真空镁热法还原全硅分子筛选合成多孔硅的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是信息技术的时代,以晶体硅芯片技术和光电子材料为代表的半导体材料是信息技术的基础。随着信息技术的发展,对信息的传递速度,储存能力,处理功能等提出了更高要求。上世纪90年代初发现多孔硅室温高效率光致发光后,引起了人们对多孔硅研究的热潮。多孔硅基发光二极管和多孔硅基全硅光电集成的初步实现,打破了硅作为间接带隙(1.12 eV)半导体材料难于实现高效发光的难题。在硅芯片中引进光电子技术,以光子代替电子作为信息载体,可以大大提高信息传输速度和处理能力。当然目前多孔硅发光还存在诸多缺点,如发光寿命短,重复性较差,性能不稳定等等。制备具有稳定性质的多孔硅结构,确定多孔硅发光机理,提高发光稳定性,从而增强多孔硅基发光二极管的效率和寿命,是目前多孔硅研究的重要课题。为避免通常使用的腐蚀法对生成的多孔硅结构的限制,近年来出现了利用氧化还原反应制备多孔硅的新方法。
     本论文以微孔和介孔全硅分子筛为原材料,通过真空镁热还原法,制备了几种具有不同结构形态的多孔硅材料,并对其晶相,形貌,微观形态,孔结构进行了多角度的分析和研究。基于多孔硅材料的发光特性,研究了所制备多孔硅材料的光致发光性质,初步探讨了多孔硅材料静态吸附小分子或负载氧化锌后发光性质变化的机理。主要研究结果如下:
     1.通过实验探索,采用化学试剂,添加结构导向剂或螯合剂调节晶体的结晶方式,利用水热法成功、稳定地制备了棒状立方体全硅方钠石和silicalite-I单晶体。采用旋液法分别稳定地制备了MCM-48型介孔分子筛球以及二氧化硅实心球。通过扫描电镜、透射电镜、光学显微镜、红外光谱、荧光光谱和氮气吸附等方法对所得产物进行全面系统的表征,为后面工作中分析研究热还原反应后晶相及孔结构的变化奠定了基础。
     2.通过实验探索,优化实验条件,采用高真空镁热还原法,在630-650℃温度范围内,‘将合成的几种全硅分子筛以及二氧化硅实心球还原为具有较高比表面积的多孔硅材料。分别对制备的多孔硅材料的形貌、成分、晶相、孔结构和荧光性质进行了测试和表征,结合反应物的性质,分析了可能的反应机理。产物多孔硅宏观上保持了原来全硅分子筛的形貌,而内部结构各异。所有制备的多孔硅都具有光致发光性质,但发光频率及强度则各不相同。
     3.横向比较发现所制备的多孔硅材料具有一些共性:(i)产物多孔硅基本保持了分子筛原有的形貌,粒径大小不变。(ii)所制备的多孔硅材料基本为晶态。由分子筛单晶体得到的多孔硅颗粒表面呈单晶态,内部为多晶;由MCM-48型分子筛球和二氧化硅实心球得到的球形多孔硅,基本呈多晶态,但存在少量无定形硅。(iii)产物多孔硅材料的氮气吸附脱附研究表面,其等温线类型相似,且都有吸附滞后环出现,孔径在介孔范围内。(iv)产物多孔硅形态各异,但均具有光致发光现象,空气中自然氧化一个月后,均出现发光蓝移现象。
     不同的产物多孔硅各有特性:(i)由全硅方钠石单晶得到的立方体多孔硅表面为单晶态,内部为15-20 nm的岛状多晶结构。(ii)由silicalite-I单晶得到的棒状多孔硅表面为单晶硅,内部为带有不规则孔的类层状多晶结构,类层状结构层层相叠互连,构成三维结构。(iii)由MCM-48型分子筛球得到的多孔硅球,与原来MCM-48型分子筛相比,其内部孔结构更为疏松,其微结构是由大量硅纳米微晶聚集而成。(iv)二氧化硅实心球则完全转化为疏松形态的球形多孔硅,其中还分布着弯曲的管道状的结构。
     4.对所合成的多孔硅材料进行初步的应用探讨。由于多孔硅材料的光学特性,适合应用于光学传感领域,因此在静态吸附气体小分子或负载氧化锌后,对处理后的样品的荧光性质进行研究,探讨该材料应用于传感领域的可能性。并对荧光光谱的变化机理进行了分析,得到引起荧光光谱变化的原因,为该材料的后续应用研究提供原始的实验和理论依据。
The 21th century is the age of information technology, based on the semiconductor materials such as crystal silicon chip technology and photoelectric materials. The development of information technology needs more advantages for the transfer speed, memory ability and process function of information. It was in the year of 1990 that the photoluminescence from porous silicon was discovered in ambient, which evoked people's passion for the research for porous silicon.
     Porous silicon based light emission diode and photoelectric integration have been synthesized in the 1990s, which broke the bottleneck that silicon is the indirect band gap semiconductor material and is difficult to realize effective light emission. When the photoelectric technology is brought into the silicon chip, photons, instead of electrons, become the information carrier, which could dramatically enlarge the transfer speed, memory ability and process function of information. Nowadays there still exist many disadvantages of the emission from porous silicon, such as the short life time, low repetition, instability and etc.
     It is necessary to synthesize different porous silicon structures with stable optical property. At present the important topics about porous silicon is to confirm the emission mechanism, improve the emission stability and increase the efficiency and life time of silicon-based light emission diode. However, the similarly traditional etching process resulted in similar structures in porous silicon, which limited the abundance of porous silicon structures, thus the study of synthesis and properties of new structure silicon materials becomes one of the most important subjects in the research of material field. In recent years, displacement reaction began to be used in porous silicon preparation.
     In this dissertation, porous silicon granules with different structures have been synthesized from several representative types of pure silica zeolites by the magnesiothermal process in vacuum under a modest temperature. A series of methods have been introduced to characterize the so-obtained materials from several points of view, such as the crystal phase, images and microcosmic structures. Based on the features of the materials, the photoluminescence (PL) properties have been investigated. Furthermore, after small molecules adsorbed or zinc oxide loaded in the materials, the mechanisms of changes in the PL spectra have also been deduced. The main results are as follows.
     1. Silicalite-I and pure silica sodalite single crystals have been synthesized successfully and stably with pure chemical reagents in hydrothermal processes, by adding EDTA-Na4 and pyrocatechol as mineraliser respectively. Pure silica MCM-48 and amorphous SiO2 spheres have been synthesized by rotating-liquid method. The products have been characterized intensively by different ways, such as scanning electron microscopy (SEM), optical microscopy, N2-adsorption analysis, infrared spectra (IR), photoluminescence spectra (PL) and etc. Generally, these products possess outstanding properties to be applied as a raw material for the thermal reduction reaction and pave the way for the following works.
     2. Porous silicons with different structures have been synthesized from the so-obtained zeolites and SiO2 spheres by magnesiothermal process in vacuum under a temperature range of 630-650℃. The crystal phase, images, microcosmic structures and photoluminescence property of the as-synthesized porous silicons have been characterized. The possible reaction mechanism has been speculated with the properties of products.
