FDTD并行算法及层状半空间散射问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统深入地研究了基于MPI的时域有限差分(Finite Difference Time Domain,FDTD)并行算法及层状半空间介质(包括色散和非色散介质)散射FDTD计算中入射波引入的关键技术。
     基于MPI平台的FDTD并行算法主要包括:FDTD计算域的区域分解,子域间电磁场量的数据通信等;本文针对直角坐标系下并行FDTD的特点,创建了笛卡儿三维拓扑结构,采用捆绑式发送和接收的数据通信方式,优化了通信次序,克服了因通信次序造成的死锁问题;数据通信中,采用自定义的派生数据类型,避免了频繁的数据打包和解包过程,节省了打包和解包过程中中间存储变量占用的空间,提高了子域间数据通信速度,获得了较高的计算效率。
     详细讨论了二阶Mur、UPML和CPML三种吸收边界的并行化处理方法,并分析了它们的负载均衡问题。同时,考察了三种吸收边界的性能差异,结果表明:以CPML为截断边界的三维并行FDTD算法,具有并行程序易于实现、吸收效果好和计算效率高等诸多优点,如CPML边界的并行FDTD对电大尺寸卫星模型的几个测试,效率都在90%以上。此外,还讨论了色散介质和各向异性介质的FDTD并行计算问题。采用并行算法对外形复杂(直升机和复合弹翼)和材质复杂(复合弹翼和复合各向异性介质球)目标的电磁散射特性进行了计算,数值计算结果表明本文算法和程序的有效性。
     在层状半空间特别是色散、有耗层状半空间内目标散射问题的研究中,平面波源的引入是一个基本的、亟待克服的难题。本文详细论述了层状半空间问题FDTD计算中平面波引入的混合方式:垂直于分层界面的纵向侧边界上采用一维修正Maxwell方程(1D MME)计算分层空间斜入射平面波;自由空间内总场-散射场(TF/SF)上边界处的场分量采用“投影”插值而获得。为使TF/SF下边界处的单向行波形成无反射的吸收,将TF/SF下边界深入到完全匹配层内。这种TF/SF边界在二维面上形成的是Π型结构,区别于自由空间中的封闭结构。
     为实现二维情形下层状半空间FDTD计算的平面波的引入,详细讨论了TM和TE两种模式的1D MME。在色散介质中,TE模式1D MME的离散处理相对TM模式比较困难,本文通过引入中间辅助变量,用辅助方程来解决这个问题。在离散辅助方程过程中采用三步平均技术,提高了计算精度和稳定性。把TE模式1D MME应用到Deybe、Lorentz和Drude三种常见的色散介质中,推导出了适用于三种介质类型的、中间变量到磁场变量的统一FDTD递推式。
     在三维CPML吸收边界条件基础之上,分别导出了TM和TE模式的二维CPML吸收边界条件,以及适用于一维修正FDTD(1D-MFDTD)的一维CPML吸收边界条件,并成功地将一、二和三维CPML吸收边界条件应用于色散、有耗介质分层半空间问题FDTD计算的截断。
     对1D-MFDTD计算的Courant稳定性分析表明,在入射角大于60°的斜入射情况,电磁波沿y方向相速度相对较大,降低了1D-MFDTD数值计算的稳定性。
     本文用多个算例从不同方面考察色散层状半空间FDTD算法的可靠性,结果表明1D-MFDTD与Fourier方法得到的结果吻合。在层状半空间二维FDTD入射波源成功引入的基础上,实现了层状半空间三维FDTD计算中激励波源的引入。对平面波斜入射的二维和三维FDTD计算,形成完好的入射、反射和透射。提出并实现了适用于层状半空间电大尺寸目标的三维FDTD并行算法。数值模拟结果表明,该并行算法与串行算法的计算结果完全吻合。用若干实际算例分析了该算法的实际研究意义和价值。通过探雷算例验证了基于层状半空间并行FDTD算法和程序的高效性。
This dissertation lays a strong emphasis on the essential elements of a parallel algorithm for the Finite Difference Time Domain (FDTD) method based on MPI platform and the key techniques of plane wave injection in layered half-space to EM scattering analysis.
