新型可交联聚芳醚酮的分子设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Molecular Design and Property of Novel Crosslinkable Poly (Aryl Ether Ketone)s
  • 作者:戴晓晖
  • 论文级别:硕士
  • 学科专业名称:材料学
  • 学位年度:2004
  • 导师:姜振华
  • 学科代码:080502
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-05-01
摘要
随着高技术的发展,人们对材料的要求越来越高,高性能工程塑料得到
    了日益广泛的关注,其中以聚醚醚酮(PEEK)为代表的半结晶性的聚芳醚酮材料
    由于其优异的耐热性、耐辐照性、高强度等特点在电子、交通、宇航等领域具
    有广泛的应用。但是随着应用目的与应用环境的不同需要,此类性能优异的特
    种工程塑料已经不能满足其应用的需求。人们不断开发性能优异的此类新材料,
    在聚合物主链上引入不同的功能基团(如萘环、氮杂萘环等)、以及在主链上引
    入侧基功能基团(如苯、三氟甲基等),来提高聚芳醚酮的溶解性,或者通过共
    聚和共混等方式来进一步改善材料的使用性能和加工性能。
    聚芳醚酮新品种开发中的“高温加工、低温使用”的困难是热塑性材料
    的缺点。而热固性材料在这方面则有无比优越的特性,则可以做到“低温加工、
    高温使用”,但是热固性材料在加工一些特殊几何形状的铸件则存在一定的困
    难。因此我们希望开发一种材料,它加工以前是热塑性材料,可以采用热塑性
    材料的加工方法,加工后转变成为热固性材料,具有热固性材料的使用优点,
    从而兼具两种材料的优点。交联正是将热塑性材料转变成热固性材料的一个有
    力的手段。
    本文先从设计分子结构开始的,将具有特殊功能的基团引入到聚芳醚酮体
    系中来实现聚合物的功能化。基于聚芳醚酮的分子链段的特点,必须在分子设
    计过程中引入可交联点,为此,本文在聚芳醚酮侧链中引入丙烯基,来提高此
    类聚芳醚酮材料的溶解性,合成出可溶于常规极性有机溶剂中的无定形聚合物
    然后在成型后用活性基团的加成交联反应得到一类新型的不溶不熔的热固性工
     68
    
    
    吉林大学硕士学位论文
    程塑料。
     利用芳基取代反应和克莱森重排反应,制得含烯丙基的双酚单体,重结晶
    纯化得纯度 99%以上。以自制双酚单体和二氟二苯酮在溶剂/碱中的亲核取代
    反应合成了新型含丙烯基侧基的高分子量聚芳醚酮,提出了“缩聚-原位异构化”
    反应。通过产物结构分析确证了反应过程中“烯丙基-丙烯基”的重排,并且发
    现丙烯基以全反式(Z)构型存在于聚芳醚酮的分子结构中。并且对新型含丙
    烯基聚合物材料进行了性能方面的研究。
     研究表明取代侧基的存在,破坏了分子链堆砌的规整性,聚合物材料为无
    定形样品,含丙烯基的聚芳醚酮类聚合物材料具有很好的溶解性和成膜性能。
     通过合成方法得到的新型可溶性含丙烯基聚合物材料在交联前后性能变化
    明显:通过 DSC 方法监测热交联反应,从玻璃化转变的具体数值可以看到无论
    是在空气环境下还是在氮气环境下,聚合物热交联的最佳温度为 320OC. 聚合物
    在 320OC 热处理以后,玻璃化转变温度明显增加。在我们所应用的光照强度下,
    含丙烯基侧基取代的聚合物的玻璃化转变温度随着 UV 光照时间的增加并不是
    很明显的增加。但在后面的溶解性实验中,我们发现光交联的聚合物有凝胶出
    现。聚合物在热处理后溶解过程中也有凝胶出现,且随着幅照时间以及热处理
    时间和温度的的增加,凝胶含量增加。这些结果都表明聚合物材料在热交联和
    UV 辐照后有交联键生成.。
     聚合物在交联以后具有较高的热分解温度,比交联以前温度升高10℃-30℃
    表现了很好的热稳定性。
Accompany with the development of high-technology, high-performance
    engeering thermoplastics have been paid much attention while the demanding
    to materials become more and more critical. Poly( ether ether ketone) (PEEK),
    which is the typical representative in Poly(aryl ether ketone)s (PAEKs) family,
    have been applied in electronics, transports, aerospace fields et al for its
    outstanding properties such as high thermal stability, radiation resistance, high
    modulus. The physical properties of the polymers depend very much on the
    chemical structure. Therefore new monomers containing substituent group
    were designed and synthesized to introduce into chain of PAEKs.
