204
    [72] E Taheri-Nassaj, M Kobashi, T Choh. Fabrication of an AlN particulate aluminum matrix composite by a melt stirring method. Scripta Mater., 1995, 32(12): 1923-1929
    [73] Ding-Fwu Lii, Jow-Lay Huang, Shao-Ting Chang. The mechanical properties of AlN/Al composites manufactured by squeeze casting. J.Eur. Ceram. Soc., 2002, 22: 253-261
    [74] 黄赞军,胡敦芜,杨滨,张济山. 原位 Al2O3 颗粒强化铝基复合材料的研究,金属学报,2002,38(6): 568-574
    [75] 严学华,孙少纯,蒋宗宇. 原位反应 Al2O3/ZL202 复合材料的制备和力学性能. 铸造,2001,50(12): 728-730
    [76] 程和法,黄笑梅,苏勇. 固液原位反应生成 Al2O3(P)/Al 复合材料的研究. 热加工工艺,2001, 1: 34-35
    [77] ZanJun Huang, Bin Yang, Hua Cui et al. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements. Mater. Sci. Eng. A, 2003, 351: 15-22
    [78] 李荣久. 陶瓷-金属复合材料. 北京:冶金工业出版社,1995
    [79] A V Smith, D D L Chung. Titanium diboride particle-reinforced aluminum with high wear resistance. J. Mater. Sci., 1996, 31(22): 5961-5973
    [80] R K Viswanadham, S K Mannan, K S Kumar et al. Elastic modulus of NiAl-TiB2 composites in the temperature range 300 to 1273K. J. Mater. Sci. Lett., 1989, 8(4): 409-410
    [81] HAN Yanfeng, LIU Xiangfa. In situ TiB2 reinforced near eutectic Al-Si alloycomposites. Composite Part A, 2002, 33(8): 439-444
    [82] 任德亮,齐海波,丁占来,樊云昌. SiCp/Al 复合材料搅拌铸造制备工艺的研究. 铸造技术,1999,(2): 41-43
    [83] Tongxiang Fan, Di Zhang, Guang Yang et al. Chemical reaction of SiCp/Al composites during multiple remelting. Composites Part A, 2003(34): 291–299
    [84] 王猛,曾建民,黄卫东. 大型复杂薄壁铸件高品质高精度调压铸造技术. 铸造技术,2004,25(5): 353-358
    [85] A.Ourdjini, K.C.Chew, B.T.Khoo. Settling of silicon carbide particles in cast metal matrix composites. Journal of materials processing technology, 2001,(116): 72-76
    [86] G H Geiger, G R Poirier, Transport Phenomena in Metallurgy (1), Addison-Wesley Publishing Company, London, 1980, 22
    [87] E.H. Su. Calculation and measurement of the liquid viscosity. National Defense Industry Press, Beijing, 1988.