     Based on the MPI (Message Passing Interface) library, an MPI Cartesian three-dimensional (3D) topology is used. A 3D Cartesian topology is defined and the FDTD computation domain is divided into some subspaces using a spatial decomposition of the regular grid structure. Then the fields inside each sub-domain are computed on an individual processor with a small amount of data being communicated from neighborhood sub-domain. For each field component, all the sub-domains send data in one direction sub-domain and receive data from opposite direction simultaneously. The transmission and reception can therefore be done with only one instruction, such as the procedure of SendRecv(), which optimizes the communication order and avoids the deadlock caused by this order. The inter-process communications are optimized by the use of derived data types, which group the data even when their memory addresses are not continuous, then the discontinuous data can be transmitted only once. Thus the optimized 3D parallel FDTD program can be resulted.
     This dissertation discusses with emphasis on the parallel processing method to the absorbing boundary condition (ABC) including the second-order Mur`s absorbing condition, the uniaxial anisotropic perfectly matched layer (UPML) and convolutional perfectly matched layer (CPML). The load balance and absorbing performance of these ABCs are also analyzed. The CPML ABC has the advantages of high performance in parallel computation, readily programming and high-absorbing as well. The efficiency up to 90% calculated by parallel FDTD with CPML for large-size satellite is reached. It applies not only to the isotropic but also to the dispersive and the anisotropic media. The numerical results to several dispersive models validate our parallel algorithm. The radar cross sections (RCS) to the targets of complex shape, such as helicopter and compound wing, and the targets of complex material, such as the compound isotropic media wing and compound anisotropic media sphere are analyzed by using the parallel FDTD method.
     In application of FDTD to the scattering analysis of object embedded in layered half-space, especially to the dispersive and lossy media, the injection of incident electromagnetic plane wave becomes complicated, because the traditional method in free space is not applicable. The plane wave to 3D FDTD in layered half-space is in fact a 2D problem. To solve this problem, the hybrid scheme is presented: the incident wave along side TF-SF boundaries are governed by the 1D modified Maxwell`s equations (1D MME); the incident wave on the upper TF-SF located in free space is in fact a duplication of the waveform at the cross points of TF-SF boundary with a proper time delay; the lower TF-SF boundary can also be treated by the same way as the upper, if the lowest layer medium is non-dispersive and lossless. However, the lowest layer medium with dispersive and lossy medium is of interested, and then we extend the side TF-SF downwards into CPML, which makes sure that the downward traveling wave is absorbed at lower media by the ABC. The presented hybrid scheme withΠ-shape being unclosed, it is unnecessary to determine the incidence wave along the lower TF-SF as it does in the traditional closed scheme.
     To inject the plane wave into layer half-space in 2D FDTD, the formulations to 1D MME for TM and TE mode are developed. Furthermore, the discretization to TE mode is more difficult. Then an auxiliary magnetic variable is used, the 1D modified FDTD (MFDTD) to TE mode without any approximation and a three-step averaging technique in discretization to ensure convergence and improve precision is proposed. Considering three classes of dispersive material of Debye, Lorentz and Drude media, a uniform auxiliary update equation is derived.
     Based on 3D CPML ABC, the CPML ABCs applicable to 2D and 1D case for TM and TE modes are derived, respectively. Then, these ABCs are applied to truncating FDTD domain in dispersive and lossy media successfully.