     The difficulty encountered during the development of new PAEKS must
     be ascribed to the common shortcoming of thermoplastics. On the contrary,
     the thermosets can be processed at lower temperature and be applied at higher
     temperature while they cannot be found to a mold. So we hope to develop a
     kind of material which can be processed as thermoplastics and being used as
     thermosets. Cross-linking is a suitable and powerful method to transform
     thermoplastics to thermosets.
     Here cross-linkable propenyl group was introduced to the side chain of
     PEEK. A novel soluble poly(ether ether ketone) with propenyl groups as
    lateral substituents was synthesized through nucleophilic substitution route.
     Monomer 3,3’-dially-4,4’-dihydroxybiphenyl (DABP) was synthesized by
    Meerwein aryl-substitution reaction and based on Clasein arrangement. Polymers
    were also prepared through the nucleophilic substitution displacement reaction
    with activated difluoro monomer 4-4’difluorobenzophenone and monomer
    3,3’-dially-4,4’-dihydroxybiphenyl (DABP) with K2CO3 as base, N,N-Dimethyl
     70
    
    
    吉林大学硕士学位论文
    formamide(DMF) was used as a solvent at 160℃ for 5h. The reaction mixture
    was poured into large distilled water and continuous turning and polymer
    materials were obtained. After the crude product was crushed, filtered, washed,
    and dried, a new pendant group, propenyl was developed to functionalize PEEK
    by a novel process-polycondensation-in situ isomerization. It was characterized
    and studied its properties by FTIR, H-NMR ,UV-Vis , WAXD, GPC and DSC.
     1
     Existing of substituent pendant groups destroyed the crystal property of these
    polymers with high molecular weight. These polymers containing pendant
    propenyl were soluble well in organic solvents such as DMF, DMAC, THF, and
    the membrane material had high intension and tenacity properties.
     The thermal properties of soluble polymer containing pendant propenyl were
    magnitude change. The suitable cross-linking condition was determinded by DSC.
    There was no linearly change on the glass transition temperature (Tg) of polymer
    heat treated at 250oC or 280oC . The glass transition temperature (Tg) of polymer
    increased linearly after the polymer was cured by heat treat at 320oC. It was show
    that 320oC is the suitable crosslinking temperature under nitrogen atmosphere or
    O2 atmosphere. When the polymer irradiated by UV, its Tg not increased linearly
    with irradiation times increasing. But Gel phenomina was show when polymer
    was heat treated or irraditioned by UV. The results indicated that the crosslinking
    structure had formed when polymer materials were heat treated or irradioned by
    UV. At the same time, the polymer’s thermal stability was elevated after
    cross-linking.