     3. Generally compared and taken from a global view of these materials, some commonness have been found and stated as follows. (a) The as-synthesized porous silicon granules maintain the former shape from zeolites, with the size unchanged. The modest temperature and appropriate reaction time prevent the shape from distorting and collapsing. Meanwhile, the formation of the magnesia phase penetrating into the crystal silicon granule also solidifies the framework of the granule. (b) All porous silicons are mainly composed of crystal silicon. There exists some single crystal silicon piece in those from zeolites single crystals. A small amount of amorphous silicon has been found in the products from both MCM-48 and amorphous SiO2 spheres. (c) From the N2 adsorption-desorption isotherms we found that the porous silicons have similar adsorption properties and the pore diameter are all belong to mesoporous range. (d) Each specimen displays a fine photoluminescence by an ultraviolet excitation. The photoluminescence center shifts blue after long time oxidation.
     Of course, different porous silicon has its own characteristics. (a) The porous silicon granule from sodalite single crystal is composed of single crystal surface and island-like structure in the inside. (b) The porous silicon from silicalite-I single crystal is composed of single crystal surface and layered inside with irregular pores. (c) The MCM-48 spheres have been entirely changed to spherical porous silicon, consisting of silicon nanocrystals. (d) The structure of spherical porous silicon from amorphous SiO2 spheres is very loosen and there distribute many curved pipe-like channels.
     4. The synthesized porous silicons have been applied for adsorbing small molecule gases including NH3 and H2S. The photoluminescence spectra have been collected after the gas adsorption. Zinc oxide has also been successfully loaded in the porous silicon from silicalite-I and the photoluminescence spectrum of the loaded specimen has been obtained. The mechanisms of the variation in the emission spectra are investigated and speculated, which supplies the follow-up researches with the original data and theoretical foundation.
引文
[1]Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett,1990,57(10):1046-1048.
    [2]Uhlir A. Electrolytic shaping of germanium and silicon. Bell Syst Tech J,1956,35(2):333-347.
    [3]Turner D R, Sruface chemistry of metals and semiconductors, Wiley:New York, (1960);
    [4]Robbins H, Schwartz B. Chemical etching of silicon.1. The system HF, HNO3, and H2O. J Electrochem Soc,1959,106(6):505-508.
    [5]Robbins H, Schwartz B. Chemical etching of silicon.2. The system HF, HNO3, H2O, and HC2H3O2. J Electrochem Soc,1960,107(2):108-111.
    [6]Schwartz B, Robbins H. Chemical etching of silicon.3. A temperature study in the acid system. J Electrochem Soc,1961,108(4):365-372.
    [7]Schwartz B, Robbins H. Chemical etching of silicon.4. Etching technology. J Electrochem Soc,1976, 123(12):1903-1909.
    [8]Beckmann K H. Investigation of the chemical properties of stain films on silicon by means of infrared spectroscopy. Surf Sci,1965,3(4):314-332.
    [9]Theuniss.Mj. Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J Electrochem Soc,1972,119(3):351-360.
    [10]Bomchil G, Herino R, Barla K et al. Pore-size distribution in porous silicon studied by adsorption isotherms. J Electrochem Soc,1983,130(7):1611-1614.
    [11]Pickering C, Beale M I J, Robbins D J et al. Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon. J. Phys. C,1984,17:6535-6552.
    [12]Beale M I J, Chew N G, Uren M J et al. Microstructure and formation mechanism of porous silicon. Appl Phys Lett,1985,46(1):86-88.
    [13]Earwaker L G, Farr J P G, Grzeszczyk P E et al. Analysis of porous silicon. Nucl Instrum Meth B, 1985,9(3):317-320.
    [14]Chuang S F, Collins S D, Smith R L. Preferential propagation of pores during the formation of porous silicon-a transmission electron-microscopy study. Appl Phys Lett,1989,55(7):675-677.
    [15]Canham L T, Barraclough K G, Robbins D J.1.3-Mu-M light-emitting diode from silicon electron-irradiated at its damage threshold. Appl Phys Lett,1987,51(19):1509-1511.
    [16]Gosele U, Lehmann V. Light-emitting porous silicon. Mater Chem Phys,1995,40(4):253-259.
    [17]Cullis A G, Canham L T. Visible-light emission due to quantum size effects in highly porous crystalline silicon. Nature,1991,353(6342):335-338.
    [18]Belotti M, Torres J, Roy E et al. Fabrication of SOI photonic crystal slabs by soft UV-nanoimprint lithography. Microelectron Eng,2006,83(4-9):1773-1777.
    [19]Belotti M, Galli M, Bajoni D et al. Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography. Microelectron Eng,2004,73-74:405-411. [20] Hamm D, Sakka T, Ogata Y H. Etching of porous silicon in basic solution. Phys Status Solidi A,2003, 197(1):175-179.
    [21]Feng Z C, Yu J W, Li K et al. Combined optical, surface and nuclear microscopic assessment of porous silicon formed in HF-acetonitrile. Surf Coat Tech,2006,200(10):3254-3260.
    [22]Torchynska T V, Rodriguez M M, Khomenkova L Y. Ballistic effect and photoluminescence excitation in porous silicon. Surf Sci,2003,532:1204-1208.
    [23]Kilian K A, Boecking T, Gooding J J. The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun,2009(6):630-640.
    [24]Cheng F, Kelly S M, Clark S et al. Catalytic ammonolytic sol-gel preparation of a mesoporous silicon aluminium nitride from a single-source precursor. J Organomet Chem,2007,692(17):3816-3822.
    [25]Salonen J, Laitinen L, Kaukonen A M et al. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J Control Release,2005,108(2-3):362-374.
    [26]Herino R, Bomchil G, Barla K et al. Porosity and pore-size distributions of porous silicon layers. J Electrochem Soc,1987,134(8A):1994-2000.
    [27]Limnell T, Riikonen J, Salonen J et al. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int J Pharm,2007,343(1-2):141-147.
    [28]Smith R L, Collins S D. Porous silicon formation mechanisms. J Appl Phys,1992,71(8):1-22.
    [29]Lehmann V, Foll H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc,1990,137(2):653-659.
    [30]Levyclement C, Lagoubi A, Tomkiewicz M. Morphology of porous n-type silicon obtained by photoelectrochemical etching.1. correlations with material and etching parameters. J Electrochem Soc, 1994,141(4):958-967.
    [31]彭英才,赵新为,傅广生,硅基纳米光电子技术,保定:河北大学出版社,2009.
    [32]Schilling J, White J, Scherer A et al. Three-dimensional macroporous silicon photonic crystal with large photonic band gap. Appl Phys Lett,2005,86(1):011101.
    [33]Blanco A, Chomski E, Grabtchak S et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature,2000,405(6785):437-440.
    [34]Zhang Z J, Xu C H, Yue Y. Selective growth of graphite micro-rods with SiO2 nanowire cores by chemical vapor deposition. Appl Phys Lett,2006,88(11):113102.
    [35]Turner D R. Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc,1958, 105(7):402-408.
    [36]Turner D R. On the mechanism of chemically etching germanium and silicon. J Electrochem Soc,1960, 107(10):810-816.
    [37]Memming R, Schwandt G. Anodic dissolution of silicon in hydrofluoric acid solutions. Surf Sci,1966, 4(2):109-124.
