无压反应浸渗法制备AlFeSi、AlSiV金属间化合物原位增强铝基复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在空气环境中,借助于添加适量的助渗剂K2TiF6实现了Al-Si合金熔体对VFe松散堆积床的无压反应浸渗,成功地制备了AlFeSi、AlSiV增强的铝基复合材料。实验中采用了上置法和浇注法两种方法制备铝基复合材料。
     分析了熔体向松散堆积床浸渗的动力学过程,指出无压反应浸渗过程中存在元素的扩散、生成物的扩散以及各元素之间的化学反应等过程;列出了通常无压浸渗实验所必备的条件并分析其原因,对无压浸渗过程中的影响因素,例如浸渗温度、浸渗时间和助渗剂等因素进行了实验研究和分析,着重分析了助渗剂K2TiF6的作用机制。分析了本实验无需在N2保护下、实验中不能由Mg元素参加的原因,在此基础上,优化并给出适合于大气条件下进行无压反应浸渗的工艺参数。通过对无压反应浸渗法所制备的复合材料进行硬度测试和磨损性能的测试,为此方法制备的复合材料的可用性提供依据。
Metal matrix composites is a new material which is produced by joining another material or reinforcement into one metal. Intermetallics reinforced Aluminium matrix composites have many excellent and unique properties, such as high specific strength and stiffness, low heat expand modulus and good wear resistance, and therefore, increasing attention has been paid to it in automotive, communication apparatus and aerospace applications. In order to get metal matrix composites with better properties , various means have been investigate and invent by many people, pressueless infiltration is a good technique.
     The pressureless infiltration technique means that metal liquid infiltrate into preform spontaneously by capillary, metal matrix composites are produced finally. At the same time there are reactions between elements. This technique offers the potential to be an alternative, simple, low-cost processing route for the manufacture of near-net shape silicon carbide reinforced aluminum matrix composites. But it also has many disadvantages, such as the poor wetting between ceramic and metal, under the atmosphere protect of N2 or Ar, the long time and low rate of infiltration, the difficult control of volume fractions of ceramic particulates, and so on. Therefor, many works should be done to research infiltration mechanism, reduce limited conditions, improve atmosphere, get better Microstructure finally.
     The major research purpose is to simplify the pressureless infiltration process. Making pressureless infiltration happen under air condition, and the process happen rapidly, get fine intermetallic reinforced Al matrix composites at last. The major research efforts of the present study are as follows:
     (1)AlFeSi,AlSiV reinforced aluminium matrix Composites by pressureless reactive infiltration
     AlFeSi,AlSiV reinforced aluminium MMCs in the present study were produced successfully by pressureless infiltration technique based on the experiment research. The process is that the pressureless or spontaneous infiltration of Al-Si alloy into the loose bed in air contains K2TiF6.
     (2)Analyze microstructure of composites produced by pressureless reactive infiltration
     There are two kinds of reinforcements in the composites produced by pressureless reactive infiltration. One reinforcement like diamond is AlFeSi of AlSiV; another reinforcement like needle isβ-Al5FeSi;
     (3) Hardness and abrasive wear behavior of composites produced by pressureless infiltration
     The hardness of composites increased greatly compared with Al-13Si especially on the surface. The material shows great wear resistance because there are many reinforcements in the surface of composites.
     (4) Decrease limited condition of pressureless reactive infiltration
     Through dynamics analysis of melt penetrating into loose bed, it can be concluded that most pressureless infiltration experiments must include Mg under N2 because of non-wetting between liquid and solid. There are two wetting system in this experiment: Al-Si and VFe. So it is no need to include Mg and N2 in the experiment, and the limited condition is decreased.
     (5) Results of infiltration under different conditions
     It is concluded that AlSi infiltrates into VFe successfully when the system is heated to 650℃or preserved for 5mins under 800℃. The best microstructure is found when the system is preserved for 30mins under 800℃.
     (6)Mechanism of K2TiF6 function in the process
     The system must include K2TiF6 if there is no N2. It is analyzed that liquid metal penetrate Al2O3 on the surface of Al liquid, so Al and K2TiF6 reactive . Heat the reaction released and KF,AlF3 reaction created dissolves Al2O3 rapidly. So AlSi and VFe contact the infiltration takes place.
引文
[1] 李荣久,陶瓷-金属复合材料,冶金工业出版社,2004;1-10.
    [2] 吴人洁,“金属基复合材料的现状与展望”,金属学报,1997;33:78-83.