引文
1. James, M.M., Engineering Thermoplastics Properties and Applications
     Marceidekker Inc. New York and Baser, 1985
    2. Bonner W.H., US pat, 3065205,
    3. Goodman I., et al, Br pat. 871227, 1964
    4. Rose J.B., US pat, 4320224
    5. Rose J.B. Br pat, 1558671, 1976
    6. Rose J.B., Br pat, 1414422, 1975
    7. Rose J.B. Br pat, 1414423, 1975
    8. Rose J.B., Br pat, 1414424, 1975
    9. Attwood, et al., Polymer, 1981, 22, 1096
    10. Jones D.P., Leach D.C., Moore D.R., Polymer, 1985,26,1385
    11. 倪卓,硕士学位论文,吉林大学化学系,1984
    12. Clark J.H. and Denness J.E., Polymer, 1994, 35(23): 5124
    13. Bennett G.S., Farris R.J., J.Poly. Sci., Part A: Polym. Chem., 1994
    14. Fei Wang, J. Roovers, P.M. Toporowske, Macromolecules, 1993, 26, 3826
    15. Fei Wang, J. Roovers, J. Polym. Sci., Part A: Polym. Chem., 1994, 32, 2413
    16. Risse W. and sogah D.Y., Macromolecules, 1990, 23(18), 4029
    17. Fukuji Higashi, Ji-hwan Kim, Chen-han Ong, J. Polym. Sci., Part A: Polym.
     Chem., 1999, 32, 2413
    18. Guibin Wang, Chunhai Chen, Zhenhua Jiang, et al, Polymer Preprints, 2000,
     41(2), 1171
    19. Zhang S.J., Zheng Y.B., Wu Zh.W., et al., Polym. Bull., 1997, 38, 621
    20. Zhang S.J., Fu L.X., Yang D.C. et al., Macromol. Chem. Phys., 2000, 201, 649
     —62—
    
    
    吉林大学硕士学位论文
    21. 张万金,姬相玲,苑晶等,Chem. J. Chinese Universties, 1993, 14, 738
    22. Wu, Z. et al, Angew. Makromol. Chemie, 1988, 164, 21
    23. Wu, Z. et al, Angew. Makromol. Chemie, 1988, 165, 103
    24. Xiang Ling Ji, DongHong Y., Wanjin, Zh., Zhongwen W., Polymer, 1997,
     38(14), 3501
    25. Guibin Wang, Chunhai Chen, Zhenhua Jiang, et al, Polymer Preprints, 1999,
     40(2), 803
    26. 潘祖仁 《高分子化学》 化学工业出版社 21-26,
    27. 武利明 《涂料技术基础》 300-301,
    28. C.G.Roffey, Photopolymerization of Surface Coatings, John Wiley and Sons
     Press 1982
    29. Suzuki,Setsuo; et al; 日本公开特许,昭 62 297 334 . 1987
    30. Kondo,Mitsuhiro; et al; 日本公开特许,昭 63 248 883 . 1988
    31. Boutni,Omar Mohamed; et al, Eur.Pat.Appl.,EP 272 412.1998
    32. Yamase,Yukio; 日本公开特许,昭 62 96 579 .1987
    33. 高分子物理,刘凤歧,汤心颐,高等教育出版社,1995
    34. 高分子物理,何曼君,陈维孝,董西侠,复旦大学出版社,1990
    35. 高分子辐射化学——原理与应用,哈鸿飞,吴季兰,北京大学出版社,2002
    36. Grenvesse P., Bull. Soc. Chim. France, 1897, 17:599
    37. Lenz R.W., et al., Polym. Sci., 1962, 58,351
    38. Sergeev V. A., Shitikov K., vysokomol. Soe din, Ser.A, 1977, 19(6): 1289
     (USSR)
    39. C. C.M. Ma, H. C. Hsia, W. L. Liu, and J. T. Hu, in Proc. CICHE-AICHE Symp.
     Modern Chem. Eng. Technol., Taipei, Taiwan, Republic of Chain, 1986, p.222.
    40. C. C. M. Ma and L.T. H., Journal of Applied Polymer Science, 1990, Vol.39,
     —63—
    
    