    [38]Meek R L. N+ silicon-electrolyte interface capacitance. Surf Sci,1971,25(3):526-536.
    [39]Arita Y, Sunohara Y. Formation and properties of porous silicon film. J Electrochem Soc,1977, 124(2):285-295.
    [40]Unagami T, Seki M. Structure of porous silicon layer and heat-treatment effect. J Electrochem Soc, 1978,125(8):1339-1344.
    [41]Unagami T. Formation mechanism of porous silicon layer by anodization in HF solution. J Electrochem Soc,1980,127(2):476-483.
    [42]Gaspard F, Bsiesy A, Ligeon M et al. Charge-exchange mechanism responsible for p-type silicon dissolution during porous silicon formation. J Electrochem Soc,1989,136(10):3043-3046.
    [43]Meek R L. Anodic dissolution of n+ silicon. J Electrochem Soc,1971,118(3):437-442.
    [44]Theuniss.Mj, Appels J A, Verkuyle.Wh. Application of preferential electrochemical etching of silicon to semiconductor device technology. J Electrochem Soc,1970,117(7):959-965.
    [45]Levy-Clement C, Lust S, Mamor M et al. Investigation of p-type macroporous silicon formation. Physica Status Solidi a-Applications and Materials Science,2005,202(8):1390-1395.
    [46]Smith R L, Chuang S F, Collins S D. A theoretical-model of the formation morphologies of porous silicon. J Electron Mater,1988,17(6):533-541.
    [47]He Z J, Huang Y P, Kwor R. A modified computer-model for the formation of porous silicon. Thin Solid Films,1995,265(1-2):96-100.
    [48]Lehmann V, Gosele U. Porous silicon formation-a quantum wire effect. Appl Phys Lett,1991, 58(8):856-858.
    [49]Jones L A, Yukseker O, Thomas D F. Dependence of photochemically etched porous silicon formation on photoetching wavelength and power. J Vac Sci Technol A,1996,14(3):1505-1510.
    [50]Noguchi N, Suemune I. Luminescent porous silicon synthesized by visible-light irradiation. Appl Phys Lett,1993,62(12):1429-1431.
    [51]Ichinohe T, Nozaki S, Ono H et al. Cyclic shifts in the photoluminescence spectra of the porous Si in HF. Appl Phys Lett,1995,66(13):1644-1646.
    [52]唐元洪,硅纳米线及硅纳米管,北京:化学工业出版社,2006.
    [53]Wolford D J, Scott B A, Reimer J A et al. Efficient visible luminescence from hydrogenated amorphous-silicon. Physica B & C,1983,117(Mar):920-922.
    [54]Furukawa S, Miyasato T. Quantum size effects on the optical band-gap of microcrystalline Si-H. Phys Rev B,1988,38(8):5726-5729.
    [55]Watanabe Y, Sakai T. Application of a thick anode film to semiconductor devices. Rev Elec Commun Lab,1971,19(7-8):899.
    [56]Watanabe Y, Arita Y, Yokoyama T et al. Formation and properties of porous silicon and its application. J Electrochem Soc,1975,122(10):1351-1355.
    [57]Imai K. A new dielectric isolation method using porous silicon. Solid State Electron,1981, 24(2):159-164.
    [58]Salonen J, Tuura J, Bjorkqvist M et al. Sub-ppm trace moisture detection with a simple thermally carbonized porous silicon sensor. Sensor Actuat B-Chem,2006,114(1):423-426.
    [59]Wei X, Kang C, Liscidini M et al. Grating couplers on porous silicon planar waveguides for sensing applications. J Appl Phys,2008,104(12):123113.
    [60]Pagonis D N, Petropoulos A, Kaltsas G et al. Novel microfluidic flow sensor based on a microchannel capped by porous silicon. Physica Status Solidi a-Applications and Materials Science,2007, 204(5):1474-1479.
    [61]Sujatha L, Bhattacharya E. Enhancement of the sensitivity of pressure sensors with a composite Si/porous silicon membrane. J Micromech Microeng,2007,17(8):1605-1610.
    [62]Pramanik C, Saha H, Gangopadhyay U. An integrated pressure and temperature sensor based on nanocrystalline porous silicon. J Micromech Microeng,2006,16(7):1340-1348.
    [63]Furbert P, Lu C Y, Winograd N et al. Label-free optical detection of peptide synthesis on a porous silicon scaffold/sensor. Langmuir,2008,24(6):2908-2915.
    [64]De Stefano L, Rotiroti L, De Tommasi E et al. Hybrid polymer-porous silicon photonic crystals for optical sensing. J Appl Phys,2009,106(2):023109.
    [65]Ali N K, Hashim M R, Aziz A A. Effects of surface passivation in porous silicon as H2 gas sensor. Solid State Electron,2008,52(7):1071-1074.
    [66]Mahmoudi B, Gabouze N, Haddadi M et al. Gas sensitive porous silicon sensor using rapid thermal annealing screen printing contacts. Phys Stat Sol,2007,4(6):2068-2072.
    [67]Liu Z T, Fan T X, Zhang D et al. Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates. Sensor Actuat B-Chem,2009,136(2):499-509.
    [68]Triantafyllopoulou R, Illa X, Casals O et al. Nanostructured oxides on porous silicon microhotplates for NH3 sensing. Microelectron Eng,2008,85(5-6):1116-1119.
    [69]Martinez H M, Rincon N E, Torres J et al. Porous silicon thin film as CO sensor. Microelectron J,2008, 39(11):1354-1355.
    [70]Gabouze N, Belhousse S, Cheraga H et al. CO2 and H2 detection with a CHx/porous silicon-based sensor. Vacuum,2006,80(9):986-989.
    [71]Seals L, Gole J L, Tse L A et al. Rapid, reversible, sensitive porous silicon gas sensor. J Appl Phys, 2002,91(4):2519-2523.
    [72]Bolotov V V, Ponomareva I V, Sten'kin Y A et al. The effect of NO2 adsorption on optical and electrical properties of porous silicon layers. Semiconductors,2007,41(8):962-964.
    [73]Kelly M T, Bocarsly A B. Effects of SO2 and I2 on the photoluminescence of oxidized porous silicon. Chem Mater,1997,9(7):1659-1664.
    [74]Mahmoudi B, Gabouze N, Guerbous L et al. Long-time stabilization of porous silicon photoluminescence by surface modification. J Lumin,2007,127(2):534-540.
    [75]Archer M, Christophersen M, Fauchet P M. Electrical porous silicon chemical sensor for detection of organic solvents. Sensor Actuat B-Chem,2005,106(1):347-357.
    [76]Salgado G G, Becerril T D, Santiesteban H J et al. Porous silicon organic vapor sensor. Opt Mater, 2006,29(1):51-55.
    [77]Huanca D R, Ramirez-Fernandez F J, Salcedo W J. Porous silicon optical cavity structure applied to high sensitivity organic solvent sensor. Microelectron J,2008,39(3-4):499-506.
    [78]Kim H J, Kim Y Y, Lee K W. Multiparametric sensor based on DBR porous silicon for detection of ethanol gas. Curr Appl Phys,2010,10(1):181-183.