    [3] S. C. Tjong, Z. Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites”, Materials Science and Engineering, 2000; R29: 49-113.
    [4] 李隆盛,铸造合金及其熔炼,机械工业出版社,1996;2-10.
    [5] “高技术新材料要览”编辑委员会,高技术新材料要览[M],中国科技出版社,1993;4-99.
    [6] 中国科协第二届青年学术年会执行委员会编,材料科学技术进展与展望[C].中国科技出版社,1995;6:41-46.
    [7] 谭敦强,黎文献,余砚。SiC 铝基复合材料的制备技术和界面问题,铝加工。2000;23 (3):40-42.
    [8] 王文明,“搅拌铸造制备SiCP/Al复合材料的研究现状”,轻合金加工技术,2004;32:1-5.
    [9] 曲寿江,耿林,曹国剑,雷廷权,“挤压铸造法制备可变形SiCP/Al复合材料的组织与性能”,复合材料学报,2003;20(3):69-73.
    [10] 罗守靖,何绍元,王尔德,钢质液态模锻[M],哈尔滨:哈尔滨工业大学出社,1990;4-25.
    [11] Alan L.Geiger, J. Andrew Walker. The processing and properties of discontinuously reinforcement aluminum composites[J], 1991;43(8):9.
    [12] Hunt,Margaret W. Asian flu or world epidemic. Advanced materials and process, 1998;154(5):7.
    [13] 樊建中,姚忠凯,郭宏,“粉末冶金 SiCp/ Al 复合材料制备工艺对 SiCp 分布均匀性的影响”,材料工程,1997;(5):39-42.
    [14] 樊建中, 姚忠凯, 杜善义,“P/ M 制备的 SiCp/ Al 复合材料的界面结构”, 中国有色金属学报,1998;8:20-23.
    [15] Lloyd D J. Particle reinforced aluminum and magnesium matrix composites [J]. J.Mater.Rev.1994;39(1):1-2.
    [16] 孙继兵,SiO2p/Al-Mg复合材料的研究,河北工业大学硕士研究生学位论文,2000;1-5.
    [17] Wolfgang G.J.Bunk. Aluminium RS metallurgy [J]. Mater.Sci.Eng., 1991;A134:1087.
    [18] 桂满昌等,颗粒增强铝基复合材料的制备及应用,材料导报,1996;(3): 68.
    [19] 朱心昆等,机械合金化的研究与进展[J],粉末冶金技术,1999; 17[4]
    [20] 贾德昌,周玉,雷延权,“机械合金化及其在 Al 合金和 Al 基复合材料中的应用进展”,宇航材料工艺,1996;1:1-9.
    [21] J. M. Brupbacher, L. Christodoulou, D. C. Nagle, “Process for Forming Metal Ceramic Composites”, 1987; US Patent No. 4,710,348.
    [22] J. M. Brupbacher, L. Christodoulou, D. C. Nagle, “Rapid Solidification of Metal-Second Phase Composites”, 1989; US Patent No. 4,836,982.
    [23] 程秀兰,潘复生,汤爱涛,“高温反应烧结制备原位复合材料”,中国有色金属学报,1999;9(2):313.
    [24] 程秀兰,潘复生,汤爱涛,“原位铝基复合材料重熔稀释的研究”,兵器材料科学与工程,1999;22(3):18.
    [25] R. Mitra, W. A. Chiou, J. R. Weertman, M. E. Fine, “Relaxation mechanisms at the interfaces in XDTM Al/TiCp metal matrix composites”, Scripta Metallurgica Materialia, 1991; 25: 2689-2694.
    [26] A.G. Merzhanov, “Self-propagating high-temperature synthesis: Twenty years of search and findings”, Combustion and Plasma Synthesis of High-temperature materials, edited by Z.A. Munir and J.B. Holt, VCH, Weinheim, New York, 1990; 1-53.
    [27] 王慧远,原位颗粒增强镁基复合材料的制备,吉林大学博士学位论文 2005;10.
    [28] Q.C. Jiang, X.L. Li, H.Y. Wang, “Fabrication of TiC particulate reinforced magnesium matrix composites”, Scripta Materialia, 2003; 48(6): 713-717.
    [29] Z.A.Munir, Anselmi-Tamburini u.,Materials Science Reports, 1980;3(7-8): 277-358.
    [30] J.B.Holt, S.D.Dunmead, Self-Heating Synthesis of Materials, Annu.Rec.Mater Sic., 1991;(21):305.