    [88] D. J. Lloyd. The solidification microstructure of particulate reinforced aluminum/SiC composites. Composites Science and Technology, 1989, 35(2): 159-179
    [89] Jun Wang, Qixin Guo, Mitsuhiro Nishio, Hiroshi Ogawa, Da Shu, Ke Li, Shuxian He, Baode Sun. The apparent viscosity of fine particle reinforced composite melt. Journal of Materials Processing Technology, 2003, 136: 60–63
    [90] K L Tee, L Lu, M O Lai. Synthesis of in situ Al-TiB2 Composites Using Stir Cast Route. Compos. Struct., 1999, 47(1): 589-593
    [91] C F Feng, L Froyen. Microstructures of in situ Al/TiB2 MMCs Prepared by a Casting Route. J. Mater. Sci., 2000, 35(4): 837-850
    [92] Z Y Chen, Y Y Chen, Q Shu, et al.. Solidification and Interfacial Structure of in situ Al-4.5Cu /TiB2 Composite. J. Mater. Sci., 2000, 35(22): 5605-5608
    [93] Iain L, principles of mechanical metallurgy, Edward Arnold, Ltd., U.K., 1981, pp.155
    [94] 王日初,毕豫,黄伯云等. SiC颗粒表面处理对6066Al基复合材料力学性能的影响. 中南大学学报,2005,36(3): 369-374
    [95] 李建平,郭永春,董晟全. 氧化SiCp增强ZL101铝基复合材料的显微结构. 西安工业学院学报, 1999, 19(4): 316-320
    [96] GU Mingyuan, JIN Yanping, MEI Zhi. Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites. Material Science and Engineering, 1998, A252(9): 188-198
    [97] Lee J C, Byun J Y, Park S B. Prediction of Si contents to suppress the formation of Al4C3 in the composit. Acta Materialia, 1998, 46(5): 1771-1780
    [98] 崔岩,耿林,姚忠凯. SiCp/6061Al复合材料的界面优化与控制. 中国有色金属学报, 1997, 7(4): 159-162
    [99] Nyberg E. Coating particulate SiC in aluminum metal matrix. Key Engineering Materials, 1993, 77-78: 349-356
    [100] 吴人洁, 金属基复合材料的现状与展望, 金属学报, 1997,33(1): 78-84
    [101] 胡更开, 郑泉水, 黄筑平, 复合材料有效弹性性质分析方法, 力学进展, 2001, 31(3): 361-393
    [102] T W Clyne, P J Withers, An Introduction to Metal Matrix Composites, London: Cambridge University Press, 1992
    [103] 杨大鹏, 刘新田, 复合材料有效弹性模量的上、下限的求解, 郑州大学学报, 2002,23(2): 106-109
    [104] 张国定,赵昌正. 金属基复合材料. 上海交通大学出版社,1995,43-43
    [105] A Spencer, Transverse Moduli of Fibre-Composite Material, Compos. Sci. Technol., 1986,27(2): 93-109
    [106] J D Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc Lond, 1957, A241(1226): 376-396
    [107] R J Hill, A Self-consistent Mechanics of Composite Materials, J. Mech. Phys. Solids, 1965,13: 213-222
    [108] 范建华, 许庆余, 复合材料弹性模量的等效微分计算, 工程数学学报, 2003,20(1):92-98
    [109] 王兴业,肖加余,唐羽章,等. 复合材料力学分析与设计[M]. 国防科技大学出版社,长沙,1999:136-136
    [110] 中国机械工程学会铸造专业学会, 铸造手册, 第3 卷, 铸造非铁合金, 机械工业出版社,1993, 2
    [111] 美国金属学会, 金属手册, 性能与选择: 有色合金及纯金属(M), 机械工业出版社, 1994
    [112] 李荣久. 陶瓷金属复合材料, 北京, 冶金工业出版社, 1995
    [113] T.W.克莱因,P.J.威瑟斯. 金属基复合材料导论. 冶金工业出版社,1996.
    [114] 闻荻江. 复合材料原理. 武汉工业大学出版社,1998,141
    [115] Zweben C. Advanced Composites and Other Advanced Materials for Electronic Packaging Thermal Management. 2001 International Symposium on Advanced Packaging Materials, 2001: 360-365
    [116] Giger A L, Hasselman D P H, Donaldson K Y. Effect of reinforcement particle size on the thermal conductivity of aparticulate silicon carbide reinforced aluminum matrix composite. Journal of Materials Science Letters, 1993, 12: 420-423.
    [117] Klemens P G. Thermal conductivity of composites. International Journal of Thermo physics, 1990, 11(5): 971-976.
    [118] Liu D M, Tuan W H. Microstructure and thermal conduction properties of Al2O3-Ag composites. Acta Mater, 1996, 44(2): 813-818.
    [119] 王健,王晓春. 金属切削技术问答. 山东科学技术出版社,1982,29-30
    [120] 于启勋,桂育鹏,周家宝等. 金属切削理论与实践. 北京出版社,1985,242-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700