    [79]Koshida N, Koyama H. Visible electroluminescence from porous silicon. Appl Phys Lett,1992, 60(3):347-349.
    [80]Hirschman K D, Tsybeskov L, Duttagupta S P et al. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature,1996,384(6607):338-341.
    [81]Lewis S E, DeBoer J R, Gole J L et al. Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sensor Actuat B-Chem,2005,110(1):54-65.
    [82]Shir D, Nelson E C, Chen Y C et al. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Appl Phys Lett,2009,94(1):011101.
    [83]王林军,夏义本,居建华.金刚石膜/多孔硅复合材料的性能表征.光学学报,2001,21(6):753-756.
    [84]徐东升,郭国霖,桂琳琳.以多孔硅为模板制备取向碳纳米管.中国科学(B辑),2000,30(4):289-293.
    [85]尹民,楼立人,张学兵.常压MOCVD法在多孔硅上生长GaAs中国科学技术大学学报,1996,26(3):284-288.
    [86]Chen X, Steinhart M, Hess C et al. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Adv Mater,2006,18(16):2153-2156.
    [87]Sun W, Puzas J E, Sheu T J et al. Porous silicon as a cell interface for bone tissue engineering. Phys Status Solidi A,2007,204(5):1429-1433.
    [88]Mathew A, Pandian G, Bhattacharya E et al. Novel applications of silicon and porous silicon based EISCAP biosensors. Phys Status Solidi A,2009,206(6):1369-1373.
    [89]Palestino G, Legros R, Agarwal V et al. Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection. Sensor Actuat B-Chem,2008,135(1):27-34.
    [90]Rong G, Weiss S M. Biomolecule size-dependent sensitivity of porous silicon sensors. Phys Status Solidi A,2009,206(6):1365-1368.
    [91]Johansson F, Wallman L, Danielsen N et al. Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions. Acta Biomater,2009,5(6):2230-2237.
    [92]Low S P, Voelcker N H, Canham L T et al. The biocompatibility of porous silicon in tissues of the eye. Biomaterials,2009,30(15):2873-2880.
    [93]Gu L, Orosco M, Sailor M J. Detection of protease activity by FRET using porous silicon as an energy acceptor. Phys Status Solidi A,2009,206(6):1374-1376.
    [94]Di Francia G, La Ferrara V, Manzo S et al. Towards a label-free optical porous silicon DNA sensor. Biosens Bioelectron,2005,21(4):661-665.
    [95]Ray M, Ganguly S, Das M et al. Genetic algorithm based search of parameters for fabrication of uniform porous silicon nanostructure. Comp Mater Sci,2009,45(1):60-64.
    [96]唐旭东,吴正中.纳米多孔硅光源矿山照明灯.煤炭科学技术,2002,30(2):46-48.
    [97]Chu K L, Shannon M A, Masel R I. Porous silicon fuel cells for micro power generation. J Micromech Microeng,2007,17(9):S243-S249.
    [98]Nouri H, Bouaicha M, Bessais B. Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure. Sol Energ Mat Sol C,2009,93(10):1823-1826.
    [99]Solanki C S, Bilyalov R R, Poortmans J et al. Porous silicon layer transfer processes for solar cells. Sol Energ Mat Sol C,2004,83(1):101-113.
    [100]林安中,周良德,尹峰.多孔硅在多晶硅太阳电池上的应用.太阳能学报,1998,19(1):426-429.
    [101]Mccord P, Yau S L, Bard A J. Chemiluminescence of anodized and etched silicon-evidence for a luminescent siloxene-like layer on porous silicon. Science,1992,257(5066):68-69.
    [102]Mikulec F V, Kirtland J D, Sailor M J. Explosive nanocrystalline porous silicon and its use in atomic emission spectroscopy. Adv Mater,2002,14(1):38-41.
    [103]Plessis M d. Properties of porous silicon nano-explosive devices. Sensor Actuat a-Phys,2007, 135(2):666-674.
    [104]徐叙瑢,苏勉曾,发光学与发光材料,北京:化学工业出版社,2004;
    [105]Fauchet P M. The integration of nanoscale porous silicon light emitters: materials science, properties, and integration with electronic circuitry. J Lumin,1998,80(1-4):53-64.
    [106]Cullis A G, Canham L T, Calcott P D J. The structural and luminescence properties of porous silicon. J Appl Phys,1997,82(3):909-965.
    [107]Canham L T, Properties of Porous Silicon, The Institution of Electrical Engineers:London,1997.
    [108]Fathauer R W, George T, Ksendzov A et al. Visible luminescence from silicon-wafers subjected to stain etches. Appl Phys Lett,1992,60(8):995-997.
    [109]Shih S, Jung K H, Hsieh T Y et al. Photoluminescence and formation mechanism of chemically etched silicon. Appl Phys Lett,1992,60(15):1863-1865.
    [110]Shih S, Tsai C, Li K H et al. Control of porous Si photoluminescence through dry oxidation. Appl Phys Lett,1992,60(5):633-635.
    [111]鲍希茂.发光多孔硅.物理学进展,1993,13(1):284-287.
    [112]Nakajima A, Itakura T, Watanabe S et al. Photoluminescence of porous Si, oxidized then deoxidized chemically. Appl Phys Lett,1992,61(1):46-48.
    [113]Bsiesy A, Vial J C, Gaspard F et al. Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers. Surf Sci,1991,254(1-3):195-200.
    [114]Zhou W M, Shen H, Harvey J F et al. High-pressure optical investigation of porous silicon. Appl Phys Lett,1992,61(12):1435-1437.
    [115]Brandt M S, Fuchs H D, Stutzmann M et al. The origin of visible luminescence from porous silicon-a new interpretation. Solid State Commun,1992,81(4):307-312.
    [116]Lehmann V, Gosele U. Porous silicon-quantum sponge structures grown via a self-adjusting etching process. Adv Mater,1992,4(2):114-116.
    [117]Grutzmacher D G, Fromherz T, Dais C et al. Three-dimensional Si/Ge quantum dot crystals. NANO LETT,2007,7(10):3150-3156.
    [118]Buda F, Kohanoff J, Parrinello M. Optical-properties of porous silicon-a 1 st-principles study. Phys Rev Lett,1992,69(8):1272-1275.
    [119]Filonov A B, Petrov G V, Novikov V A et al. Orientation effect in electronic-properties of silicon wires. Appl Phys Lett,1995,67(8):1090-1091.
    [120]Bhat S V, Jayaram K, Muthu D V S et al. Electron-paramagnetic resonance study of porous silicon. Appl Phys Lett,1992,60(17):2116-2117.
    [121]Nakajima A, Ohshima Y, Itakura T et al. Microstructure of porous silicon. Appl Phys Lett,1993, 62(21):2631-2633.
    [122]Takasuka E, Kamei K. Microstructure of porous silicon and its correlation with photoluminescence. Appl Phys Lett,1994,65(4):484-486.
    [123]Schuppler S, Friedman S L, Marcus M A et al. Dimensions of luminescent oxidized and porous silicon structures. Phys Rev Lett,1994,72(16):2648-2651.