    [31] Badia. F. A ,etal. Grahitic Al-a new method of production andsome foundry characterisitics. TransA .F .5 ,1971;(79):265-26.
    [32] M. Gupta, “Microstructure and properties of spray atomized and deposited SiCp/Al metal matrix composites”, Scripta Materialia, 1992;22:825-830.
    [33] M. Gupta, “The effect of Ceramic reinforcements during spray atomization and codepostion of metal matrix composites part I: Heat transfer”, Metallurgical and Materials Transactions, 1992;23:831-843.
    [34] Fleming M C,关玉龙,屠宝洪,许诚信译,凝固过程[M],北京:冶金工业出版社,1981;1-10.
    [35] 谢水生,黄声宏,半固态金属加工技术及其应用〔M],北京:冶金工业出版社,1999;1-45.
    [36] Kirkwood D H.Semi-solid metal processing [J]. International Materials Reviews,1994;39:173-189.
    [37] 毛卫民,赵爱民,钟雪友,半固态金属成形应用的新进展与前景展望[J].特种铸造及有色合金,1998;(6):33-36.
    [38] 蒋鹏,半固态金属成形技术的研究概况[J],塑性工程学报,1998;5:1-7.
    [39] 唐靖林,曾大本,半固态加工技术的发展和应用现状[J],兵器材料科学与工程,1998;21(3):56-60.
    [40] E.T. Nassaj, M. Kobashi, T. Choh, “Fabrication and analysis of an in situ TiBB2/Al composite by reactive spontaneous infiltration”, Scripta Materialia, 1996; 34(8): 1257-1265.
    [41] J. M. Molina, R. A. Saravanan, “Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution”, Acta Materialia, 2002;50:247-257.
    [42] Y. Kajikawa, T. Nukami, M. C. Flemings, “Pressureless infiltration of aluminum metal matrix composites metal”, Mater. Trans., 1995;A26(8):2155-2159.
    [43] X. F. Yang, X. M. Xi, “SiC/Al-Si composites by rapid pressureless infiltration in air”, Journal of Materials Research, 1995;10(10):2415-2417.
    [44] I.A.Cornie H.K.Moon Materials Park OH, SAM International 1990;63-67.
    [45] 李树尘,材料丁艺学,化学工业出版社,2000;9:216.
    [46] M. K. Aghajanian, M. A. Rocazella, “The fabrication of metal matrix composites by a pressureless infiltration technique”, Journal of Materials Science, 1991; 26:447-454.
    [47] M. K. Aghajanian, J. T. Burke, “A new infiltration process for the fabrication of metal matrix composites”, SAMPE Quarterly, 1989, 20(4):43-46.
    [48] S.D.Peteves,P Tambuyser,P Helbach,et al.Microstructure and microchemistry of the Al/SiC interface.J Mater Sci.1990;25:37.
    [49] 王蕾,许伯藩,吴新杰,张细菊,活化剂对自浸渗法制备 SiCp/Al 复合材料的影响,金属热处理,2001;26(9):41-43.
    [50] 周正,丁培道,浸渗法制备颗粒增强铝基复合材料研究,兵器材料科学与工程,1999;22(5):49-52.
    [51] 周贤良,张健运,华小珍,无压渗透法植被颗粒增强铝基复合材料的工艺及渗透机理初探,热加工工艺,1995;(3):25-27.
    [52] B. Srinivasa-rao, V. Jayaram, “Pressureless infiltration of Al–Mg based alloys into Al2O3 preforms: mechanisms and phenomenology”, Acta Materialia, 2001; 49:2373-2385.
    [53] N. Nagendra, B. S. Rao, V. Jayaram, “Microstructures and properties of Al2O3/Al–AlNcomposites by pressureless infiltration of Al-alloys”, Materials Science and Engineering, 1999; A269:26–37.
    [54] K. B. Lee, H. S. Sim, “Reaction products of Al-Mg/BB4C composite fabricated by pressureless infiltration technique”, Materials Science and Engineering A., 2001;302:227-234.
    [55] A.Contreras, V. H. Lopez, E. Bedolla, “Mg/TiC composites manufactured by pressureless melt infiltration”, Scripta Materialia, 2004;51:249–253.
    [56] A. Contreras, E. Bedolla, R. Perez. “Interfacial phenomena in wettability of TiC by Al–Mg alloys”, Acta Materialia, 2004; 52:985–994.
    [57] 潘冶,孙国雄,铝合金中铁相形态控制及对性能的影响,特种铸造及有色合金,1993;(5):1-3.