     The Courant stability criterion in 1D-MFDTD is analyzed for different incident angles. The result shows that 1D-MFDTD is of instability while the incident angle is greater than 60°, because the phase velocity becomes larger along the y-direction . The feasibility of the algorithm is validated by using several dispersive layered half-space models from different aspects. The results by 1D MFDTD are in good agreement with Fourier transform method. The plane wave is introduced in 3D FDTD using the result of 2D FDTD computation, 2D and 3D FDTD simulations produce perfectly plane wave consisting of incident, reflected and transmitted wave. The parallel algorithm is also proposed and implemented to deal with the large-size target scattering in layered half-space. The numerical results show that the parallel and serial algorithms can obtain the same result. The significance and valuable application of this study are proved by several practical models. Finally, the model of land mine detection indicates the high performance to the parallel FDTD algorithm in layered half-space.
引文
[1]王秉中.计算电磁学[M].北京:科学出版社,2003.
    [2] Peterson A F, Ray S, Mittra R. Computational method for electromagnetic [M]. New York: IEEE Press, 1998.
    [3]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.
    [4]王长清.现代计算电磁学基础[M].北京:北京大学出版社,2005.
    [5]葛德彪,闫玉波。电磁波时域有限差分法[M]。西安:西安电子科技大学出版社,2005,第二版.
    [6] Taflove A, Hagness S C. Computational electrodynamics the finite-difference time-domain method (3rd edition) [M]. Artech House Boston London, 2005.
    [7] Harrington R F. Field computation by moment method (2nd edition) [M]. New York: IEEE Press, 1993.
    [8] Jin J M. The finite element method in electromagnetics [M]. New York: John Wiley & Sons, 1993.
    [9] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media [J]. IEEE Trans. Antennas Propagat., 1966, AP-14(3): 302-307.
    [10] Yee K S and Chen J S. The finite-difference time-domain (FDTD) and finite-volume time-domain (FVTD) method in solving Maxwell’s equations [J]. IEEE Trans. Microwave Theory and Tech., 1997, 45(3): 354-363
    [11] Chen Z and Xu J. The generalized TLM based FDTD summary of recent progress [J]. IEEE Microwave and Guided Wave Letters, 1997, 7(11): 12-14
    [12] Auckenthaler A M and Bennett C L. Computer solution of transient and time domain thin-wire antenna problems [J]. IEEE Trans. Microwave Theory Tech., 1971,19(11): 892-893
    [13] Lynch D R and Paulsen K D. Time-domain integration of the Maxwell equations of finite elements [J]. IEEE Trans. Antennas Propagat., 1990, 38(12): 1933-1942
    [14] Komisarek K S, Wang N N and Dominek A K, et al. An investigation of new FETD/ABC methods of computation of scattering from three-dimensional material objects [J]. IEEE Trans. Antennas Propagat., 1999, 47(10): 1579-1585
    [15] Krumpholz M and Katechi L P B. MRTD: New time-domain schemes based onmultiresolution analysis[J]. IEEE Trans. Microwave Theory Tech., 1996, 44(4): 555-571
    [16] Fujii M and Hoefer W J R. A three-dimensional Haar-wavelet-based multiresolution analysis similar to the FDTD method-derivation and application [J]. IEEE Trans. Microwave Theory Tech., 1998, 46(12): 2463-2475
    [17] Tentzeris E M, Harvey J F and Katechi L P B. Stability and dispersion analysis of Battle-Lemarie-based MRTD schemes [J]. IEEE Trans. Microwave Theory Tech., 1997, 47(7): 1004-1013
    [18] Dogaru T and Carin L. Multiresolution time-domain using CDF biorthogonal wavelets [J]. IEEE Trans. Microwave Theory Tech., 2001, 49(7): 902-912
    [19] Liu Q H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength [J]. Microwave and Optical Technology Letters, 1997, 15(3): 159-165
    [20] Liu Q H. A frequency-dependent PSTD algorithm for general dispersive media [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(2): 51-53
    [21] Veruttipong T W. Time-domain version of the uniform GTD [J]. IEEE Trans. Antennas Propagat., 1990, 38(11): 1757-1764
    [22] Rousseau P R and Pathak P H. Time-domain uniform GTD for a curved wedge [J]. IEEE Trans. Antennas Propagat., 1995, 43(12): 1375-1382
    [23] Sun E Y and Rusch W V T. Time-domain physical-optics [J]. IEEE Trans. Antennas Propagat., 1994, 42(1): 9-15
    [24] Johansen P M. Time-domain version of the physical theory of diffraction [J]. IEEE Trans. Antennas Propagat., 1999, 47(2): 261-270
    [25] Altintas A and Russer P. Time-domain equivalent edge currents for transient scattering [J]. IEEE Trans. Antennas Propagat., 2001, 49(4): 602-606
    [26] Kunz K S, Lee K M. A 3-D finite difference solution of the external response of an aircraft to a complex transient EM environment: I-The method and its implementation [J]. IEEE Trans. Electromagn. Compat., 1978, EMC-20(2): 328-333.