    [124]Voos M, Uzan P, Delalande C et al. Visible photoluminescence from porous silicon-a quantum confinement effect mainly due to holes. Appl Phys Lett,1992,61(10):1213-1215.
    [125]Ogut S, Chelikowsky J R, Louie S G. Quantum confinement and optical gaps in Si nanocrystals. Phys Rev Lett,1997,79(9):1770-1773.
    [126]Trucks G W, Raghavachari K, Higashi G S et al. Mechanism of HF etching of silicon surfaces-a theoretical understanding of hydrogen passivation. Phys Rev Lett,1990,65(4):504-507.
    [127]Gupta P, Colvin V L, George S M. Hydrogen desorption-kinetics from monohydride and dihydride species on silicon surfaces. Phys Rev B,1988,37(14):8234-8243.
    [128]Gupta P, Dillon A C, Coon P A et al. Ftir studies reveal that silicon-containing laser-induced desorption products are surface-reaction intermediates. Chem Phys Lett,1991,176(1):128-134.
    [129]Kovalev D I, Yaroshetzkii I D, Muschik T et al. Fast and slow visible luminescence bands of oxidized porous Si. Appl Phys Lett,1994,64(2):214-216.
    [130]Kux A, Kovalev D, Koch F. Time-delayed luminescence from oxidized porous silicon after ultraviolet excitation. Appl Phys Lett,1995,66(1):49-51.
    [131]Tsybeskov L, Vandyshev J V, Fauchet P M. Blue emission in porous silicon-oxygen-related photoluminescence. Phys Rev B,1994,49(11):7821-7824.
    [132]Prokes S M. Light-emission in thermally oxidized porous silicon-evidence for oxide-related luminescence. Appl Phys Lett,1993,62(25):3244-3246.
    [133]Prokes S M, Glembocki O J. Role of Interfacial oxide-related defects in the red-light emission in porous silicon. Phys Rev B,1994,49(3):2238-2241.
    [134]Koch F, Petrova-koch V, maschik T. Some perspectives on the luminescence mechanism via surface confined states of porous silicon. MRS Symp Proc 1993,283:197-202.
    [135]汪开源,唐洁影.多孔硅发光机制的分析.固体电子学研究与进展,1994,14:317-322.
    [136]Qin G G, Jia Y Q. Mechanism of the visible luminescence in porous silicon. Solid State Commun, 1993,86(9):559-563.
    [137]Pavesi L. Luminescence of porous and amorphous hydrogenated silicon: analogies and differences. Solid State Phenomena,1995,44-46:261-274.
    [138]Xu Z Y, Gal M, Gross M. Photoluminescence studies on porous silicon. Appl Phys Lett,1992, 60(11):1375-1377.
    [139]Dimaria D J, Kirtley J R, Pakulis E J et al. Electroluminescence studies in silicon dioxide films containing tiny silicon islands. J Appl Phys,1984,56(2):401-416.
    [140]Gee A. Electrochemiluminescence at a silicon anode in contact with an electrolyte. J Electrochem Soc,1960,107(9):787-788.
    [141]Halimaoui A, Oules C, Bomchil G et al. Electroluminescence in the visible range during anodic-oxidation of porous silicon films. Appl Phys Lett,1991,59(3):304-306.
    [142]Canham L T, Leong W Y, Beale M I J et al. Efficient visible electroluminescence from highly porous silicon under cathodic bias. Appl Phys Lett,1992,61(21):2563-2565.
    [143]Linnros J, Lalic N. High Quantum Efficiency for a Porous Silicon Light-Emitting Diode under Pulsed Operation. Appl Phys Lett,1995,66(22):3048-3050.
    [144]Lee M K, Peng K R. Blue Emission of Porous Silicon. Appl Phys Lett,1993,62(24):3159-3160.
    [145]Lazarouk S, Bondarenko V, LaMonica S et al. Electroluminescence from aluminum-porous silicon reverse-biased Schottky diodes formed on the base of highly doped n-type polysilicon. Thin Solid Films, 1996,276(1-2):296-298.
    [146]Gelloz B, Shibata T, Koshida N. Stabilization of nano-crystalline porous silicon electroluminescence by high pressure water vapor annealing. Phys Stat Sol,2007,4(6):2141-2144.
    [147]Timoshenko V Y, Dittrich T, Sieber I et al. Laser-induced melting of porous silicon. Physica Status Solidi a-Applied Research,2000,182(1):325-330.
    [148]Chattopadhyay S, Bohn P W. Surfactant-induced modulation of light emission in porous silicon produced by metal-assisted electroless etching. Anal Chem,2006,78(17):6058-6064.
    [149]Propst E K, Kohl P A. The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J Electrochem Soc,1994,141(4):1006-1013.
    [150]Lee S H, Maeda R. p-Type macroporous silicon having three-dimensional structure. Chem Commun, 2004(12):1432-1433.
    [151]Torchynska T V, Cano A D, Khomenkova L Y et al. Magnetic field effect on the visible photoluminescence of porous silicon. Phys Stat Sol,2005,2(9):3314-3318.
    [152]Williams P S, Kidder J N, Jr H et al., Variations in the photoluminescence intensity of chemically and anodically etched silicon films, In the symposium on silicon based optoelectronic materials, London: 1993.
    [153]Boughaba S, Wang K. Fabrication of porous silicon using a gas etching method. Thin Solid Films, 2006,497(1-2):83-89.
    [154]陈乾旺,周贵恩,朱警生.水热腐蚀制备多孔硅的研究.自然科学进展,1997,06:748-750.
    [155]Zhang Y H, Li X J, Zheng L et al. Nondegrading photoluminescence in porous silicon. Phys Rev Lett, 1998,81(8):1710-1713.
    [156]Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater,2003,2(6):397-401.
    [157]Jin X B, Gao P, Wang D H et al. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew Chem Int Edit,2004,43(6):733-736.
    [158]Yasuda K, Nohira T, Ogata Y H et al. Direct electrolytic reduction of solid silicon dioxide in molten LiCl-KCl-CaCl2 at 773 K. J Electrochem Soc,2005,152(11):D208-D212.
    [159]Nagamori M, Malinsky I, Claveau A. Thermodynamics of the Si-C-0 system for the production of silicon-carbide and metallic silicon. Metall Trans B,1986,17(3):503-514.
    [160]Breslin M C, Ringnalda J, Xu L et al. Processing, microstructure, and properties of Co-continuous alumina-aluminum composites. Mat Sci Eng a-Struct,1995,195(1-2):113-119.
    [161]Biehl E, Schubert U, Kubel F. Reduction of solid silicon monoxide by elemental metals. New J Chem, 2001,25(8):994-998.
    [162]Fuglein E, Schubert U. Formation of Mg2Si from solid silicon monoxide, and solid-state comproportionation between Mg2Si and SiO. Chem Mater,1999,11(4):865-866.
    [163]Bao Z H, Weatherspoon M R, Shian S et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature,2007,446(7132):172-175.
    [164]Richman E K, Kang C B, Brezesinski T et al. Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett,2008,8(9):3075-3079.
    [165]Matthias S, Muller F, Gosele U. Controlled nonuniformity in macroporous silicon pore growth. Appl Phys Lett,2005,87(22):224106.