    [58] 黄键,李洪铸,王汝耀,Fe 对 Al-Si 活塞合金强度的影响,兵器材料科学与工程,1990;(4):1-7.
    [59] 杨江波,印飞,改善铝硅合金中铁相形态的措施,铸造:2000;8(49):454-459.
    [60] 边秀房,张国华,赵生旭,熔体处理对 Al-Si 合金铁相形貌的影响[J],特种铸造及有色合金,1992;(4):19-21,25.
    [61] Awano Y,Shimizu Y. Non-equilibrium crystallization of AlSiFe compound in melt superheated Al2Si alloy castings [J]. AFS Transactions , 1990; 176: 889-896.
    [62] 姜孝京,大城桂作等,Effect of Sr,Ti2B and cooling rate on solidification structures of Al-Si-Cu cast alloys [J],铸造工学,1997;69(5):383-390.
    [63] Rathindra D G. Influence of iron on microstructure and mechanical properties of Sr-mordified aluminum alloys[J], Die Casting Engineer , 1996;(5):65-67.
    [64] Shabestari S G, Gruzleski J E. Modification of iron intermetallics by Sr in A413 alloys[J], AFS Transactions,1995;26:285-293.
    [65] Narayanan L A,etc. Crystallization behavior of iron containing intermetallic compounds in 391 aluminum alloy[J],Metallurgical and Materials Transactions,1994 ;(8):1761-1773.
    [66] 林小征,含铁铝硅合金凝固特性的研究,上海交通大学, 1999.
    [67] Munson D. A Clarification of the Phases Occurring in Aluminium-Rich Aluminium-Iron-Silicon Alloys, with Particular Reference to the Ternary Phase α-AlFeSi. Journal of the Institute of Metals,1967;95:217-219
    [68] 郑璇,关于铝箔化学成分的探讨,轻合金加工技术,1993;21(1):18-22.
    [69] O scarsson A , Hatchinson W B. Influence of Initial microstructure on texture and earing in aluminium sheet after Cold Rolling and Annealing.Mater Sci Tech,1991;7(6):554-564.
    [70] 湛永钟,张国定,蔡宏伟,颗粒增强金属基复合材料的干摩擦性能与磨损机理[J],材料科学与工程学报,2003;(10):748-752.
    [71] 陈荐,沈保罗,高升吉,铝基复合材料的磨面磨屑与磨损机制,兵器材料科学与工程,1997;20(3):20.
    [72] Y. Naidich, “The wettability of solids by liquid metals”, in Progress in Surface and Membrane Science, ed. By A. Cadenhead and J. F. Danielli, Academic Press, New York, 1981;353.
    [73] N. Eustathopoulos, “Dynamics of wetting in reactive metal/ceramic systems”, Acta Materialia, 1998;46:2319-2327.
    [74] K. Landry, C. Rado, R. Voitovich, N. Eustathopoulos, “Mechanisms of Reactive wetting: the question of triple line configuration”, Acta. Materialia, 1997;45:3079-3085.
    [75] A. Mortensen, F. Hodaj, N. Eustathopoulos, “On thermal effects in reactive wetting”, Scripta Materialia, 1998; 38(9):1411-1417.
    [76] M.l.Pech-Canul,M.M.Makhlouf. Processing of AI-SiCp Metal Matrix Composites by Pressureless Infiltration of SiCp Performs.Journal of Materials Synthesis and Processing,2000;8(1):35-52.
    [77] MortensonA ,MasurLJ .Infiltration of Fibrous Preforms by a Pure Metal:Part2.Theory,Metal lurgical TransactionA,1989;20A:2535-2546.
    [78] T.J.A.Doel,P Brown.Tensile properties of particulate-reinforced metal matrix composites[J],Acta Metall.1989;37:2413-2423.
    [79] 张全萍,许伯藩,吴新杰,Mg 对无压自浸渗制备 SiCp/Al 复合材料组织与性能的影响,中国有色金属学报,2002;12:147-155.
    [80] C.GARICA-CORDOVILLA, E.LOUSI, A.PAMIES. The surface tension of liquid pure aluminium an aluminium-magnesium alloy , Journal of Materials Science,1986;(26):2787-2792.
    [81] Schamm S, Fedou R, Rocher J P, The K2ZrF6 wetting process:effect of surface chemistry on a SiC-fiber preform to be impregnated by aluminum. Metall Trans, 1991;22(9):2133-2139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700