    吉林大学硕士学位论文
     1399-1415
    41. Masamitsu Shirai, Satoshi Morishita, Haruyuki Okamura, et al., Chem. Mater.,
     2002, 14, 334-340
    42. Craven, J.M., US Patern , 1968, 3,435,003
    43. Jones, J. R., Liotta, C. L., Colard, D. M., et al., Macromolecules, 1999, 32, 5786
    44. Gousse, C., Gandii, A., Hodge, P., Macromolecules, 1998, 31, 314
    45. Xiangxu Chen, Fred Wudl, Ajit K. Mal, et al., Macromolecules, 2003, 36,
     1802-1807
    46. Lee H.J., Lee E.M., Lee M.H., et al., Journal of Polymer Science, Part A:
     Polymer Chemistry, 1998, 36, 2881
    47. Jae-Wook Kany, Tae-pil Kim, Jang-Joo Kim, et al., J. of Lightwave Technology,
     2001, 19, 872
    48. Fei Wang, Jacqued, Roovers, Paul M. Toporowske, Macromolecules, 1993, 26,
     3826, 3832
    49. Yoshihiro Taguchi, Hiroshi Uyama, Shiro Kobayashi, J. Polym. Sci. : Part A:
     Polym. Chem., 1996, 34, 561-565
    50. Fumio Keitoku, Masa-aki Kakimoto, Yoshio Imai, J. Polym. Sci.: Part A: Polym.
     Chem., 1994, 32, 317-322
    51. Mitsuru Ueda, Hideaki Toyoda, Tomonari, Nkayama, et al., J. Polym. Sci.: Part
     A: Polym. Chem., 1996, 34,109-115
    52. Mitsuru Ueda, Hideaki Toyoda, Tomonari, Nkayama, et al., J. Polym. Sci.: Part
     A: Polym. Chem., 1997, 35, 371-376
    53. Lyn, V. R. Sastri, G.Tesoro, et al., Macromolecules, 1988, 21, 1165
    54. Rohde, P. Smolka, P.A. Falcigno, Poilym. Eng. Sci., 1992, 32, 1623
    55. Kenneth A Walker, Larry J. Markoski, Jeffrey S. Moore, Macromolecules, 1993,
     26, 3713-3716
     —64—
    
    
    吉林大学硕士学位论文
    56. Stephen F. Hahn, Steven J. Martin, Marianne L. Mckelvy, Macromolecules, 1992,
     25, 1539-1545
    57. Anastasios P. Melissaris, Morton H. Litt, Macromolecules, 1994, 27(4), 883-887
    58. Anastasios P. Melissaris, Morton H. Litt, Macromolecules, 1994, 27(4), 888-892
    59. Mathew Kozuch, Nagela Schaffer, Atul Bhatnagar, et al., Macromol. Chem.
     Phys., 1995, 196, 2371-2382
    60. Chen LZ, Jian XG, Zhu XL, Polymer Journal 1999, 31 (4): 393-395
    61. Yoshihiro Taguchi, Hiroshi Uyama, Shiro Kobayashi, J. Polym. Sci.: Part A:
     Polym. Chem., 1997, 35, 271-277
    62. B.J. Jensen and P. M. Hergenrother, J. Macromol. Sci. Pure Appl. Chem,. 1993.
     A30, 449
    63. C.Price and W. Snyder, J. Am. Chem. Soc., 1961, 83, 1773
    64.G. Kesslin and C. Orlando, J. Org. Chem., 1966,31,2682
    65. W. Kemp, NMR in Chemistry, MacMillan, London, 1986
    66.J. D. Roberts, J. Org. Chem., 1971,36,2757
    67.J.V. Crivello and D. H. Suh, J. Polym. Sci. Polym. Chem. Ed., 1993,31,1847
    68. 高燕、蹇锡高、宣英男 等,反应型共聚醚酮酮及其关环产物的合成与表征,
     高分子学报,2001,6 月,第三期:403-407
    69. Yoda O., Polym Comm., 1984, 25, 238
    70. Vaughan A.S., Stevens G.C., Polymer, 2001, 42, 8891-8895
    71. Hegazy, E.S., Sasuga T., Nishii M., Polymer, 1992, 33, 2897
    72. Sasuga T., Kudoh, Polymer, 2000, 41, 185
    73.Pagé D.J.Y.S., Bonin H.W., Bui V.T., J. Appl. Polym. Sci., 2002, 86, 2713-2719
    74. Mitsuru Ueda, Hideaki Toyoda, Tomonari, Nkayama, et al., J. Polym. Sci.: Part
     A: Polym. Chem., 1996, 34,109-115
    75. Mitsuru Ueda, Hideaki Toyoda, Tomonari, Nkayama, et al., J. Polym. Sci.: Part
     —65—
    
    
    吉林大学硕士学位论文
     A: Polym. Chem., 1997, 35, 371-376
    76. Lyn, V. R. Sastri, G.Tesoro, et al., Macromolecules, 1988, 21, 1165
    77. Rohde, P. Smolka, P.A. Falcigno, Poilym. Eng. Sci., 1992, 32, 162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700