    [166]Rinne S A, Garcia-Santamaria F, Braun P V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat Photonics,2008,2(1):52-56.
    [167]Tetreault N, Miguez H, Yang S M et al. Refractive index patterns in silicon inverted colloidal photonic crystals. Adv Mater,2003,15(14):1167-1172.
    [168]Matthias S, Muller F, Jamois C et al. Large-area three-dimensional structuring by electrochemical etching and lithography. Adv Mater,2004,16(23-24):2166-2170.
    [169]Astrova E V, Borovinskaya T, Tolmachev V A et al. Stripes of 2D photonic crystal obtained from macroporous silicon. Opt Mater,2005,27(5):827-830.
    [170]徐如人,庞文琴,无机合成与制备化学,北京:高等教育出版社,2003.
    [171]Guo W M, Zhang G J. Reaction Processes and Characterization of ZrB2 Powder Prepared by Boro/Carbothermal Reduction of ZrO2 in Vacuum. J Am Ceram Soc,2009,92(1):264-267
    [172]Kong B S, Geng J X, Jung H T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem Commun,2009,16:2174-2176
    [173]Marcus C, Zevenbergen L A. The reduction and distillation of isotopically enriched zinc oxides under high vacuum conditions. Nucl Instrum Meth A,1999,438(1):30-35.
    [174]王平艳,刘谋盛,戴永年.真空碳热还原氯化法从铝土矿炼铝的实验.有色金属,2007,59(4):99-101.
    [175]郁青春,杨斌.氧化镁真空碳热还原行为研究.真空科学与技术学报,2009,S1(29):68-71.
    [176]Kozlov V A, Mikulins.As. Mechanism of silicon reduction of calcium oxide in vacuum. Russ Metall-Metall-U,1968(5):52.
    [177]董镛.硅热法炼镁——真空应用的广阔天地.真空,1996,1:50-51.
    [178]徐小科,真空热还原制备Mg和Sr的研究,重庆:重庆大学,2008.
    [179]Awasthi A, Bhatt Y J, Krishnamurthy N et al. The reduction of niobium and tantalum pentoxides by silicon in vacuum. J Alloy Compd,2001,315(1-2):187-192.
    [180]于金,吴三械.真空铝热还原法制备金属锶的锶还原率.机械工程材料,2007,31(5):20-23.
    [181]中国真空学会真空冶金专业委员会,全国真空冶金与表面工程学术会议论文摘要集,北京:电子工业出版社,2009.
    [182]Ohanlon J F. Contamination reduction in vacuum processing systems. J Vac Sci Technol A,1989, 7(3):2500-2503.
    [183]Schmidt P H. Purification of cesium and rubidium metals by chloride reduction under high vacuum conditions. J Electrochem Soc,1969,116(9):1279-1282.
    [184]中国真空学会真空冶金专业委员会,全国真空冶金与表面工程学术会议论文摘要集,北京:电子工业出版社,2007.
    [185]叶其辉,陈红雨,罗绮雯,高温真空预处理制备太阳能级多晶硅的方法,中国,200810116119.2008.
    [186]Shang Y S, Wu J, Zhu J et al. Study on adsorption of N2 and O2 by magnesium (Ⅱ)-exchanged zeolite A. J Alloy Compd,2009,478(1-2):5-7.
    [187]谷白云,商云帅,孟长功.方沸石对Cd2+离子的交换性能研究.离子交换与吸附,2008,24(2):154-161.
    [188]Wang Y, Wu J, Zhu J. Recrystallization of magadiite into offretite in the presence of tetramethylammonium cations. Journal of Chemical Technology & Biotechnology,2010,85:279-282.
    [189]徐如人,庞文琴,屠昆岗,沸石分子筛结构与合成,长春:吉林大学出版社,1987.
    [190]中国科学院大连化学物理研究所分子筛组,沸石分子筛,北京:科学出版社,1978.
    [191]Shanbhag G V, Choi M, Kim J et al. Mesoporous sodalite:A novel, stable solid catalyst for base-catalyzed organic transformations. J Catal,2009,264(1):88-92.
    [192]邵长路,李晓天,裘式纶.邻苯二酚作螯合剂合成全硅方钠石(Si-SOD)和全硅ZSM-5(Si-ZSM-5)分子筛大单晶.高等化学学报,1999,20:1667-1670.
    [193]Brunauer S, Deming L S, Deming W E et al. On a theory of the van der Waals adsorption of gases. J Am Chem Soc,1940,62:1723-1732.
    [194]Lethbridge Z A D, Williams J J, Walton R I et al. Methods for the synthesis of large crystals of silicate zeolites. Micropor Mesopor Mat,2005,79(1-3):339-352.
    [195]Koningsberger D C, Miller J T. Local-structure determination of aluminum in Y-zeolite-application of low-energy X-Ray-absorption fine-structure spectroscopy. Catal Lett,1994,29(1-2):77-90.
    [196]Vitale G, Mellot C F, Cheetham A K. Localization of adsorbed cyclohexane in the acid form of zeolite Y. A powder neutron diffraction and computational study. J Phys Chem B,1997, 101(48):9886-9891.
    [197]Li X X, Tang Y H, Lin L W et al. Blue light emission in mesoporous SiOx nano-structure. Micropor Mesopor Mat,2008,111(1-3):591-595.
    [198]Gao F F, Zhu G S, Li X T et al. Synthesis of a high-quality host material:Zeolite MFI giant single crystal from monocrystalline silicon slice. J Phys Chem B,2001,105(51):12704-12708.
    [199]Liao L S, Bao X M, Zheng X Q et al. Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Appl Phys Lett,1996,68(6):850-852.
    [200]Awaji M, Hashimoto H. Detection of a point defect in a silicon single crystal by a subtraction method using high-resolution transmission electron microscopy. Acta Crystallogr A,1996,52:158-170.
    [201]Wu Y, Cui Y, Huynh L et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett,2004,4(3):433-436.
    [202]Takeguchi M, Tanaka M, Yasuda H et al. Real-time high-resolution transmission electron microscopy observation of the growth process of (001) surfaces on a nanometer-sized Si multiply twinned particle. Surf Sci,2001,493(1-3):414-419.
    [203]Takeguchi M, Tanaka M, Yasuda H et al. Cross-sectional high-resolution transmission electron microscopy observation of Si(113) 3x2 structure. Surf Sci,2001,482:1385-1391.
    [204]Sato S, Yamamoto N, Yao H et al. Synthesis of three-dimensional silicon cluster superlattices. Chem Phys Lett,2002,365(5-6):421-426.
    [205]Martin-Palma R J, Pascual L, Landa-Canovas A R et al. HRTEM analysis of the nanostructure of porous silicon. Mat Sci Eng C-Bio S,2006,26(5-7):830-834.
    [206]Baldwin R K, Pettigrew K A, Ratai E et al. Solution reduction synthesis of surface stabilized silicon nanoparticles. Chemical Communications,2002(17):1822-1823.
    [207]Martin-Palma R J, Pascual L, Herrero P et al. Direct determination of grain sizes, lattice parameters, and mismatch of porous silicon. Appl Phys Lett,2002,81(1):25-27.