    [27] Umashankar K R, Taflove A. A novel method of analyzing electromagnetic scattering of complex objects [J]. IEEE Trans. Electromagn. Compat., 1982, EMC-24(4): 397-405.
    [28] Choi D H, Hoefer W J R. The finite difference time domain method and its application to eigenvalue problem [J]. IEEE Trans. Microwave Theory Tech., 1986, MTT-34(12): 1464-1470.
    [29] Liang G C, Liu Y W, and Mei K K. Full-wave analysis of coplanar waveguide and slotline using the TDFD method [J]. IEEE Trans. Microwave Theory and Techniques, 1989, 37(12): 1949-1957.
    [30] Wang J G, Chen Y S, Fan R Y, et al. Numerical studies on nonlinear coupling of high power microwave pulses into a cylindrical cavity [J]. IEEE Trans. Plasma Science, Feb. 1996, 24(1): 193-197.
    [31] Maloney J G, Smith G S and R. Scott. Accurate computation of the radiation from simple antennas using the FDTD method [J]. IEEE Trans. Antennas Propagat., 1990, AP-38(7): 1059-1068.
    [32] Zhang X L, Fang J Y, Mei K K, and Liu Y W. Calculation of the dispersive characteristics of microstrip by the time-domain finite-difference method [J]. IEEE Trans. Microwave Theory and Techniques, 1988, 36(2): 263-267.
    [33] Tsay W J, Pozar D M. Application of the FDTD technique to periodic problems in the scattering and radiation [J]. IEEE Microwave Guided Wave Lett., 1993, 3(8): 250-252.
    [34] Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite difference time domain algorithm for FSS structures [J]. IEEE Trans. Antennas Propagat., 1994, AP-42(9): 1317-1324.
    [35] Roden J A, Gedney S D, Kesler M P, Maloney J G, Harms P H. Time-Domain Analysis of periodic structures at oblique incidence: orthogonal and nonorthogonal FDTD implementations [J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(4): 420-427.
    [36] Turner G M, Christodoulou C. FDTD analysis of phased array antennas [J]. IEEE Trans. Antennas Propagat., 1999, AP-47(4): 861-867.
    [37] Holter H, Steyskai H. Infinite phased-array analysis using FDTD periodic boundary conditions pulse scanning in oblique directions [J]. IEEE Trans. Antennas Propagat., 1999, AP-47(10): 1508-1514.
    [38] Sui W, Cristensen D A, Durney C H. Extending the two dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements [J]. IEEE Trans. Microwave Theory Tech., 1992, MTT-40(4): 724-730.
    [39]周璧华,陈彬,高成.现代战争面临的高功率电磁环境分析[J].微波学报,2002,18(1):88-92.
    [40] Prather D W, Shi S Y. Formulation and application of the finite difference time domain method for the analysis of axially symmetric diffractive optical elements [J]. J. Opt. Soc. Am. A, 1999, 16(5): 1131-1142.
    [41] Sullivan D. 3-D computer simulation in deep regional hyperthermia using the FDTD method [J]. IEEE Trans. Microwave Theory Tech., 1990, MTT-38(2): 204-211.