    [208]Williams J S, Elliman R G. Role of Electronic Processes in Epitaxial Recrystallization of Amorphous-Semiconductors. Phys Rev Lett,1983,51(12):1069-1072.
    [209]Bapat A, Perrey C R, Campbell S A et al. Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma. J Appl Phys,2003,94(3):1969-1974.
    [210]格雷格SJ,辛KSW,吸附、比表面与孔隙率,北京:化学工业出版社,1989.
    [211]Huo Q S, Zhao D Y, Feng J L et al. Room temperature growth of mesoporous silica fibers:a new high-surface-area optical waveguide. Adv Mater,1997,9(12):974-978.
    [212]Hilonga A, Kim J K, Sarawade P B et al. Mesoporous titania-silica composite from sodium silicate and titanium oxychloride. Part II:one-pot co-condensation method. J Mater Sci,2010,45(5):1264-1271.
    [213]金胜明,邱冠周,杨华明.海泡石制备HMS和AlSBA介孔分子筛的研究.物理化学学报,2005,21:796-799.
    [214]近藤精一,石川达雄,安部郁夫,吸着の科学(第二版),北京:化学工业出版社,2006.
    [215]Young T F, Chen C P, Liou J F et al. Study on the Si-Si vibrational states of the near surface region of porous silicon. J Porous Mat,2000,7(1-3):339-343.
    [216]Sreejith K, Pillai C G S. IR study on the effect of chloride ion on porous silicon. Appl Surf Sci,2006, 252(24):8399-8403.
    [217]Koker L, Wellner A, Sherratt P A J et al. Laser-assisted formation of porous silicon in diverse fluoride solutions:Hexafluorosilicate deposition. J Phys Chem B,2002,106(17):4424-4431.
    [218]Craciun G, Bercu C, Flueraru M et al. An investigation of oxidised porous silicon by infrared spectroscopy. J Mol Struct,1997,410:129-132.
    [219]Kuzik L A, Yakovlev V A, Mattei G. Raman scattering enhancement in porous silicon microcavity. Appl Phys Lett,1999,75(13):1830-1832.
    [220]Moreno J D, AgulloRueda F, Montoya E et al. Depth-resolved micro-Raman study of porous silicon at different oxidation states. Appl Phys Lett,1997,71 (15):2166-2168.
    [221]Guha S. Raman scattering and luminescence polarization anisotropy in porous Si. Thin Solid Films, 1997,297(1-2):102-105.
    [222]Sakka T, Tsuboi T, Ogata Y H et al. Raman scattering from metal-deposited porous silicon. J Porous Mater,2000,7:397-400.
    [223]Salcedo W J, Fernandez F J R, Rubim J C. Polarization effects on the Raman and photoluminescence spectra of porous silicon layers. J Raman Spectrosc,1999,30(1):29-36.
    [224]Salcedo W J, Fernandez F J R, Rubim J C. Changes in the porous silicon structure induced by laser radiation. J Raman Spectro,2001,32(3):151-157.
    [225]Tanino H, Kuprin A, Deai H et al. Raman study of free-standing porous silicon. Phys Rev B,1996, 53(4):1937-1947.
    [226]Huong P V, Khoi P H, Tam N T T et al. A Raman spectroscopic study of photoluminescent porous silicon fibres. Inter J Inorg Mater,1999,1:209-212.
    [227]Veinot J G C. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem Commun,2006:4160-4168.
    [228]Luterova K, Dohnalova K, Trojanek F et al. Porous silicon grains in SiO2 matrix: Ultrafast photoluminescence and optical gain. J Non-Cryst Solids,2006,352(28-29):3041-3046.
    [229]Du X W, Lu Y W, Liu J P et al. Improvement of photoluminescence properties of porous silicon by silica passivation. Appl Surf Sci,2006,252(12):4161-4166.
    [230]Hossain S M, Chakraborty S, Dutta S K et al. Stability in photoluminescence of porous silicon. J Lumin,2000,91(3-4):195-202.
    [231]El-Bahar A, Stolyarova S, Chack A et al. Ultrasound treatment for porous silicon photoluminescence enhancement. Phys Status Solidi A,2003,197(2):340-344.
    [232]Xiong Z H, Liao L S, Yuan S et al. Effects of O, H and N passivation on photoluminescence from porous silicon. Thin Solid Films,2001,388(1-2):271-276.
    [233]黄燕华,陈松岩,蔡贝妮.一种新的湿法钝化多孔硅的方法.厦门大学学报(自然科学版),2005,S1:334-337.
    [234]Koropecki R R, Arce R D, Schmidt J A. Infrared studies combined with hydrogen effusion experiments on nanostructured porous silicon. J Non-Cryst Solids,2004,338-40:159-162.
    [235]易岩,沸石及其复合膜材料的制备研究,大连:大连理工大学,2001.
    [236]Lethbridge Z A D, Williams J J, Walton R I et al. Methods for the synthesis of large crystals of silicate zeolites. Micropor Mesopor Mat,2005,79(1-3):339-352.
    [237]Gregg S J, Sing K S W, Adsorption, Surface Area and Porosity, London:Academic Press,1982.
    [238]Khare A K, Banerjee S P. Thermal, IR, cation-exchange and adsorption studies of new synthetic zeolite (Deolite). J Therm Anal,1995,44(3):733-738.
    [239]Koegler J H, vanBekkum H, Jansen J C. Growth model of oriented crystals of zeolite Si-ZSM-5. Zeolites,1997,19(4):262-269.
    [240]Hilonga A, Kim J K, Sarawade P B et al. Mesoporous titania-silica composite from sodium silicate and titanium oxychloride. Part Ⅰ:grafting method. J Mater Sci,2010,45(5):1255-1263.
    [241]Hilonga A, Kim J K, Sarawade P B et al. Mesoporous titania-silica composite from sodium silicate and titanium oxychloride. Part Ⅱ:one-pot co-condensation method. J Mater Sci,2010,45(5):1264-1271.
    [242]Rai V K. Temperature sensors and optical sensors. Appl Phys B-Lasers O,2007,88(2):297-303.
    [243]Belarouci A, Gourbilleau F. Microcavity enhanced spontaneous emission from silicon nanocrystals. J Appl Phys,2007,101(7):073108.
    [244]Mawhinney D B, Glass J A, Yates J T. FTIR study of the oxidation of porous silicon. J Phys Chem B, 1997,101 (7):1202-1206.
    [245]Young T F, Chen C P, Liou J F et al. Study on the Si-Si vibrational states of the near surface region of porous silicon. J Porous Mat,2000,7(1-3):339-343.
    [246]Vinod P N, Lal M. Surface and optical characterization of the porous silicon textured surface. J Mater Sci-Mater El,2005,16(1):1-6.
    [247]Salcedo W J, Peres E E, Fernandez F J R et al. Enhancement of the Raman phonon spectra of porous silicon films by H+ ion implantation. Vib Spectrosc,2004,36(1):135-140.
    [248]Robinson M B, Dillon A C, George S M. Porous silicon photoluminescence versus HF etching-no correlation with surface hydrogen species. Appl Phys Lett,1993,62(13):1493-1495.
    [249]Zhao Y, Li D S, Yang D R et al. Blue emission of porous silicon intensified by boron deposition. J Mater Sci,2005,40(18):5071-5073.
    [250]Bustarret E, Marcenat C, Achatz P et al. Superconductivity in doped cubic silicon. Nature,2006, 444(7118):465-468.
    [251]Hanley C, Thurber A, Hanna C et al. The influences of cell type and ZnO nanoparticle size on immune cell cdytotoxicity and cytokine induction. Nanoscale Res Lett,2009,4(12):1409-1420.
    [252]Kim J P, Lee S Y, Bae J S et al. ZnO nanoparticle grown on carbon nanotubes by a solvothermal method. J Ceram Process Res,2009,10:S 128-S131.
    [253]Li C, Yu Z S, Fang S M et al. Preparation and performance of ZnO nanoparticle aggregation with porous morphology. J Alloy Compd,2009,475(1-2):718-722.
    [254]Arakelyan V M, Galstyan V E, Martirosyan K S et al. Hydrogen sensitive gas sensor based on porous silicon/TiO2-x structure. Physica E,2007,38(1-2):219-221.
    [255]Mery E, Alekseev S A, Zaitsev V N et al. Covalent grafting of ion-exchanging groups on porous silicon for microsystem applications. Sensor Actuat B-Chem,2007,126(1):120-125.
    [256]Singh R G, Singh F, Kanjilal D et al. White light emission from chemically synthesized ZnO-porous silicon nanocomposite. J Phys D Appl Phys,2009,42(6):062002.
    [257]Henrich V E, Cox P A, The Surface Science of Metal Oxides, Cambridge:Cambridge University Press,1994.
    [258]Azoroff L V, Introduction of Solids, New York: McGraw-Hill,1990.
    [259]Van Der Voort P, Morey M, Stucky G D et al. Creation of VOx surface species on pure silica MCM-48 using gas-phase modification with VO(acac)(2). J Phys Chem B,1998,102(3):585-590.
    [260]孔令东,刘苏,颜学武.缓冲体系中高热和水热稳定性的MCM-48介孔分子筛的合成.化学学报,2005,63(13):1241-1244.
    [261]闰明涛,张大余,吴刚.介孔分子筛MCM-48的室温合成与表面修饰.无机化学学报,2005,21(8):1165-1169.
    [262]Schumacher K, Grun M, Unger K K. Novel synthesis of spherical MCM-48. Micropor Mesopor Mat, 1999,27(2-3):201-206.
    [263]Raymond O, Villavicencio H, Flores E et al. Spectral-optic response of ZnS and mixed CdxZnyS nanoclusters on synthetic mordenites. J Phys Chem C,2007,111(28):10260-10266.
    [264]Filipe P, Silva J N, Silva R et al. Stratum forneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Phys,2009,22(5):266-275.
    [265]Kim D A, Im S I, Whang C M et al. Structural and optical features of nanoporous silicon prepared by electrochemical anodic etching. Appl Surf Sci,2004,230(1-4):125-130.
    [266]白莹,兰燕娜,朱会丽.多孔硅拉曼光谱随激发功率变化的研究.光学学报,2005,25(12):1712-1717.
    [267]Palestino A G, de la Mora M B, del Rio J A et al. Fluorescence tuning of confined molecules in porous silicon mirrors. Appl Phys Lett,2007,91(12):121909.
    [268]Zheng X L, Wang W, Chen H C. Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si. Appl Phys Lett,1992,60(8):986-988.
    [269]Zuk J, Kulik M, Andrews G T et al. Characterization of porous silicon by Raman scattering and photoluminescence. Thin Solid Films,1997,297(1-2):106-109.
    [270]Tamir S, Berger S. Electroluminescence and electrical properties of nano-crystalline silicon. Mat Sci Eng B-Solid,2000,69:479-483.
    [271]Dag O, Kuperman A, Ozin G A. Nanostructures-new forms of luminescent silicon. Adv Mater, 1995,7(1):72-78.
    [272]Urbach B, Axelrod E, Sa'ar A. New transport phenomena probed by dielectric spectroscopy of oxidized and non-oxidized porous silicon. Phys Status Solidi A,2007,204(5):1480-1485.
    [273]Urbach B, Axelrod E, Sa'ar A. Correlation between transport, dielectric, and optical properties of oxidized and nonoxidized porous silicon. Phys Rev B,2007,75(20):205330.
    [274]Houdzoumis V A, Wu T T, Myers J M. Backscattering of an electromagnetic missile by a metal cylinder of degree higher than two. J Appl Phys,1996,80(1):15-24.
    [275]Li G B, Hou X Y, Yuan S et al. Passivation of light-emitting porous silicon by rapid thermal treatment in NH3. J Appl Phys,1996,80(10):5967-5970.
    [276]Sader J E, White L. Theoretical-analysis of the static deflection of plates for atomic-force microscope applications. J Appl Phys,1993,74(1):1-9.
    [277]Linsmeier J, Wust K, Schenk H, et al. Chemical surface modification of porous silicon using tetraethoxysilane, Thin Solid Films,1997,297:26-30
    [278]Goto Y, Fukushima Y, Ratu P et al. Mesoporous material from zeolite. J Porous Mater,2002, 9:43-48.
    [279]Rogers K A, Kumar P, Citak R et al. Dense, shaped ceramic/metal composites at<1000 degrees C by the displacive compensation of porosity (DCP) method. J Am Ceram Soc,1999,82(3):757-760.
    [280]Schicker S, Garcia D E, Bruhn J et al. Reaction processing of A12O3 composites containing iron and iron aluminides. J Am Ceram Soc,1997,80(9):2294-2300.
    [281]Kumar P, Sandhage K H. The displacive compensation of porosity (DCP) method for fabricating dense, shaped, high-ceramic-bearing bodies at modest temperatures. J Mater Sci,1999,34(23):5757-5769.
    [282]Yasuda K, Nohira T, Takahashi K et al. Electrolytic Reduction of a Powder-Molded SiO2 Pellet in Molten CaCl2 and Acceleration of Reduction by Si Addition to the Pellet. J Electrochem Soc, 2005,152(12):232-237
    [283]Yasuda K, Nohira T, Amezawa K et al. Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2. J Electrochem Soc,2005,152(4):69-74.
    [284]Nishimura Y, Fukunaka Y. Electrochemical reduction of silicon chloride in a non-aqueous solvent. Electrochimica Acta,2007,53:111-116
    [285]Li H L, Fu A P, Xu D S et al. In situ silanization reaction on the surface of freshly prepared porous silicon. Langmuir,2002,18(8):3198-3202.
    [286]Chandlerhenderson R R, Swerydakrawiec B, Coffer J L. Steric considerations in the amine-induced quenching of luminescent porous silicon. J Phys Chem-Us,1995,99(21):8851-8855.
    [287]Geobaldo F, Rivolo P, Salvador G P et al. Free carriers reactivation on p(+)-mesoporous silicon through ammonia adsorption:a FTIR study. Sensor Actuat B-Chem,2004,100(1-2):205-208.
    [288]Al-Hilli S M, Al-Mofarji R T, Klason P et al. Zinc oxide nanorods grown on two-dimensional macroporous periodic structures and plane Si as a pH sensor. J Appl Phys,2008,103(1):014302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700