    [42] Sheen D M,.ALI S M, et al. Application of the three-dimensional finite-differencetime-domain method to the analysis of planar microstrip circuits [J]. IEEE Trans., 1990, MTT-38(7): 849-856.
    [43] Veselago V G. The electrodynamics of substance with simultaneously negative values ofεandμ[J]. Sov. Phys. Usp. 1968, 10(4): 509-514.
    [44] Yin H C, Chao Z M, Xu Y P. A new free-space method for measurement of electromagnetic parameters of biaxial materials at microwave frequencies [J]. Microwave and Optical Technology Letters, 2005, 46(1): 72-78.
    [45]匡磊,金亚秋.三维随机粗糙面与目标复合电磁散射的FDTD方法[J].计算物理,2007,24(5):154~955+065.
    [46] Lampe B, Holliger K, green A G. A finite-difference time-domain simulation tool for ground-penetrating radar antennas [J]. Geophysics, 2003, 68: 971-987.
    [47] Paul Soudais, Fabrice Dubois, Scattering from Several Test-Objects Computed by 3-D Hybrid IE/PDE Methods [J], IEEE Trans. Antennas Propag., vol. 47, no. 4, pp. 646–653, Apr 1999.
    [48] You-Lin Geng, Xin-Bao Wu, Le-Wei Li, Electromagnetic Scattering by an Inhomogeneous Plasma Anisotropic Sphere of Multilayers [J], IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3982–3988, Dec. 2005.
    [49]朱秀芹,耿友林,吴信宝.三维各向异性介质目标电磁散射MOM-CGM-FFT方法[J].电波科学学报,2002,17(3):209~215.
    [50]朱秀芹,耿友林,吴信宝,三维磁各向异性目标电磁散射[J].微波学报, 2002, 18(4): 397~401.
    [51] V. Varadarajan, R. Mittra. Finite-Difference Time-Domain(FDTD) analysis using distributed computing [J]. IEEE Microwave and Guided Wave Letters, 1994, 4(5): 144-145.
    [52] K. C. Chew, V. Fusco. A parallel implementation of the FDTD algorithm [J]. Int. Journ. Num. Modeling, 1995, 8: 293-299.
    [53] S. D. Gedney. FDTD analysis of MW circuit devices in High Performance Vector/Parallel computers [J]. IEEE Trans. Microwave Theory Tech., 1995, 43(10): 2510-2514.
    [54] Z. M. Liu, A. S. Mohan, T. A. Aubrey, et al. Techniques for implementation of the FDTD method on CM-5 parallel computer [J]. IEEE Antennas and Propagation Magazine, 1995, 37(5): 64-71.
    [55] H. Hoteit, R. Sauleau, B. Philippe, et al. Vector and parallel implementations for the FDTD analysis of millimeter wave planar antennas [J]. International Journal of High speed computing, 1999, 10(2): 209-234.
    [56] Guiffaut C and Mahdjoubi K, A parallel FDTD algorithm using the MPI Library [J], IEEE Ant. Prop. Mag., 2001, Vol. 43(2): 94-103.
    [57] Luca Catarinucci, Paolo Palazzari, and Luciano Tarricone, Human Exposure to the Near Field of Radiobase Antennas—A Full-Wave Solution Using Parallel FDTD [J], IEEE Trans. Microwave Theory Tech., 2003, Vol. 51(3), 935-940.
    [58] M. F. Su, I. E. Kady, D. A. Bader, et.al. A Novel FDTD Application Featuring OpenMP-MPI Hybrid Parallelization [J]. Proceeding of the 2004 Intermational Conference on Parallel processing(ICPP`04).
    [59]张玉,苏涛,翟会清等. PC群集系统中并行矩量法研究[J].电子学报. 2003, 31(9): 1368-1371
    [60]张玉,王萌,梁昌洪等. PC集群系统中MPI并行矩量法研究[J].电子与信息学报, 2005, 27(4): 647-650
    [61]张玉,王楠,梁昌洪. PC群集MPI并行矩量法分析复杂平台多天线特性[J].电子学报. 2006, 34(3): 478-482
    [62]郑奎松,葛德彪,葛宁,三维电磁散射的网络并行FDTD计算和加速比分析[J].电波科学学报,2004,19(6):767-771。
    [63]张玉,宋健,梁昌洪,并行共形FDTD算法及其在PBG结构仿真中的应用[J].电子学报,2003年12A期。
    [64]闫玉波,葛宁,郑美艳,葛德彪,田春明。网络并行FDTD方法分析电大目标电磁散射[J]。电子学报,2003,31(6):821-824。
    [65]薛正辉,杨仕明,高本庆,等. FDTD算法的网络并行运算实现[J],电子学报, 2003, 31(12): 1839-1843.
    [66]张玉,宋健,梁昌洪,并行共形FDTD算法及其在PBG结构仿真中的应用[J],电子学报,2003, 31(12A):2142-2144.
    [67]葛德彪,杨利霞.各向异性介质FDTD分析及其并行计算[J].系统工程与电子技术. 2006, 28(4), 483-485.
    [68]姜彦南,葛德彪,魏兵.三维FDTD基于MPI平台的并行设计[C]. 2008年超宽谱/带与短脉冲电磁学年会(UWB-SP’2008/西安)论文集:23~27.
    [69]都志辉.高性能计算并行编程技术[M],北京:清华大学出版社, 2001.
    [70] Mur G., Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations [J]. IEEE Trans. Electromagn. Compat. 1981, EMC-23(4): 377–382.
    [71] Berenger J P. A perfectly matched layer medium for the absorption of electromagnetic waves [J], J. Comput. Phys., 1994, 114: 185-200.
    [72] Berenger J P. Perfectly matched layer for the FDTD solution of wave-structureinteraction problem [J]. IEEE Trans. Antennas Propagat, Jan., 1996, AP-44 (1): 110-117.
    [73] Sacks Z S, Kingsland D M, Lee D M and Lee J F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. IEEE Trans. Antennas Propagat., Dec. 1995, AP-43(12): 1460~1463
    [74] Gedney S D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices [J]. IEEE Trans. Antennas Propagat., Dec. 1996, AP-44(12): 1630~1639
    [75] Gedney S D. An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media [J]. Electromagnetics, July-Aug. 1996, 16(4): 399~415
    [76] J. Y. Fang, Z. H. Wu. Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media [J]. IEEE Trans. On Microwave Theory Tech. 1996, 44(12): 2216-2222.
    [77] Roden J.A., Gedney S.D. Convolutional PML (CPML): an efficient FDTD implementation of CFS-PML for arbitrary media [J]. Microwave Opt. Tech. Lett., 2000, 27(12): 334~339.
    [78]姜彦南,葛德彪,魏兵. MPI并行FDTD中Mur/UPML/CPML吸收边界研究[J].系统工程与电子技术,2008,30(9): 5~9.
    [79]姜彦南,葛德彪,魏兵.分层背景2维FDTD中斜入射平面波的引入[J].强激光与粒子束,2008,20(4): 633-636.
    [80] U. Oguz, L. Gurel, and O. Arikan, An efficient and accurate technique for the incident-wave excitations in the FDTD method [J]. IEEE Trans. Microwave Theory Tech., vol. 46, no. 6, pp. 869–882, Jun. 1998.
    [81] Demarest K, Plumb R, Huang Zh b. FDTD Modeling of Scatterers in Stratified Media [J]. IEEE Trans. On AP, 1995, 43(10): 1164~1168.
    [82] P B Wong, G L Tyler, J E Baron et al. A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surface [J]. IEEE Trans. On AP, 1996 , 44(4) : 504~513.
    [83] Scott C. Winton, Panagiotis Kosmas, and Carey M. Rappaport, FDTD Simulation of TE and TM Plane Waves at Nonzero Incidence in Arbitrary Layered Media [J]. IEEE Trans. Antennas Propagat., 2005, 53(5):1721-1728.
    [84]姜彦南,葛德彪.层状介质时域有限差分方法斜入射平面波引入新方式[J].物理学报. 2008, 57(10): 245-251.
    [85] Jiang Y.-N., D.-B. Ge, and S.-J. Ding. Analysis of TF/SF boundary for 2D-FDTDwith plane p-wave propagation in layered dispersive and lossy media [J]. Progress In Electromagnetics Research, PIER 83: 157-172, 2008.(http://ceta.mit.edu/pier/pier83/)
    [86] Capoglu I.R., G. S. Smith. A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media[J]. IEEE Trans. Antennas Propag., 2008, 56(1): 158~169.
    [87]姜彦南,葛德彪,魏兵.平面波斜入射于层状色散介质的修正1D-FDTD计算[C]. 2008海峡两岸三地无线电科技研讨会论文集. 301~304.
    [88] Jiang Yannan, Ge Debiao, Ding Shijing, et al. Study of the one-dimensional modified Maxwell's equation to p-wave in layered dispersive media[C]. 2008 20th Asia Pacific Microwave Conference, Hong Kong, China.
    [89] S. M. Rao and D. R. Wilton, Transient scattering by conducting surfaces of arbitary sharp [J]. IEEE Trans. On AP, 1991, 39: 56-61.
    [90]张晓燕,盛新庆.地下目标散射的FDTD计算[J].电子与信息学报, 2007, 29(8): 1997-2000.
    [91]姜彦南,葛德彪,张玉强,张吒,黄兴军.三维并行FDTD在层状空间散射问题中的应用. 2008全国电磁散射与逆散射学术交流会论文集: 169~172.
    [92] R. J. Lubbers, F. Hunsberger, and K. S. Kunz. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma [J]. IEEE Trans. Antennas Propag., vol. 39, no. 1, pp.29~34.
    [93] Y. Takayama and W. Klaus. Reinterpertation of the auxiliary differential equation method for FDTD [J]. IEEE Microw. Wireless compon. Lett., vol. 12, no. 3, pp.102~104, Mar. 1994.
    [94] D. M. Sullivan. Frequency-dependent FDTD methods using z transforms [J]. IEEE Trans. Antenna Progat., vol. 40, no.10, pp. 1223~1230, Oct. 1992.
    [95] D. M. Sullivan. Nonlinear FDTD formulation using z transforms [J]. IEEE Trans. Antennas Propag. Vol. 43, no. 3, pp.676-682, Mar. 1995.
    [96] D. M. Sullivan. Z-transform theory and the FDTD method [J]. IEEE Trans. Antennas Propag., vol. 44, No.1 pp. 28-34. Jan. 1996.
    [97] Q. Chen, M. Katsurai, and P. H. Aoyagi, A FDTD romulation for dispersive media using a current density [J]. IEEE Trans. Antennas Propag., vol. 46, no. 11, pp. 1739-1746, Nov.1998.
    [98] Lijun Xu and Naichang Yuan, PLJERC-ADI-FDTD method for isotropic plasma [J]. IEEE icrowave and wireless components letters, Vol. 15, No. 4, April 2005.
    [99]葛德彪,吴跃丽,朱湘琴.等离子体散射FDTD分析的移位算子法[J].电波科学学报,2003,18(4):359~362.
    [100]杨利霞,葛德彪,郑奎松等,电各向异性介质FDTD并行算法研究[J].电波科学学报,2006,21(1):43~48
    [101]杨利霞,葛德彪,魏兵,郑奎松,葛宁, FDTD并行算法研究:电和磁均为各向异性情形[J].电子学报,2006,34(9):1703~1707.
    [102] K. Mei and J. Fang, Superabsorption-a method to improve absorbing boundary conditions[J]. IEEE Trans. On AP. 1992,40(9): 1001-1010.
    [103] Z. Liao, H. Wong, Y. Baipo and Y. Yifan, A transmitting boundary for transient wave analyszes[J]. Scientiz Sinica, (Series A), 1984, 27(10): 1062-1076.
    [104] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves[J]. Mathematics of computation, 1977, 31: 629-651.
    [105] J. P. Berenger, Improved PML for the FDTD solution of wave-structure interaction problems[J]. IEEE Transactions on Antennas and Propagation. 1997, 45: 466-473,.
    [106] M. Kuzuoglu and R. Mittra, Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave and Guided Wave Letters. 1996, 6: 447-449.
    [107]余文华,苏涛, Mittra R.并行时域有限差分[M].北京:中国传媒大学出版社. 2005
    [108] You-Lin Geng, Xin-Bao Wu, Le-Wei Li, Electromagnetic Scattering by an Inhomogeneous Plasma Anisotropic Sphere of Multilayers[J]. IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3982–3988, Dec. 2005.
    [109] X. Q. Zhu, Y. L. Geng, and X. B.Wu, Application of MOM-CGM-FFT method to scattering from three-dimensional anisotropic scatterers[J]. Chinese J. Radio Sci(中文期刊:电波科学学报)., vol. 17, no. 3, pp. 209–215, 2002.
    [110]耿友林,吴信宝,官伯然。导体球涂覆各向异性铁氧体介质电磁散射的解析解[J].电子与信息学报,2006,28(9):1740-1743。
    [111]姜彦南,葛德彪,魏兵.各向异性介质RCS散射特性研究[C].第六届西北地区计算物理学术会议论文集, (陕西汉中): 129~132.
    [112] Paul Soudais, Fabrice Dubois, Scattering from Several Test-Objects Computed by 3-D Hybrid IE/PDE Methods[J]. IEEE Trans. Antennas Propag., vol. 47, no. 4, pp. 646–653, Apr 1999.
    [113]孙家昶,张林波,迟学斌等。网络并行计算与分布式编程环境[M].北京:科学出版社,1996.3.
    [114] Jin Au Kong. Electromagnetic Wave Theory [M]. Beijing: Higher Education Press, 2002. (Cited on page 379 and 382)
    [115] Mark Converse, Essex J. Bond, Susan C. Hagness, and Barry D. Van Veen, Ultrawide- Band Microwave Space–Time Beam forming for Hyperthermia Treatment of Breast Cancer: A Computational Feasibility Study [J]. IEEE Trans. Microwave Theory Tech. , 2004, 52(8), 1876-1889.
    [116]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社, 2001.
    [117]郭硕鸿。电动力学[M].北京:高等教育出版社,1997.
    [118]高本庆.时域有限差分方法[M].北京:国防工业出版社. 1995.
    [119]王毅,许乔,柴立群等.熔石英表面划痕附近电磁场分布模拟分析[J].强激光与粒子束,Vol17, No.1, pp.67-70, 2005年1月.
    [120] T. P. Montoya, G. S. Smith. Land Mine Detection Using a Ground-Penetrating Radar Based on Resistively Loaded Vee Dipoles [J]. IEEE transactions ON AP, 1999, 47(12): 1795-1806.
    [121]闫玉波. FDTD在工程瞬态电磁学中的应用[D].西安电子科技大学博士学位论文. 2001年.
    [122]魏兵.各向异性介质电磁散射及参数反演研究[D].西安电子科技大学博士学位论文. 2004年.
    [123]朱湘琴. FDTD在半空间及周期结构问题中的应用[D].西安电子科技大学博士学位论文. 2005年.
    [124]郑奎松. FDTD网络并行计算及ADI-FDTD方法研究[D].西安电子科技大学博士学位论文. 2006年.
    [125]杨利霞.复杂介质电磁散射的FDTD算法及其相关技术研究[D].西安电子科技大学博士学位论文. 2007年.
    [126]胡晓娟.复杂目标电磁散射的FDTD及FDFD算法研究[D].西安电子科技大学博士学位论文. 2008年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700